
1

A Self-Stabilizing Algorithm for the Center-finding

Problem Assuming Read/Write Atomicity

Ji-Cherng Lin Tetz C. Huang Nathan Mou

Department of Computer Science and Engineering, Yuan Ze Uinversity

No. 135 Yuan-Tung Road, Chungli, Taoyuan, Taiwan, R.O.C.

csjclin@saturn.yzu.edu.tw cstetz@saturn.yzu.edu.tw nathan24@ms57.hinet.net

Abstract— The problem of locating centers of graphs has

a variety of applications in the areas of transportation and

communication in distributed systems. In this paper, we

design and prove the correctness of a self-stabilizing algo-

rithm which finds the center(s) for a distributed system

with a tree topology. The computational model employed

in this paper was introduced by Dolev et al. in [6] that

assumes the read/write separate atomicity.

Keywords : Self-stabilizing algorithm, model of compu-

tation, read/write separate atomicity, interleaving model,

center.

I. Introduction

E. W. Dijkstra first introduced the notion of self-

stabilization in a distributed system in his pioneering paper

[3] (cf. also [4][5]) in 1974, in which he coined the phrase

and showed the feasibility of designing such algorithms in a

distributed system. According to him, a distributed system

is self-stabilizing if regardless of any initial system configu-

ration, the system can automatically adjust itself to even-

tually converge to a legitimate configuration (or configura-

tions) and then stay in legitimate configuration thereafter

unless it incurs a subsequent transient fault. In the self-

stabilizing system of Dijkstra type, communications among

neighboring processors are carried out by use of shared reg-

isters (hereafter registers), namely, each processor in the

system is allowed to write values into its own registers and

read those values stored in the registers owned by its neigh-

bors. The interleaving model is used to reason about the

behavior of the system. In this model, it is assumed that,

at each given time, only a single processor is activated by

a scheduler, the so-called central daemon, to make a move.

In other words, the behavior of the system can be described

by an execution sequence E = (C0, m1, C1, m2, C2, . . .) in

which ∀i ≥ 0, Ci represents a system configuration (or,

simply, configuration) and mi stands for a move and Ci+1

is obtained from Ci after a unique processor in the sys-

tem makes the move mi+1. In the self-stabilizing system of

Dijkstra type, since the computational model assumes the

read/write composite atomicity, a single move (or atomic

2

step) by a processor consists of reading registers of all its

neighbors, making internal computations and then rewrit-

ing its own register (or registers). In addition to Dijkstra’s

classic papers [3][4][5], a good reference for the basics on

this type of self-stabilizing system can be found in Bruell et

al. [1]. Later in 1993, Dolev et al., introduced a new type

of self-stabilizing system in their famous paper [6]. The

computational model of the new type of system assumes

the read/write separate atomicity. Under such an assump-

tion, each atomic step in the system of Dolev type consists

of internal computations and either a single read operation

or a single write operation. In this setting, Dolev et al.

presented two simple self-stabilizing algorithms in [6], one

of which is for the mutual exclusion problem and the other

is for the breadth-first search tree problem. As is proved

in the paper, both algorithms are self-stabilizing under the

computational model of Dolev type.

Self-stabilizing center-finding algorithms in a distributed

system that uses the computational model of Dijkstra type

have been investigated during the past [1][8]. In this paper,

we design and prove the correctness of a self-stabilizing al-

gorithm that finds the center(s) for any distributed system

with a tree topology in which the computational model

is of Dolev type. To the best of our knowledge, there

has been no published paper so far that discusses the self-

stabilizing center-finding algorithm in a distributed system

whose computational model assumes the read/write sepa-

rate atomicity.

The rest of this paper is arranged as follows. In Section

2, the algorithm is proposed and the meaning of the legit-

imate configuration is explained. In Section 3, an example

illustrates the execution of the algorithm. The correctness

proof of the algorithm is given in Section 4. Finally, in

Section 5, some remarks conclude the whole discussion.

II. The Center-finding Algorithm

Let T = (V, E) be an undirected tree that is used to

model a distributed system with a tree topology. Each

node x ∈ V represents a processor in the system and each

edge {x, y} ∈ E represents the bidirectional link connecting

processors x and y. For any x, y ∈ V , let d(x, y) denote the

distance between x and y, that is, the length of the unique

simple path in T that connects x and y. Let e(x) = max

{d(x, y) | y ∈ V } denote the eccentricity of a node x, viz.

the distance between x and a farthest vertex from x in T .

Then a center of T is a node with the minimum eccentricity.

