
Effective Filtering for Nearest-Neighbors Queries
in Large Time-Series Databases

Simon Sheu
Computer Science

National Tsing Hua University
sheu@cs.nthu.edu.tw

Jinxiong Shen
Computer Science

National Tsing Hua University
u892545@oz.nthu.edu.tw

Abstract

Time-series data are periodic recordings of
time-varying information. Since the data are
temporal in nature, finding a similar data se-
quence in time-series databases to a given query
is very costly. The straightforward strategy to
examine each possible occurrence by sliding a
window over each database sequence will take
quadratic computation cost. For large time-series
databases, this approach is practically infeasible.
To shorten query response time, we propose in
this paper a low-cost filtering mechanism to
sieve out the most similar candidates from the
dissimilar ones in the database. Then, only small
portions of database require the true similarity
measurement to finalize the query. As a result,
our preprocessing approach achieves significant
savings in overall query processing. We show
our filtering technique incur no false dismissals,
and has greater pruning power than the other
competing schemes. Empirical results indicate
57% of non-similar data can be filtered out
without resorting to the expensive true similarity
measurement.

Keywords: Dynamic time warping, L2 distance,
indexing, filtering, subsequence matching.

1. Introduction

Time-series data represent temporal track-
ing of information source over time. Examples
include the pitch/beat information from the
user’s acoustic input [8], the heart rate of pa-
tients [1], the strength of gamma rays from ce-
lestial sources [2], hourly power demand of a
research facility [19], RNA expression levels [3],
just to name a few. The trajectories of mobile
users on the plane or flying aircrafts in space are
conceivable extensions of the original 1-D
model [18]. Typically, time-series data consist of
a sequence of N measured values from the ob-
served aspect of the information source. These
measures are likely affected by anonymous
noises so that specific values alone hardly char-
acterize the aspect being monitored. Rather, cer-
tain non-stationary features, e.g., abrupt changes,
transient events, slowly varying trends, change
patterns, are primary knowledge to be discov-

ered. For instance, a classical ARIMA model of
Box and Jenkins can be used to predict future
values and obtain general insight into the
time-dependent behavior [4]. However, the out-
line of global trend is obtained for the sacrifice
of many details within the data. Often, we know
the details of change patterns, and are interested
to find one or more similar reoccurrences in
time-series databases. This type of query is fre-
quently referred to as k-Nearest-Neighbors
(k-NN) search in the content-based information
retrieval research. As an example, users can sing
to retrieve an intended song in the music data-
bases [8], or write down the words to be recog-
nized by computer systems in automatic tran-
scription [18]. Since the input query is shorter
than database time sequences in length, this kind
of query is also known as subsequence similarity
matching [14, 15].

To answer k-NN query, some similarity
metrics are required to objectively judge the ex-
tent of how similar the query is to the time se-
quences in databases. Most algorithms depend
on Euclidean distance or some variation thereof
[5, 13, 20]. Virtually, they slide a window over
each database sequence to measure the similarity
of the subsequence toward the query input. The
k subsequences with the largest similarity meas-
ures from all possible sliding are then returned
for the query. However, this approach is very
sensitive to noise. Particularly, imperfectly tak-
ing the query sample likely deteriorates the qual-
ity of the results. For instance, mediocre singer
barely rehearses the song in mind professionally.
There exist small variations in the time axis.
Even without the background noise, the
pitch/beat information from the user’s acoustic
input taken in an ad hoc manner is often far
away from the corresponding digital recordings.
The query input with slightly defective tempo
cannot match its desirable associates of standard
form. Therefore, recent studies utilize Dynamic
Time Warping (DTW) [6], more flexible dis-
tance measure for similarity match, to allow
elastic shifting of the time axis [5, 8, 11, 12, 18,
20]. This distance metric permits each data point
of the query to coincide with one or more con-
secutive points of the data subsequence in ques-
tion, and vice verse. Effectively, DTW computes
the shortest distance from stretchable alignments,

- 2 -

and thus overcomes the problem that the query
data may be slightly imperfectly aligned with the
database subsequences in the time axis. The idea
is similar in spirit to the edit distance measure
used in approximate string matching [7, 9, 10, 14,
16, 17], where small gap of mismatched charac-
ters can be skipped during matching.

However, the capability of stretchable
alignments comes at a cost of increased compu-
tational complexity. In spite the DTW distance
can be computed by efficient dynamic program-
ming algorithm [6], the overall cost of exhaus-
tive search through the entire database becomes
formidable as the database size increases. Espe-
cially, DTW does not obey the triangular ine-
quality, rendering preprocessing database se-
quences to expedite k-NN query difficult. To
address this problem, several approximate DTW
functions are proposed to prune away the un-
necessary true DTW computations [11, 12, 18,
20]. The general idea is to employ an efficient
lower bound function of DTW to pre-qualify
database subsequences for the query. Then, the
true DTW distance of the best subsequence with
the shortest approximate distance to the query is
calculated. Since the approximate distance is
always no greater than the true distance, the
subsequences with the approximate distances
larger than the currently best true distance can be
safely discarded with no need to compute their
true distances. Subsequently, the next best sub-
sequences are repeatedly used to update the best
true distance so as to keep the size of the pool of
the candidates all with the true DTW distances
equal to k. Obviously, how close the approxi-
mate function is to DTW determines the quality
of this general pruning procedure. The tighter,
yet low-cost, function will lead to considerable
savings on expensive DTW computations. In
contrast, a looser function may be computed
more quickly. However, the majority of its ap-
proximate distances can be much smaller than
the best true distance measure. As a result, its
pruning capability is very limited.

