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Abstract 

The objective of the present work is to propose a 

novel method to extract a stable feature set 

representative of image content. Each image is 

represented by a linear combination of fractal 

orthonormal basis vectors. The mapping coefficients of 

an image projected onto each orthonormal basis 

constitute the feature vector. The set of orthonormal 

basis vectors are generated by utilizing fractal iterative 

function through target and domain blocks mapping. 

The distance measure remains consistent, i.e., isometric 

embedded, between any image pairs before and after 

the projection onto orthonormal axes. Not only similar 

images generate points close to each other in the feature 

space, but also dissimilar ones produce feature points 

far apart. The above statements are logically equivalent 

to that distant feature points are guaranteed to map to 

images with dissimilar contents, while close feature 

points correspond to similar images. Therefore, utilizing 

coefficients derived from the proposed linear 

combination of fractal orthonormal basis as key to 

search image database will retrieve similar images, 

while at the same time exclude dissimilar ones. The 

coefficients associated with each image can be later 

used to reconstruct the original. The content-based 

query is performed in the compressed domain. This 

approach is efficient for content-based query. Scaling, 

rotational, translation, mirroring and horizontal/vertical 

flipping variations of a query image are also supported. 

Keywords:content-based image retrieval, fractal 

orthonormal basis, iterative function system 

1. Introduction 
The retrieval of digital image is an active area of 

research in computer science due to the inefficiency of 

query processing utilizing traditional textual language. 

Most image retrieval paradigms fall between automated 

pixel-oriented information models and fully 

human-assisted database schemes [1]. These 

approaches differ in application domain, visual features 

extracted, features discrimination criteria employed, 

and query mechanisms supported. Feature vector 

characterizing image properties is generally composed 

of color, texture, shape and/or location information. 

Distance measure, e.g., n-dimensional Euclidean 

distance, is utilized to compute the similarity between 

different feature vectors. Query specification tools are 

provided to allow user-constructed sketches and weight 

assignments among different feature components, etc. 

As an example, the QBIC system allows the color, 

texture, or shape of an image or part of an image be 

compared with feature vectors from database images 

using Euclidean similarity measure [2]. The retrieval of 

similar images from database corresponds to determine 

neighboring points in the proximity of the feature point 

of a query image. 

The mapping of an image to the corresponding 

feature vector is a process of dimensionality reduction. 

By finding a lower-dimensional representation of the 

image, an effective feature vector is expected to contain 

vital characteristics of the original. The pitfall associated 
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with the traditional approach is that even though similar 

images generally derive feature points close to each 

other. However, there is no guarantee that dissimilar 

images will map to distant feature points. For example, 

the comparison of color feature usually employs certain 

measure of histogram. Images with resembling 

histogram distribution will be regarded as similar under 

this scheme. However, even with analogous histogram 

distribution, the color within a dissimilar image or 

sub-image might be spatially distributed in a totally 

different manner. Using color feature as a measure of 

similarity between images is not powerful enough to 

exclude the false-positive cases. Moreover, a query 

image might be rotational, scaling, shifted, or 

noise-corrupted variations of database images. A 

traditional retrieval algorithm might not be robust to 

include similar database images of these variations, 

causing the occurrence of false dismissal. 
The corresponding feature vectors qffff ,,, 321  

of images qiiii ,,, 321 , respectively, are shown in 

Figure 1. The derived feature points in the feature 

domain might not preserve the same spatial distance 

relationship as their counterparts in the image domain. 
When an image qi  is used for querying a database, 

31,ii  will be included in the search result due to the 

proximity of points 31, ff  with qf  in the feature 

space. However, image 2i  will be excluded since 

point 2f  is considered as too distant from qf . A 

dissimilar image, e.g., image 3i , mistakenly classified 

as similar one is called false-positive, while a similar 

image, e.g., image 2i , incorrectly excluded from the 

final search result is referred as false-negative. Being 

unable to provide stable distance measure, most 

systems try to minimize false-negative results at the 

expense of an increased number of false positives. A 

compact, perceptually relevant representation of an 

image content that preserves the distance relationship in 

terms of similarity metric in both image and feature 

spaces is highly desirable. 

