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Abstract 

The genetic algorithm (GA) can find an 

optimal solution in many complex problems. 

Therefore, it has been used widely in many 

applications. A flexible VLSI genetic algorithm 

processor is proposed in this paper. It can 

perform dynamically various fitness functions, 

four crossover operations, and over ten thousand 

kinds of mutation-rate settings to meet the 

requirements of different applications. Because 

of its features, the proposed processor is very 

suitable for various real-time applications. 

Finally, the proposed VLSI architecture is 

implemented on FPGA for verification. 
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1. Introduction 
The genetic algorithm (GA) can find an optimal 

solution by natural selection, so it has been used 

widely in many complex applications such as 

image processing, fuzzy control, neural network, 

communication system, and layout optimization 

[1-3]. Generally, genetic algorithm requires very 

intensive computations in order to perform the 

optimization. Hence, the study of specified VLSI 

implementation for it is very important and 

inevitable. In the past few years, many VLSI 

architectures for genetic algorithm have been 

proposed [4-7].  

Most previous architectures of GA intended to 

improve the processing speed or to reduce the 

hardware cost. The main drawback of those 

architectures is that each of them can implement 

only one specified fitness function in its 

architecture. Actually, different applications 

require different GA fitness functions. To solve 

the problem, we propose a flexible genetic 

algorithm processor in this paper. It can perform 

dynamically various fitness functions, four 

crossover operations, and over ten thousand kinds 

of mutation-rate settings to meet the requirements 

of different applications. Because of its features, 

the proposed processor is very suitable for various 

real-time applications. 

The paper is organized as follow. In Section 2, 

some basic concepts of GA are summarized. 

Section 3 describes the proposed VLSI 

architecture in detail. In Section 4, the 

comparisons of different GA processors are 

presented. Conclusions are provided in Section 

5. 

 

2. Genetic Algorithm 
Figure 1 shows the flowchart of GA. It consists 

of six main steps: population initialization, fitness 

calculation, termination judgment, selection, 
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crossover, and mutation. At the beginning, the 

initial population for GA is generated randomly. 

Then the evaluation values of fitness function of 

each individual in current population are 

calculated. After that, the termination criterion is 

checked. If the termination criterion is reached, 

the whole GA procedure stops; otherwise, the 

following three steps will be performed.  

The selection works as the nature’s survival of 

the fitness process. The fitness values of all 

individuals are evaluated and the elite are selected. 

In other words, fitter solutions survive while 

weaker ones perish in this step. After selection, 

crossover and mutation operations are performed 

on the elite to generate the new individuals, 

treated as the next generation population. With the 

help of crossover and mutation operations, we can 

avoid converging to the local optimum and locate 

the better solutions. Finally, the termination 

criterion is rechecked to decide whether the GA 

procedure should continue. 

3. The proposed VLSI architecture 
The GA VLSI architectures, proposed in [4] and 

[5], use redesign method to implement different 

fitness functions. In [6] and [7], they generate 

different fitness functions by using 

re-programmable FPGA board. Since different 

optimization problems require different fitness 

functions, those previous architectures are not 

very suitable. In order to increase the flexibility of 

implementing various fitness functions, we 

propose a GA processor based on the 

table-look-up technique. Besides, our processor 

can perform four crossover operations and over 

ten thousand kinds of mutation-rate settings to 

meet the requirements of different applications. 

The block diagram for the proposed GA processor 

is shown in Fig. 2. Five main blocks are described 

in detail in the following sections. 

3.1 Random Number Generator (RNG) 
Generally speaking, there are two methods to 

implement the random number generator (RNG): 

linear feedback shift register (LFSR) or linear 

cellular automata (LCA). Most RNG are realized 

with LCA because it has been demonstrated to 

generate better random sequences than LFSR [8]. 

Hence, we adopt LCA method to generate 

necessary individuals. Besides, two most popular 

rules, Rule-90 and Rule-150, in LCA are used to 

realize the RNG. The rule-90 operation is given 

as ,11 +−
+ ⊕= iii sss  where +

is  denotes the next 

state for site si. The rule-150 operation is given 

as .11 +−
+ ⊕⊕= iiii ssss  The two rules can be 

implemented with the circuits shown in Fig. 3(a) 

and 3(b) respectively. Figure 4 shows the block 

diagram of 14-bits RNG architecture. 

3.2  Selection Module (SM) 
Selection module (SM) is one of the most 

important operations in genetic algorithm (GA). 