In this paper, we focus on the tightness of
approximate functions to the true DTW meas-
ures. Specifically, we develop a novel
lower-bound function to improve the pruning
power of all the existing competitors. To expe-
dite the filtering process, we also investigate an
upper-bound function to work seamlessly with
the above approaches. We formally prove both
low-cost approximate distances incur no false
dismissals during filtering, and assess their
qualities by extensive performance evaluations
using numerous time-series data sets. The results
indicate our new functions consistently outper-
form all the competing approaches. The rest of
the paper is organized as follows. Section 2

briefly reviews the DTW algorithm and de-
scribes the related work. We will introduce the
proposed low-cost approximate functions and
prove their correctness in Section 3. Section 4
presents the performance study. Finally, we give
our concluding remarks and discuss our ongoing
work in Section 5.

2. Related Work

Given two time-series Q and C of the same
length n, the classical L2 distance, namely
Euclidean distance, is defined as follows:

() ()2
2 1

, ,n
i ii

L Q C q c w
=

= −∑

1 2 1 2, .n nwhere Q q q q C c c c= =… … (1)

Comparatively, with stretchable alignments, the
DTW distance between Q and C can be com-
puted along an elastic warping path

1 2 mW w w w= " , 2 1n m n≤ < − , as

() a b1
, min ,m

kkW
DTW Q C w

=
= ∑

() a b ()2

, , ,k i j k i jwhere w q c w q c= −�

 (2)

according to the following constraints on the
warping path1:

 () ()1 1 1, , , .m n nw q c w q c= =
 () () ()1 1 1 1, , , , ,k i j k i j i jw q c w q c q c− − − −= ⇒ = ()1or , .i jq c−

 () 20, , , .n
k i jw q c i j r where r∀ = − ≤ ≈

2

DTW allows each qi to flexibly coincide with
one or more cj, i r j i r− ≤ ≤ + , yet considers
all possible paths to minimize the pair-wise dis-
tance. (If r=0, DTW degenerates to L2.)
DTW(Q,C) can be computed by the dynamic
programming using the recursion [6]:

() ()22
1 1,i j i jD T W q q c c q c= − +… …

()
()
()

2
1 1 1 1

2
1 1 1

2
1 1 1

, ,

min , , .

,

i j

i j

i j

DTW q q c c

DTW q q c c

DTW q q c c

− −

−

−

… …

… …

… …

 (3)

Fig. 1 illustrates one possible minimum-distance
warping path (shown in blue) within the allow-

1 For clarity, we consider Q and C have the same length. In
fact, DTW is applicable for the different lengths.
2 This constraint is known as the Sakoe-Chiba Band to con-
fine W at most r away from the diagonal.

Fig. 1: an example to illustrate the mini-
mum-distance warping path in DTW.

Sheu
Q

Sheu
C

- 3 -

able region (shown in yellow) for n = 17. Some
cj’s are repeatedly used to match qi & qi+1
(c4↔q4,q5 ;c6↔q7,q8 ;c8↔q10,q11), while two qi’s
are continually in alignment with two and three
cj’s (q13↔c10,c11; q16↔c14,c15,c16), respectively.

To answer k-NN query using DTW, the
simple solution is to compute DTW(Q, C) for
the query sequence Q and each database subse-
quence C using Eqn (2).The k subsequences
with minimum distances are returned for the
query. However, such approach is practically
infeasible owing to high cost in DTW computa-
tion. Yi and Faloutsos proposed a fast approxi-
mate function of DTW [20] to avoid many un-
necessary true DTW computations. Specifically,
their function, denoted as YF by taking the au-
thors’ initials, is shown to be a lower bound
function of DTW.

()
()

()

2
max max

min max1
2

min min

,
, 0, ,

,

i i
n

ii

i i

q c q c
YF Q C c q c

q c q c
=

 − >
 = ≤ ≤

− <

∑

max minmax , min .j jjj
where c c c c= = (4)

That is, () (), ,YF Q C DTW Q C≤ , since

() () (){ }2 22
max min1

, ,0,n
i ii

YF Q C q c q c
=

= − −∑

() () ()2 2
1

, , , .n
i j i jj

q c DTW Q C where q c W
=

≤ − ≤ ∈∑ (5)

Fig. 2: the k-NNs algorithm with a lower bound function YF.