Image retrieval by content allows a user to search 

image database by specifying the content of an 

exemplary image as the basis for retrieval [3]. In 

traditional content based indexing, content indices 

(colors, shapes or textures) for each image in the 

database are first extracted and appended to the image 

data as overheads. The corresponding feature vector of 

a query image is computed and compared to the stored 

feature vectors. Images most similar to the query are 

returned to the user. Given that images are usually 

coded in compressed format in a database, it would be 

more efficient if the compressed data can also be used 

directly as indices for content-based query. In our 

proposed scheme, each image is decomposed into a 

linear combination of fractal orthonormal basis. The 

coefficient of each term serves both as a feature 

component in the corresponding feature vector and 

compressed data. The content-based query followed is 

performed in the compressed domain. Contents of the 

image are embedded in the compressed data, which can 

be easily and efficiently used as indices for 

content-based image retrieval. The extracted feature 

vector, composed of linear coefficients, will be proved 

in the following section to preserve distance metric 

between the corresponding image points in the image 

domain. 

In what follows, fractal orthonormal basis 

approach will be introduced first. The procedure of 

generating a set of fractal orthonormal basis for an 

ensemble of database images will be outlined. Next, the 

conservation of Euclidean distance measure before and 

after the mapping onto orthonormal basis will be 

proved. Image pairs with long feature distance in the 

feature domain are guaranteed to be dissimilar ones, 

while feature points close to each other correspond to 

similar images. The last section shows the effectiveness 

of this novel approach using a butterfly image database 
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as an example. Due to the preservation of distance 

relationship in both the image and feature domains, 

consistent search results are obtained. 

2. Fractal Orthonormal Basis 
Approach 

Barnsley suggested that storing images as 

collections of transformations could lead to image 

compression [4]. Jaquin was among the first to publish 

a fractal image compression scheme by regular 

partitioning of the image [5]. The accurate coding of a 

range block is dependent upon there being a self-similar 

domain block in the codebook. Because this piecewise 

self-similar model is an approximation of real-world 

data, there is no guarantee that perfect mapping can be 

found. Observing that the iterative function system (IFS) 

coding technique seems to have a limit in the accuracy 

that an image can be coded [6], Vines proposed a 

scheme by finding a set of basis vectors to best 

represent the image in the sense of achieving the higher 

fidelity with good compression [7,8]. Vines’ method 

was intended to improve the decoded signal-to-noise 

ratio of fractal compression, no application to image 

database retrieval was ever suggested.  

According to Vines’ approach, a set of 

orthonormal basis vectors is created by Gram-Schmidt 

procedure and the range blocks are coded by projecting 

the block elements onto this basis. The principle in 

determining the orthonormal set is to create a basis that 

allows each range block to be accurately represented 

with a minimum number of the basis vectors. These 

fractal orthonormal bases are derived from the domain 

vectors. With these vectors, the range blocks can be 

encoded with a simple projection operation, and the 

map parameters will be the corresponding weights for 

this orthonormal basis. 

For a range block of size RR LL × , let Rr LM 2=  

be the length of the range vectors. Let RN
i

I
iI r 1}~{ ==R  

be the set of all range vectors in an image I. Three basis 

vectors 21
~,~ vv  and 3

~v , determined a priori according 

to Vines’ approach, are orthonormalized later to form 

the first three of the required rM  orthonormal basis 

vectors, where Tv }1,,1,1{~
1 Λ= , the DC value, 

Tv }7,6,5,4,3,2,1,0,,7,6,5,4,3,2,1,0,7,6,5,4,3,2,1,0{~
2 Λ= , the tilt 

along the x-axis, and 
Tv }7,7,7,7,7,7,7,7,,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0{~

3 Λ= , the tilt 

along the y-axis.  

The remaining basis vectors will be chosen to span 

the )3( −rM -dimensional subspace 0S  

perpendicular to the subspace spanned by a priori 

vectors 21
~,~ vv  and 3

~v . At the k-th iteration, the i-th 

projected range vector is denoted as k
is  that resides in 

a corresponding subspace kS . The optimal basis 

vector direction is determined by taking the k
is  vector 

with the largest correlation to all of the other k
is  

vectors, i.e., the vector k
is  maximizes the following 

equation is selected:          

∑
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⋅
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k
j

k
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where )( k
j

k
i ss ⋅  is the absolute value of the inner 

product of k
is  and k

js . 