Here, we adopt tournament selection for this 

operation, and illustrate its architecture in Fig. 5. 

It consists of two parts: initial selection module 

(ISM) and selection record module (SRM). The 

ISM, the upper block of Fig. 5, will execute 

tournament selection and compare the fitness 

values of two individuals every time. According to 

different applications, users can decide to select 

the maximum or minimum by using sel_com. 

After tournament selection, the two advantageous 

(or survival) individuals are stored in the winner 

individual A’ and B’ registers and sent to the 

crossover module. At the same time, Mux2 can be 

used to select a proper control signal to the 

following SRM to determine whether replacing 

the individuals in the population memory. Finally, 

the best individuals will be decided and stored in a 
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register named as Best Individual Register (BIR). 

The SRM, the bottom block of Fig. 5, will be used 

to record the addresses of worse individuals and 

execute the replacement operations.  

3.3  Crossover Module (CM) 
Crossover module (CM) is used to perform the 

crossover operation on two winner individuals A 

and B. Fig. 6 show that the block diagram of  

crossover module respectively. In the design, we 

offer four crossover operations including uniform 

crossover, single point crossover, two points 

crossover and cross crossover. Users can choose 

one of them according to their needs. The output 

chromosomes denoted as A’ and B’ are send to the 

following mutation module. 

3.4  Mutation Module (MM) 
Mutation module (MM) is quite important in 

GA. Figure 7 shows its hardware structure. It 

consists of two registers, fourteen comparators. 

The mutation operation is used to avoid 

converging to the local optimum and locate the 

better solutions [9]. Here, a flexible mutation-rate 

settings scheme is used. The ranges of dynamic 

mutation rate are from 1/16383 to 1. Users can 

choose an appropriate mutation rate dynamically 

and easily based on their needs. In the design, the 

mutation operation is performed when the 

user-defined mutation rate exceeds the threshold 

(generated by RNG and stored in the 14-bit shifter 

register), and is used to generate the new 

chromosome. Finally, the new chromosomes are 

generated and feed into the population memory. 

3.5  Fitness Module (FM) 
In order to perform the calculations of various 

fitness functions quickly and efficiently, our 

processor adopts the table-look-up technique. 

Different fitness functions can be implemented 

with the pre-designed software programs, and 

then the corresponding output values can be 

calculated and stored into the tables. Those 

various and complex fitness functions can be 

realized easily in our processor with the manner 

of table mapping, and the computation time as 

well as the complexity required for fitness 

calculation can be reduced largely. 

4. Comparisons and Implementation 
  Table 1 shows the comparisons of different GA 

processors. Our processor is the only one that 

adopts dynamic mutation-rate settings. With the 

table-look-up technique, the proposed processor 

can perform various fitness functions easily and 

quickly. Finally, the proposed GA processor is 

realized with Verilog hardware description 

language. Figure 8 shows the layout of the 

processor. To further verify our design, we 

implemented the processor on FPGA and 

integrated it to a completed demo system shown 

in Fig. 9. Simulation results show that it works 

very well. 

5. Conclusions 
  Genetic algorithm requires very intensive 

computations in order to perform the optimization. 

Hence, a dedicated VLSI implementation for it is 

necessary. In this paper, we propose a more 

flexible genetic algorithm processor architecture 

that can perform various fitness functions both 

quickly and dynamically to meet the requirements 

of different applications. Because of the features, 

the proposed processor is very suitable for various 

real-time applications. 
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Fig. 1. The flowchart for GA. 

 

 

Fig. 2. Block diagram for the proposed GA 

processor. 

 

    
(a)               (b) 

Fig. 3. a) Rule-90, and b) Rule-150. 

 

 

Fig. 4. 14 bits RNG based on cellular automata. 
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Fig. 5.  Hardware structure of 

selection module. 

 

 

Fig. 6. Hardware structure of crossover 

module. 

 

F

ig. 7. Hardware structure of mutation block. 

 

 

 

 

 
Fig. 8. The layout of the processor. 

 

 

Fig. 9. The demo system. 

 

Table 1. Comparison of various GAPs. 

 Selection RNG Fitness 
Module 

Mutation 
Rate 

[4] Roulette CA Redesign None 

[5] Simplified 
Tournament CA Re-Program None 

[6] 
Roulette & 
Elitist 
strategy 

CA Re-Program Without 
Architecture 

[7] Tournament CA Re-Program Single Point 
Multipoint 

Our Tournament CA Look Up 
Table Dynamic 

 