With YF, the algorithm shown in Fig. 2 can
be used to search for the k most similar database
subsequences. The k currently best candidates
are maintained in the queue M, which keeps the
items inside sorted on the DTW distances in
ascending order. For each subsequence in con-
sideration, YF(Q,C) is first computed to be
compared with L, the DTW distance of the kth
best candidate. If greater than L, there is no need
to compute DTW(Q,C) in Step 6. Only when C
has an approximate distance smaller than L, it
then could be one of the k-NNs. Step 7 verifies if
this is true. If so, the currently kth best candidate
is disqualified and removed from M in Step 8.

The new kth best candidate is used as the pivot
for ongoing filtering. As we can see in these it-
erations, the quality of the approximate function,
such as YF(Q,C), in fact determines the pruning
power of the algorithm in Fig. 2. If the function
is not very tight, it is more likely that the algo-
rithm executes Step 7 through 10, degenerating
to the above simple solution using only DTW.

On the other hand, Kim, Park and Chu
proposed another lower bound functions, de-
noted as KPC, using 4-tuple feature vector [12].
These four components are first and last ele-
ments of the subsequence, and the maximum &
minimum values. The maximum absolute dif-
ference of corresponding features is used as
KPC(Q,C). Mathematically,

() 1 1

max max min min

, ,
, max .

,
n nq c q c

KPC Q C
q c q c

 − − =
− −

 (6)

Besides the maximum and minimum, this func-
tion also considers the first constraint on the
warping path: () ()1 1 1, , , .m n nw q c w q c= = It can be
applied similarly in the aforementioned algo-
rithm simply by replacing YF(Q,C) by
KPC(Q,C). We note that this function is sym-
metric: KPC(Q, C) = KPC(C, Q), while YF is
not. If cmax and cmin in Eqn. (4) are extremely
large and small, YF(Q,C) attends to yield very
small value in our investigations. Therefore, we
slightly modify YF function to make it symmet-
ric, and denote the new function as YF2(Q,C).
Likewise, () () (), 2 , ,YF Q C YF Q C DTW Q C≤ ≤ .

() () (){ }2 , max , , , .YF Q C YF Q C YF C Q= (7)

Most recently, Keogh [11] proposed a new
lower bound function, denoted as KE, by utiliz-
ing the last path constraint:

 (), ,k i jw q c∀ =
20, .ni j r where r− ≤ =

This function is used to
develop the index structure and further extended
for 2D time-series based on the original DTW in
Eqn. (2) [18]. The extension by Vlachos, et. al.,
is the first to introduce the upper bound of DTW
in pruning. For clarity, we use VHGK3 to denote
this upper bound function. Both functions can be
modeled: assume max , min .i k i ki r k i ri r k i r

U c L c
− ≤ ≤ +− ≤ ≤ +

= =

()
()

()

2

1
2

,
, 0, ,

,

i i i i
n

i i ii

i i i i

q U q U
KE Q C L q U

q L q L
=

 − >
 = ≤ ≤

− <

∑
 (8)

() () (){ }2 2

1
, max , ,n

i i i ii
VHGK Q C q U q L

=
= − −∑ (9)

Similar to YF, () (), ,KE Q C DTW Q C≤ . In par-
ticular, KE improves YF by using several

3 The original definition is used for the internal nodes in the
index tree. We formulate the distance for pairs of time-series
data by following the same spirit.

Input: query Q.
Output: k most similar database subsequences to Q.
Variable: Last best distance L, approximate distance d,

true distance D,minimum queue M with at
most k items, kept sorted in ascending order.

1. Compute DTW(Q,Ci) for the first k database sub-
sequences; insert(i, DTW(Q,Ci)) into M.

2. L = the associated distance of the last item in M.
3. For each Ci of the rest database subsequences
4. d = YF(Q,Ci).
5. If d < L
6. D = DTW(Q,Ci).
7. If D < L
8. Insert (i, D) into M. [discard the k+1th item]
9. L = the distance of the last (kth) item in M.
10. Endif
11. Endif
12. Endfor

- 4 -

piece-wise maximum and minimum values, in-
stead of only cmax and cmin, to approach DTW. It
is easy to show that () (), ,Y F Q C K E Q C≤ .
KE is a tighter approximation than YF. VHGK
estimates the worst-case distance measure,
which can be used to confine the true DTW:

() (), ,DTW Q C VHGK Q C≤ . Both lower and upper
bound functions can jointly work together to
avoid expensive DTW computations. Since
KE DTW VHGK≤ ≤ , we can substitute DTW by
VHGK in k-NNs algorithm to eliminate the
subsequences whose lower bounds are exceeding
the VHGK of the kth candidate kept in M. Then,
resort to the subsequent stage to finalize the
query using true DTW distances. We will show
the modified algorithm in Figure 5 and discuss
the details of the procedure shortly after in Sec-
tion 3 after introducing the proposed approxi-
mate functions of DTW.

3. Bounding the DTW function

In this section, we introduce the proposed
lower bound and upper bound functions for
DTW. We discuss our design philosophy and
show the rationales behind their formulations.
Subsequently, we will show the algorithm to
utilize both approximate functions to efficiently
eliminate the non-similar database subsequences
without first computing their true DTW dis-
tances to the query.