Once each basis vector direction is determined, the 

remaining k
is  vectors are projected onto the subspace 

orthogonal to k
ls  by the following projection operator 
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k

k
l

k
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k
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k
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The chosen basis vector direction is saved as kt  and 

the process is repeated until the necessary 3−rM  

vectors are obtained. In this manner, the set of 3−rM  

orthogonal vectors, 3
1}{ −
=

rM
iit , that best represents the 

subspace 0S  is determined. A search is then 

performed through the domain vectors to find the best 

set of domain vectors for these direction vectors. The 

domain vector with the largest component in the 

direction of the direction vector is selected. Because it is 

possible that one domain vector has the largest 

component on more than one direction vector, each 
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domain vector is only allowed to be used once. 
The three fixed vectors 321

~,~,~ vvv  and the 

3−rM  domain vectors form a set of rM  vectors 

that span the space of the range vectors. If the selected 

3−rM  domain vectors are denoted sequentially as 
rM

iiv 4}~{ = , then the set of fractal basis vectors is equal to 

]~,,~,~,~,~[ 4321 rMvvvvv Λ . These basis vectors are 

further processed using the Gram-Schmidt procedure to 

obtain the corresponding fractal orthonormal basis 
matrix ]~,,~,~[ 21 rMqqq Λ=Q . The coding of a given 

range vector I
ir~  of image I with a set of weight I

iw~  

is equivalent to I
i

TI
i rw ~~ Q=  or I

i
I

i wr ~~ Q= . The 

previous two equations define the basic encoding and 

decoding process. An image I with range vector set 
RN

i
I

iI r 1}~{ ==R , the set of weights 

},1,,,1,{ rR
I
ijI MjNiwW ΛΛ ===  can be 

derived according to the fractal orthonormal basis 

matrix Q . The set of weights IW  serves both as a 

feature vector and compression coefficients of image I. 

From the perspective of image database retrieval, the 

weight matrix IW  represents the signature of image I 

and a distance metric IJd  is employed to measure the 

similarity of images I and J based on feature points 

IW  and JW  in the rM -dimensional space. The 

weight matrix IW  is also utilized in the later 

decompression process to reconstruct the original 

image from the image coding/decoding perspective. 

According to the above paradigm, an image I is 

partitioned into non-overlapping range blocks 
RN

i
I

iI r 1}~{ ==R . Each range block I
ir~  is decomposed 

into a linear combination of orthonormal basis vectors 

by employing the same fractal orthonormal basis matrix 

Q . The set of coefficients for all range blocks, IW , is 

the signature for image I used in the retrieval of image 

database. Since the original image can be reconstructed 

by employing the feature set IW  with high S/N ratio, 

IW  therefore is a good representation of image I with 

little information loss. The similarity measure between 

two images I, J is determined by comparing a distance 

metric IJd  between IW  and JW . Next, we will 

show that the distance metric employing Euclidean 

measure is isometric embedded in both image and 

feature domains, i.e., the proximity of two image points 

I, J in the image space indicates that of corresponding 

feature points IW , JW , and vice versa.  

Proposition:  

The Euclidean distance between images I and J in the 

image domain and that of the corresponding feature 

vectors IW  and JW , derived by projecting range 

blocks of I and J onto a set of orthonormal basis vectors, 

are equivalent. 

Proof:  

The Euclidean distance JId  between images I and J 

can be formulated as 

JId JI −= , 

or expressed in terms of range  

blocks    ∑
=

−=
RN

i

J
i

I
iJI rrd

1

~~ , where .~,~
J

J
iI

I
i rr RR ∈∈  

Each range block I
ir~  and J

ir~  of image I and J can 

be further represented as a linear combination of rM  

orthonormal basis vectors ]~,,~,~[ 21 rMqqq Λ=Q , with 

coefficients 

,1,1,~~
, rRJ

J
ijI

I
ij MjNiww ΛΛ ==∈∈ WW respectively. 

∑ ∑
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Since all basis vectors are orthonormal, i.e., 

.},1{,,0~~,1~2 jiMjiqqq rjij ≠∈∀=⋅= Λ  

All cross-product terms are zeros. 

∑ ∑
= =

−=
R rN

p

M

q

J
ij

I
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1 1
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        ∑ ∑
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I
ij ww

1 1
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The above proposition states that the Euclidean distance 

measure remains the same after the projection of points 
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in image space into a set of orthonormal basis vectors in 

the feature domain. The image space and the feature 

space are “isometric” to each other. From this, we can 

conclude that the closeness of two image points in the 
image space, i.e., ε≤JId , implies the proximity of 

the corresponding feature points in the feature domain, 

ε≤
JIWWd . The above statement is logically equivalent 

to “if feature vectors IW  and JW  are distant to each 

other, then image I is also distant to image J.” Since 

similar images are mapped to close feature points and 

only points close to the feature point of a query image 

will be included in the retrieval results, images 

corresponding to distant features points will be 

excluded. This property suggests that false-negative 

cases are unlikely to occur. Therefore, employing the 

proposed paradigm will not falsely ignore any similar 

images based on the Euclidean metric in the feature 

space. Similar objects will be included in the final 

retrieval set. Another facet of the above proposition 

reveals that the proximity of feature points in feature 

domain indicates the closeness of image points in 

image space. This statement is equivalent to that 

dissimilar image points imply feature points far apart. 