3.1 Lower Bound function of DTW
As shown in the Eqn. (2), DTW is a mini-

mum accumulated distance along all possible
warping paths subject to several warping con-
straints. YF considers the maximum and mini-
mum values of one sequence to reduce its dis-
tance measure to the other sequence. This ap-
proach is rather pessimistic. Only two extreme
values are used to safely achieve lower bounding.
Particularly, it takes no advantage of the third
warping constraint, namely, (), ,k i jw q c∀ =

20, .ni j r where r− ≤ ≈
In reality, each cj, even if

extremely large or small, can only match with at
most 2r qi’s. This fact motivates KE to apply the
sliding window of width 2r for local maxima
Ui’s and minima Li’s so as to better lower bound
DTW. On the other hand, KPC considers the first
and last elements of the sequence additionally.
When there are large differences on each bound-
ary element of the sequences in comparison, this
lower bound can be very close to DTW. In a
sense, KPC benefits from exploiting the first
warping constraint, w1=(q1,c1), wm=(qn,cn). From
the insights of these lower bound functions, we
devise a novel alternative that likely yields better

estimation. Fig. 3 illustrates our idea. Conceptu-
ally, we partition the permissible warping region
into three areas: Area1, Area2, and Area3. Each
warping path will traverse through these areas.
In Area2, we follow the KE approach to con-
struct (Ui, Li) for each ci of the database subse-
quence C. Any possible warping path, shown in
blue curve, needs to walk through each horizon-
tal bar, shown in bold rectangle, due to the 2nd
constraint: (),k i jw q c= ⇒ ()1 1 1, ,k i jw q c− − −=
()1,i jq c − ()1or ,i jq c−

. That is, at least one of

(),i jq c , i j r− ≤ , belongs to the warping path of

DTW. Therefore, the minimum distance of qi to
these cj’s, is included to safely lower bound
DTW. The KE approach is good in this area.

However, KE does not work well in both
Area1 and Area3, each an r×r square. Due to the
boundary limitation, the length of a horizontal
bar for each ci gradually reduces to r as i ap-
proaches 1 or n. Particularly, any legitimate
warping path will start from (q1,c1) and end at
(qn,cn). By (U1,L1), aggregated from c1 to cr, will
only give a far less accurate distance approxima-
tion. Indeed, using c1 directly surely leads to a
tighter lower bound since the distance between
c1 and q1 is part of DTW. The same argument
holds for cn. Therefore, our approach is to em-
ploy an L-shape fence anchored along the di-
agonal in Area1 and Area3. Fig. 3 illustrates one
fence in each area. Similar to horizontal bars,
these fences will each intercept at least one point

(),k i jw q c= of the warping path for DTW. As

shown in the figure, any path (presented in blue
curve) will pass through any given fence. We
note that our approach can bound DTW tighter
than KE. As an example, both L-shape fences
shown in bold consist of five wk points, com-
pared to seven points used for (U3, L3) or (Un-2,
Ln-2) in KE. Larger distance measures are ex-
pectable when a fence or bar contains fewer
points in construction. This is because more
points tend to increase the maximum Ui and de-
crease the minimum Li, and thus reduce the es-
timated distance greatly, as indicated in Eqn. (8).

 Our approach utilizes the first warping

Fig. 3: the proposed lower bound func-
tion is constructed by a series of fences.

Sheu
Q

Sheu
C

Sheu
Area2

Sheu
Area1

Sheu
Area3

- 5 -

constraint as the KPC approach. We formally
define the proposed lower bound function, de-
noted as LB:

()

()

()

()

()

()

()

2

1 2

2

2

21~ ,
1~

2

,
0,

,

,
, 0, ,

,
min

,
0,

,

i i i in r

i i i
i r

i i i i

i i i i

i i i

i i i i

i r
i i i in r n

i i i

i i i i

q U q U
L q U

q L q L

q F q F
LB Q C R q F

q R q R

c G c G
S c G

c S c S

−

= +

=
− +

 − >
 ≤ ≤ +

− <
 − > = ≤ ≤

− <

 − >
 ≤ ≤
 − <

∑

∑

,

11

11

max , min .

max , min ,

max , min .

i k i ki r k i ri r k i r

i k i kk ik i

i k i kk ik i

U c L c

w here F c R c

G q S q

− ≤ ≤ +− ≤ ≤ +

≤ ≤≤ ≤

≤ ≤≤ ≤

 = =
 = =

= =

 (10)

Area2 reiterates KE’s definition in Eqn. (8) using
a series of horizontal bars. In Area1 and Area3,
the minimum distance is accumulated on each
L-shape fence. When the argument i is 1 or n in
the above formula, ,i i i i i iF R c G S q= = = = . The
squared difference 2()i iq c− is included exactly
as DTW. The lower bounding property of LB is
established by the proof on the inequality,

(,) (,)L B Q C D T W Q C≤ :

Proof: Given the minimum-distance warping
path

1 2 , 2 1mW w w w n m n= ≤ < −" , of DTW, we
abbreviate W into X from the joints at which W
intersects a total of n horizontal bars or L-shape
fences. If there are more than one joints for each
bar or fence, we retain only the first one in X.
Clearly, X has n terms:

1 2 nX x x x= " . In particu-
lar, a b a b1 1

m n
k kk k

DTW w x
= =

= ≥∑ ∑ . For each (,)k i jx q c=

on the bar or fence, LB would wish to include
the squared difference a b 2()k i jx q c= − ideally.
However, such joint point is hard to predict in
advance. Conservatively, LB comprehends the
amount that is no greater than a bkx . For a hori-
zontal bar, if maxi i ki r k i r

q U c
− ≤ ≤ +

> = , LB has 2()i iq U−

that is surely no greater than a bkx ; likewise, the
similar argument applies for the case that

i iq L< .
Besides, when

i i iL q U≤ ≤ , LB includes only zero
that is no larger than a bkx because a b 0kx ≥ . For
an L-shape fence, LB virtually divides it into a
horizontal bar and a vertical bar, and embodies
the minimum from two separate conservative
estimations as before. Therefore, the amount that
is summed into LB inside its square root is at
most as large as a bkx . Since each term included
into LB is no greater than a bkx on bars or

fences, LB(Q,C) is surely no greater than
a b1

n
kk

x
=∑ , which is in turn a b1

m
kk

w DTW
=

≤ =∑ .

We conclude the inequality
(,) (,)LB Q C DTW Q C≤ holds. Q.E.D.▪

3.2 Upper Bound function of DTW
Our low-cost upper bound for DTW is a

simple extension of the classical Euclidean dis-
tance. We compute distance measure along a set
of simple diagonal warping paths and use the
minimum as the function output. Fig. 4 shows
this idea. As indicated, the diagonal-like warping
path in blue progresses first vertically up for two
points, then proceeds straightly parallel to the
diagonal line, and finally moves horizontally to
the end point. The path in purple consists of four
horizontal movements, diagonal movements, and
four vertical movements. Both paths are legal for
DTW. In fact, DTW is computed from all possi-
ble warping paths. Appreciably, the measure
from either path upper bounds the true DTW,
and can be computed very quickly

We incorporate a parameter s into our upper
bound function, denoted as UB, to specify the
size of the set in consideration. For s = 0, the set
contains only the diagonal path. Thus, UB is
exactly as the Euclidean measure. For s = 1, UB
considers additionally the two warping paths that
proceed one point off the diagonal. The value of
s is limited by the third warping constraint:

() 20, , , .n
k i jw q c i j r where r∀ = − ≤ ≈ That is, 0 s r≤ ≤ .

Formally, () (), , min , , ,UB Q C s P Q C t
s t s

=
− ≤ ≤

() () ()

()

() ()

()

1
2 2

, , 1 11 1

2
 , 0 or1

2 21 = 1 11 1

2
 , 0.1

n
tP Q C t q c q ci i ti i t i

n q c ti ni n t

t nq c q ci i i ti i t

n q c ti n t n i

−

∑ ∑= − + − += = + − +

− ≥∑ = − +

− −− + − +∑ ∑ + += =− +

∑ − ≤= + +

 (11)

It is trivial to show () (), , ,DTW Q C UB Q C s≤ , and

Fig. 4: the proposed upper bound function is
built by a series of diagonal-like lines.

Sheu
Q

Sheu
C

- 6 -

(), ,UB Q C r (), , 1UB Q C r≤ − ≤ ≤" (), , 0UB Q C

()2 ,L Q C= . We note that VHGK in

Eqn. (9) also an upper
bound function of DTW. However, its quality is
not as good as our UB. The following proof es-
tablishes the relation, (),DTW Q C ≤

() () (), , , ,2UB Q C s L Q C VHGK Q C≤ ≤ by showing that
VHGK is no less than the L2 distance.

Proof: Recall the definition of VHGK
() () (){ }2 2

1
, max , , max , min .n

i i i i i k i ki i r k i ri r k i r
VHGK QC q U q L U c L c

= − ≤ ≤+− ≤ ≤ +
= − − = =∑

Since () (){ } ()2 2 2max ,i i i i i iq U q L q c− − ≥ − for ei-

ther , ,or i i i i i ic U L L c U= < < , it is easy to obtain

() ()2 , ,L Q C VHGK Q C≤ . Q.E.D.▪

3.3 Using both approximate functions of DTW

Like lower bound functions, an upper
bound can be used to further save the expensive
computation of the true DTW. We provide an
algorithm using LB and UB in Figure 5. Any
lower bound functions can be used by simply
replacing LB therein, while an upper bound
function, such as VHGK, can substitute UB to
work right away. Instead of computing DTW for
the first k database subsequences as in Fig. 2,
this modified algorithm starts with their lower
and upper estimates in Step 1. Insert them with
their associative distances into M and N, fol-
lowed by iteratively checking over the rest of
database subsequences in Step 4 through 14. In
each iteration, the lower estimate is first com-
puted. If such value is greater than L, the cur-
rently kth best estimates, this subsequence can be
safely disregarded. Otherwise, it can be part of
the answer. We insert it into the candidate queue
N, and go on to check if its upper estimate can
help reducing L. If so, Step 10 and 11 update L.
The original subsequence defining L is removed
as well. Step 16 through 20 are optional. Its
presence supports further filtering the items in N
using the best L that is obtained from previous
iterations. Afterwards, we need the true DTW
computations on each item kept in N to finalize
the query.