Therefore, the search in near proximity of the feature 

point of a query image will not return dissimilar images. 

This property makes sure that no false-positive will 

occur. Utilizing the coefficients of the linear 

combination of an orthonormal basis set as feature 

vectors will retrieve consistent database retrieval result 

excluding both false-positive and false-negative cases. 

Even though any orthornormal basis set can be 

utilized to construct the feature space, a compact, 

efficient representation of an image that leads to 

concentrations of energy in as few coefficients as 

possible is preferred. Image energy concentrated in as 

low-dimensional subspace as possible is highly 

desirable due to lower computation complexity 

required in feature comparison process and fewer 

truncation errors incurred in ignoring less significant 

terms. The directions of axes for the aforementioned 

fractal orthonormal basis vectors are chosen with the 

largest correlation to the other range vectors in the 

ensemble of database images. The linear coefficients by 

projecting an image onto the proposed orthonormal 

space and the frequency components by transforming 

the same image by Fourier transform are compared. 

The projected coefficients and frequency components 

are first ranked according to their magnitudes, 

respectively. The accumulated ranked power spectrum 

starting with the largest coefficients or frequency 

components are tabulated and normalized, as shown in 

Figure 2. Much fewer fractal orthonormal coefficients 

are needed to constitute the same amount of energy in 

comparing with those derived by using Fourier kernels. 

3. Experimental Results 
In order to demonstrate the power of the proposed 

fractal orthonormal basis approach, a database 

consisting of butterfly images is constructed. A total of 

1013 butterfly images with natural or uniform 

backgrounds are downloaded from websites 

http://www.thais.it/entomologia/, 

http://turing.csie.ntu.edu.tw/ncnudlm/index.html, 

http://www.ogphoto.com/index.html, 

http://yuri.owes.tnc.edu.tw/gallery/butterfly, 

http://www.mesc.usgs.gov/resources/education/butterfl

y, and 

http://mamba.bio.uci.edu/~pjbryant/biodiv/bflyplnt.htm. 

All images acquired are trimmed down to 240320×  

pixels with 24 bits of depth per pixel. Each image is 

partitioned into non-overlapping range blocks with size 

88× . The R, G, B color components are processed 

independently to determine the fractal orthonormal 

basis in each color plane. The fractal orthonormal basis 
matrixes ,, GR QQ  and BQ  derived are 64-dimensional 

each. Figure 3 shows the fractal orthonormal basis 
matrixes ,, GR QQ BQ  derived by following the 
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procedures outlined in Section II for a training set of 

100 butterfly images in the database. The 64 fractal 

basis vectors of each color plane are composed of 

uniform, edge or texture regions. The coefficient 

corresponding to the vector 1
~q , the orthonormalized 

version of the first a priori vector Tv }1,,1,1{~
1 Λ= , is 

considered as the brightness level of a specific color 

component within an image. 

A total of 64 coefficients for each color component 

are derived by projecting a range vector into an 

orthogonal space with 64 dimensions. A color range 

vector can therefore be losslessly reconstructed by 

employing 192 linear coefficients. Since the energy is 

highly concentrated in relatively few numbers of axes, 

most coefficients are negligible in the later similarity 

comparison stage. Only three most significant 

coefficients per color component are employed in later 

Euclidean distance computation, the remaining less 

significant coefficients are considered with zero values. 

Since all projection coefficients of database images are 

calculated only once and stored as compression 

coefficients, the computation of similarity measure 

involves only the derivation of feature coefficients for 

the query image, subtraction of matching coefficients 

and summation of all squared differences. Therefore, 

the retrieval process is very efficient. Figure 5 

demonstrates the retrieval result by using a typical 

butterfly image (scientific name: abpiercani) as query. 

The images retrieved are arranged according to the 

degree of similarity from left to right, top-to bottom. 

The scientific name of the butterfly is listed on top of 

the image. After providing a query image, a user can 

choose a subset of R, G, or B color components as 

matching indices for feature discrimination. Only the 

coefficients corresponding to the selected color planes 

will be included in the calculation of Euclidean distance. 

The brightness factor can also be selectively turned on 

or off by including or excluding the coefficient 

corresponding to 1
~q  in the similarity computation to 

counter the influence of changing light intensity 

between images. 