Input:query Q, the number of nearest-neighbors k.
Output:k most similar subsequences in the database to Q.
Variable:Last best distance L, lower estimate d, upper

estimate D,minimum queue M with at most k
items, kept sorted in ascending order,candidate
queue N holding the possible result from filter-
ing.

1. Compute UB(Q,Ci) and LB(Q,Ci) for the first k
database subsequences; insert (i, UB(Q,Ci)) into M
and insert (i, LB(Q,Ci)) into N.

2. L = the associated distance of the last item in M.
3. // First Pass
4. For each Ci of the rest database subsequences
5. d = LB(Q,Ci).
6. If d < L [counters]

7. Insert (i,d) into N.
8. D = UB(Q,Ci).
9. If D < L
10. Insert (i, D) into M. [discard its k+1th item]
11. L = the distance of the last (kth) item in M.
12. Endif
13. Endif
14. Endfor
15. // Second Pass
16. For each (i,d) in N
17. If d of (i,d)>L
18. Remove (i,d) from N
19. Endif
20. Endfor
21. // Post-processing stage: finalize the query
22. Empty M.
23. If the size of N is larger than k
24. For each (i,d) in N
25. Compute DTW(Q,Ci); insert (i, DTW(Q,Ci))

 into M. [discard the replaced item]
26. Endfor
27. Endif

Fig. 5: the k-NNs algo. with lower/upper bound functions.

We note that the effect of filtering processes
can be measured by the size of N prior to Step
22. The larger the size, the more costly the
overhead in DTW computation. If |N| is exactly
equal to k, then the items in N are the answer.
Otherwise, we use M to keep the k best candi-
dates, and return the items in M for the query.
The quality of lower and upper estimate func-
tions is the key to reduce the size of N during
filtering. We will present the results from exten-
sive investigations over the diverse time-series
data of great variety in the next section.

4. Performance Study

To assess the quality of approximate func-
tions, we have performed experiments using a
total of 32 datasets, which were used originally
in the study of KE [11].These sets range over
stationary/non-stationary, and noisy/smooth,
time-series data in different fields [1-3, 19] so as
to justify the general applicability of the ap-
proximate functions. Since the focus of this pa-
per is on the quality of the approximate func-
tions, we only report the results from 1-NN que-
ries using the algorithms in Fig. 2 & 5 for brevity.
We set n=256 & r=12 in this study in order for
the interested readers to compare our results with
the ones shown in [11]. To avoid ambiguity,
LB_Ours and UB_Ours(s) are used to present

1 2 3 4 5 6 7 8 9
1
0

1
1

1
2

1
3

14 1
5

1
6

1
7

1
8

1
9

2
0

2
1

22 2
3

2
4

2
5

2
6

2
7

2
8

2
9

30 3
1

3
2

a
v
er

a
ge

LB_KPC

LB_YF2

LB_Ours

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Data set ID

LB_KPC

LB_YF

LB_YF2

LB_KE

LB_Ours

Fig. 6: The tightness of lower bound fn. over 32 data sets.

- 7 -

the proposed lower bound and upper bound
functions, respectively. LB_YF, LB_YF2,
LB_KPC, and LB_KE stand for the other lower
bound functions, while the upper bound func-
tions VHGK and Euclidean are denoted as
UB_VHGK and UB_L2, respectively. For fair
judgment, 50 subsequences of length 256 are
randomly extracted from each of 32 data sets for
each run of experiment. The same set of testing
data is applied for each approximate function:
one subsequence serves as the query against the
49 others. The average from the total of

50
2 1225C = comparisons is used as the performance

index. For simplicity, we choose s = 5 and s = r
(=12) to portrait the effect of the argument set-
ting in UB_Ours(s). Notice that UB_Ours(0) is
the same as UB_L2.

4.1 The tightness of the approximate functions
We measure the tightness of the approxi-

mate functions as the ratio of the estimated dis-
tance over the true DTW distance, as in Eqn.
(12). The closer this ratio
is to 1, the better.

 E stim ated d istance : .
 T rue D T W d istance

T ightness T = (12)

Fig. 6 & 7 show the results of the experiments,
which are summarized in Fig. 8. Among the
lower bound functions, LB_KPC performs the
worst (T=0.19) on the average, while LB_YF
and its improved version, LB_YF2, may yield
the distance estimates4 that are very close to
zero. They cannot consistently deliver satisfac-
tory results. LB_KE may be a good candidate in
predicting DTW distances such that its tightness
measure can favorably reach as high as 0.93.
However, it is not stable enough for the serious
time-series database applications. Its worst-case
measure is indeed inferior to LB_KPC. In con-
trast, the proposed lower bound function ad-
dresses its shortcomings, and is the only option
available to offer excellent performance guaran-

4 The actual values are 0.001675 and 0.004937, respectively.

tee, as highlighted in Fig. 8. The key for such
achievement is to employ smaller fences in both
boundary regions of legitimate warping region.
On the other hand, UB_VHGK may closely up-
per bound the true DTW distance by the best
T=1.09. However, its performance is not very
reliable since most of its distance estimations are
very high. In fact, the classical Euclidean dis-
tance outperforms UB_VHGK in every experi-
ment. This empirical evidence is consistent with
the theoretical inference established earlier in
Section 3.2. Just as expected, our upper bound
function is a great DTW-distance predictor. With
s = 5, it can estimate the true DTW distance with
high accuracy, mostly within 28% overestimate
range. This result also indicates UB_Ours(5) is
good enough for most of upper-bound estimates
in spite a higher value of s is more favorable. We
will present its effect on savings of the expensive
DTW computations in the following subsection.

4.2 Pruning power of the approximate functions
Fig. 2 & 5 present the algorithms to filter out
non-similar database subsequences without the
expensive computation of the true DTW dis-
tances using the lower bound function and upper
bound function. To justify the effectiveness of
such preprocessing, we employ the following
metric to measure the pruning power:

 Nonsimilar subsequence disqualified w/o DTW
: . Total number of DB Subsequences Pruning power P = (13)

We note that 0≤P≤1, a larger P measure signifies
more pruning power. Fig. 9 summarizes the
p-measure from extensive experiments on 32
data sets. The first group shown on the left-hand
side presents the pruning power of lower bound
functions by the algorithm in Fig. 2. LB_YF is
better than LB_KPC, and can be improved fur-
ther as LB_YF2 simply by additionally ex-
changing two input sequences. LB_KE performs
very well. However, for some severe test cases,
its p-measure may be as low as zero: essentially
no effect of filtering. LB_Ours preserves the
general pruning power, and has been the best
performer ever since.

1

2

3

4

5

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32

av
era
ge

Data set ID
UB_Ours(r) UB_Ours(5) UB_L2 UB_VHGK

Fig. 7: The tightness of upper bound functions over 32 data sets.
LB_YF LB_YF2 LB_KPC LB_KE LB_Ours UB_VHGK UB_L2 UB_Ours(5) UB_Ours(r)

Max 0.74 0.86 0.52 0.93 0.94 64.38 9.69 2.10 2.09
Min 0.00 0.00 0.07 0.06 0.32 1.09 1.01 1.00 1.00
Avg 0.20 0.35 0.19 0.51 0.61 7.70 2.61 1.28 1.21

Fig. 8: The summary information on the tightness measure of approximate functions.

- 8 -

The second group on the right-hand side of
Fig. 9 results from the algorithm in Fig. 5 by
replacing the true DTW computations with the
upper bound functions. Comparatively, this al-
gorithm can disqualify dissimilar subsequences
much more rapidly owing to using only low-cost
approximate functions. As shown, UB_VHGK
hardly assumes the role of upper functions. Its
performance is even worse than the simple
Euclidean function. However, UB_L2 still can-
not offer satisfactory filtering performance. In
the worst case, UB_L2 paired by LB_KE yet
fails to meet the challenge set by the most in-
tractable test cases. With vast variations, these
data tend to have very small lower bound meas-
ure and very high upper bound value. Powered
by LB_Ours, UB_Ours(5) addresses this prob-
lem very well. On the first pass, 47% of
non-similar data objects on average are filtered
out with no true DTW computations, which is
compatible with using LB_KE alone with the
true DTW in the first group. The second pass
further refines the candidate set, and gives addi-
tional 10% improvement (0.57-0.47= 0.1 = 10%).
The proposed lower and upper bound functions
significantly outperform all the competing func-
tions, and achieve the best filtering result.

5. Concluding Remarks

Nearest-neighbors queries in large
time-series databases are popular, but very ex-
pensive to execute. The classical Euclidean dis-
tance-based index structures, despite their high
efficiency, require the perfect input for the query.
Dynamic Time Warping disrupts this barrier by
allowing the query input with slightly elastic
shifting of the time axis. However, the stretch-
able alignments bear high cost in computation.
In particular, the triangular inequality cannot
apply for efficient index construction. The cur-
rent trend is to employ low-cost approximate
functions to filter out most non-similar objects
before the expensive true distance comparisons.
We proposed two approximate functions in this
paper to improve the capability of all the exist-
ing competitors. We show both functions can
work closely to deliver satisfactory preprocess-
ing results. Only relying on these low-cost ap-
proximate functions, more than half of database
subsequences can be safely sieved out without
any dismissal. This achievement shall foster the
excellent quality of the index structure we are
currently developing based on the approximate
functions presented in the paper.

Acknowledgements

We are devoutly thankful for the supports
of the National Science Council, Project No.
NSC 91-2213-E-007-040, and the MOE Pro-
gram for Promoting Academic Excellent of
Universities, Grant No. 89-E-FA04-1-4, Taiwan,
R.O.C. In particular, we appreciate very much
the help of Eamonn Keogh for providing the
original test data, and the comments of Roger
Jang about music retrieval by DTW.