A user can also specify a sub-region of a query 

image for retrieval. Since each image is coded with a 

range block size of 88× , a sub-region with integer 

multiples of 88×  pixels can be expressed as a 

partitioning of non-overlapping range blocks, as shown 

in Figure 5 (a). However, if the specified sub-region is 

not integer multiples of 88× , as illustrated in Figure 5 

(b), then a mask with the largest integral multiples of 

88×  that can be fit into the sub-region is applied from 

the top-left corner with an increase of one pixel 

horizontally or vertically toward the bottom right corner. 

On each iterative step, only the range vectors under 

current mask are formulated as a superposition of 

orthonormal basis vectors. The coefficients derived are 

used as signature in the later matching process. 

The proposed fractal orthonormal basis approach 

is also scale- and rotational-invariant. Users can specify 

the range of scales and rotation angles of the query 

image. Variations of the query image multiplied or 

rotated by different scaling factors and rotation angles 

are coded. If the size of the query region after scaling 

and rotation operations is not integral multiple of 88× , 

then the aforementioned mask will be applied. The 

coefficients corresponding to each scale factor and 

rotation angle of the range vectors under the current 

mask are compared with those of all database images. 

Figure 6 illustrates the retrieval result by specifying a 

sub-region with scaling factors ranging from 0.8 to 1.2 

and a 30 degree increment of rotation angle. In 

comparison with Figure 4, since a brown dark pattern 

on the wing of the butterfly is specified for searching, 

images with possible slight scaling (0.8 ~ 1.2) and 

orientation difference (every 30 degree) of the marking 

are included in the retrieval set. 
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4. Conclusions 
A feature extracting method that preserves 

distance measure in the image and feature spaces is 

provided. The fractal orthonormal basis set introduced 

can better summarize image contents with fewer 

orthonormal axes than those of Fourier kernels. Lower 

computation requirements and truncation errors are 

obtained in comparison with other orthonormal 

decomposition techniques. In retrieving similar images 

from database, only few coefficients are required to be 

evaluated in the computation of Euclidean distance. 

The retrieval efficiency in terms of computation 

complexity and speed is very high. 

A database consisting of butterfly images collected 

from existing websites is constructed to demonstrate the 

power of this approach. The feature discrimination 

procedure by calculating the Euclidean distance 

between the corresponding linear coefficients can 

retrieve shift-, rotation-, and scale-variations of the 

query image, as specified by the user through the query 

interface. Contents of the image extracted are 

embedded in the compressed data that can be easily and 

efficiently used as indices for content-based image 

retrieval. Logic predicates, e.g., AND, OR, NOT, or 

spatial constraints might be further imposed on plural 

number of sub-regions of a query image to proceed 

more complicated image retrieval applications. 
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Figure 1. The distance relationship between image points 

and corresponding feature points is not preserved 

through most feature extraction process. 
Image-feature pair }{ 2,2 fi  and },{ 33 fi  

illustrates the case of false-negative and 

false-positive, respectively. 
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Figure 2. Normalized accumulated ranked power spectrum 

of the proposed fractal orthonormal basis (FOB) 

approach and Fourier transform, starting with 

component with the largest magnitude. Much 

fewer fractal orthonormal coefficients are 

needed to constitute the same amount of energy 

in comparing with those derived by using 

Fourier kernels. 

       

(a)                      (b) 

      

     (c) 

Figure 3.  The 64 88×  fractal orthonormal basis vectors 

of (a) R, (b) G, and (c) B color components, 

respectively, derived from an ensemble of 100 

butterfly database images. The size of each vector 

is enlarged by two for ease of observation.. 

 

 
Figure 4. An image retrieval example. The features from R, 

G, B color components and brightness level of the 

query image are all selected. The rectangular area in 

the upper right-hand corner provides an enlarged 

viewing window for the image retrieved. 

           

(a)                  (b) 

Figure 5. An enlarged view of the selected sub-region of a 

query image with size that is (a) integral multiples 

of 88× , (b) not integral multiples of 88× . For 

the case of (b), a mask with the largest integral 

multiples of 88×  that can be fit into the 

sub-region is applied from top-left toward the 

lower-right corner with an increment of one pixel 

is applied. On each iteration, the coefficients 

derived are used as features of the sub-region to 

compare with those of database images. 

 

 
Figure 6. Retrieval results based on a sub-region of a query 

image with scaling factors 0.8 through 1.2 and 

rotation angles every 30 degrees. 