References
[1] "Example of a Life-Threatening Physiologic Event,"

http://reylab.bidmc.harvard.edu/DynaDx/case-study/seizure/men
u.html, 2003.

[2] "Periodicity in a Gamma Ray Buster,"
http://xweb.nrl.navy.mil/timeseries/multi.diskette, 2003.

[3] J. Aach, http://arep.med.harvard.edu/timewarp/supplement.htm,
"Aligning gene expression time series with time warping algo-
rithms," June 11, 2001.

[4] G. E. P. Box and G. M. Jenkins, Time Series Analysis: Forecast-
ing and Control, 2nd ed: Holden-Day, 1976.

[5] F. K.-P. Chan, A. W.-c. Fu, and C. Yu, "Haar Wavelets for Effi-
cient Similarity Search of Time-Series: With and Without Time
Warping," IEEE Trans. on Knowledge and Data Engineering,
15(3):686-705, May/June, 2003.

[6] X. Huang, A. Acero, and H.-W. Hon, Spoken Language Process-
ing: A Guide to Theory, Algorithm, and System Development:
Prentice Hall PTR, 2001.

[7] E. Hunt, "The Suffix Sequoia Index for Approximate String
Matching," Department of Computing Science, University of
Glosgow, Glasgow, UK, TR 2003-135, March, 2003.

[8] J.-S. R. Jang and H.-R. Lee, "Hierarchical Filtering Method for
Content-based Music Retrieval via Acoustic Input," in Proc. of
ACM MM, Canada, Sept., 2001.

[9] T. Kahveci and A. Singh, "An Efficient Index Structures for String
Databases," in Proc. of VLDB, Italy, pp. 351-360, Sept., 2001.

[10] W. J. Kent, "BLATThe BLAST-Like Alignment Tool," Genome
Research, 12(4):656-664, April, 2002.

[11] E. Keogh, "Exact Indexing of Dynamic Time Warping," in Proc.
of VLDB Conference, Hong Kong, China, Aug. 20-23, 2002.

[12] S.-W. Kim, S. Park, and W. W. Chu, "An Index-Based Approach
for Similarity Search Supporting Time Warping in Large Se-
quence Databases," in Proc. of IEEE Data Engineering, Germany,
pp. 607-614, April, 2001.

[13] F. Korn, H. V. Jagadish, and C. Faloutsos, "Efficiently Support-
ing Ad Hoc Queries in Large Datasets of Time Sequences," in
Proc. of ACM SIGMOD, Arizona, pp. 289-300, May, 1997.

[14] Y.-S. Moon, K.-Y. Whang, and W.-S. Han, "GeneralMatch: A
Subsequence Matching Method in Time-Series Databases Based
on Generalized Windows," in Proc. of ACM SIGMOD, pp.
382-393, June 3-6, 2002.

[15] Y.-S. Moon, K.-Y. Whang, and W.-K. Loh, "Duality-Based
Subsequence Matching in Time-Series Databases," in Proc. of
IEEE Data Engineering, pp. 263-272, April 2-6, 2001.

[16] Z. Ning, A. J. Cox, and J. C. Mullikin, "SSAHA: a fast search
method for large DNA databases," Genome Research,
11(10):1725-1729, Oct., 2001.

[17] O. Ozturk and H. Ferhatosmanoglu, "Effective Indexing and
Filtering for Similarity Search in Large Biosequence Databases,"
in Proc. of IEEE Sym. on BioInformatics and BioEngineering, pp.
359-366, March, 2003.

[18] M. Vlachos, M. Hadjieleftheriou, D. G. y, and E. Keogh, "Index-
ing Multi-Dimensional Time-Series with Support for Multiple
Distance Measures," in Proc. of ACM SIGKDD, Aug. , 2003.

[19] J. J. v. Wijk and E. R. v. Selow, "Cluster and Calendar based
Visualization of Time Series Data," in Proc. of IEEE Symposium
on Information Visualization, San Francisco, Oct. 25-26, 1999.

[20] B.-K. Yi and C. Faloutsos, "Fast Time Sequence Indexing for
Arbitrary Lp Norms," in Proc. of VLDB, Sept., 2000.

1st Pass 2nd Pass 1st Pass 2nd Pass 1st Pass 2nd Pass
Max 0.80 0.85 0.66 0.89 0.90 0.85 0.93 0.87 0.96 0.88 0.96
Min 0.00 0.00 0.00 0.00 0.04 0.00 0.00 0.00 0.00 0.01 0.03
Avg 0.23 0.34 0.20 0.47 0.56 0.15 0.17 0.33 0.39 0.47 0.57

LB_Ours + UB_Ours(5)
LB_KE LB_Ours

LB_KE + UB_VHGK LB_KE + UB_L2
LB_YF LB_YF2 LB_KPC

Fig. 9: The summary information on the pruning power of approximate functions.