The so-called center-finding problem for the system T is to

identify the center(s) of the system. Proposition 1 below

states a well-known property regrading the center(s) of a

tree. The proof of it can be found in Theorem 2.1 in [2].

Proposition 1: A tree has a unique center or two adja-

cent centers (cf. Figures 1 and 2).

For later use, for any x ∈ V , we define N(x) to be the

set of all x’s neighbors. We also introduce some notations

p(x), T (x) and H(x) relating to T in the following defini-

tion. Then, we demonstrate some properties with regard

to H(x).

3

� � � � �

����	�

����	� ����	�

����	�

����	

�

��

��
�	�

�����	

����	�

�

��
�	�

����	

Fig. 1. Eccentricities of nodes in a tree. The shaded node stands for
the unique center of the tree.

Definition 2: Let T = (V, E) be as above.

Case 1. T has a unique center c. In this case, we designate

c as the root and T thus becomes a rooted tree at c. For

any x ∈ V − {c}, the parent of x is denoted by p(x). For

any x ∈ V , let T (x) represents the subtree of T rooted at

x . Then we define H(x) = max{d(x, y) | y is a leaf node

in T (x)}, i.e., the height of T (x).

Case 2. T has two centers c1, c2. In this case, we first delete

from T the edge connecting c1 and c2 and thus obtain two

subtrees T1 and T2 of T , where c1 ∈ V (T1) and c2 ∈ V (T2).

T1 and T2 can be considered as rooted trees at c1 and c2,

respectively. For any x ∈ V − {c1, c2}, p(x) denotes the

parent of x in the rooted tree to which x belongs. For any

� � � � �

����	�

����	� ����	�

����	�

����	�

�

�

��
�	�

����	�

����	�

��
�	�

Fig. 2. Eccentricities of nodes in a tree. The two shaded nodes stand
for the two centers of the tree.

� � � � �

�

�

�

	

���

���

�

�

�

� 	

� �

�

�

�

�

Fig. 3. A tree with a unique center c and the induced rooted tree
rooted at c.

x ∈ V , the meanings of T (x) and H(x) are also apparent.

We now give two examples to assist readers in compre-

hending the notions given in above definition. The tree

shown in Figure 3-(1) has a unique center c. It induces a

rooted tree at c shown in Figure 3-(2). The shaded nodes

constitutes the subtree T (3) with H(3) = 2. Also note

that p(5) = 4. Next, the tree shown in Figure 4-(1) has

two adjacent centers c1 and c2. It induces two rooted trees

T1 and T2 in Figure 4-(2). The shaded nodes represent the

subtree T (2) with H(2) = 1. Also note that p(7) = 2.

Lemma 3: Suppose x is a node in T such that deg(x) > 1

and x is not a center of T . Then [H(p(x)) ≥ H(x) + 1

], [∀y ∈ N(x) − {p(x)}, H(y) ≤ H(x) − 1] and [∃y0 ∈

N(x) − {p(x)} such that H(y0) = H(x) − 1].

Proof: The proof is quite easy and is thus omitted.

Lemma 4: Suppose T has a unique center c. Then [∀y ∈

4

N(c), H(y) ≤ H(c) − 1] and [∃y1, y2 ∈ N(c) such that

y1 �= y2 and H(y1) = H(y2) = H(c) − 1].

Proof: The first part of the claim in the lemma

can be easily seen. For the second part, let L be a

longest simple path in T . By Lemma 1 in [8], the length

of L is even and c is the midpoint of L. Let L =

(xj , xj−1, . . . , x1, c, x
′
1, . . . , x

′
j−1, x

′
j). Then one can easily

check that H(x1) = H(x′
1) = H(c) − 1.

Lemma 5: Suppose T has two centers c1 and c2. Then [

H(c1) = H(c2)], [∀y ∈ N(c1) − {c2}, H(y) ≤ H(c1) − 1]

and [∃y0 ∈ N(c1) − {c2} such that H(y0) = H(c1) − 1].

Proof: One can easily see that ∀y ∈ N(c1) − {c2},

H(y) ≤ H(c1) − 1. Let L be a longest simple path in T .

By Lemma 1 in [8], the length of L is odd and c1 and c2

are the two midpoints of L. Let T1 and T2 be as defined

in Case 2 of Definition 1. Let L = (xj , xj−1, . . . , x1, x0 =

c1, c2 = x′
0, x

′
1, . . . , x

′
j−1, x

′
j). One can check that H(c1) =

� � �
�

�
�

�

�

�

�

�

���

���

�

�

�

� �

� �

�
�

�
�

	

	
�

	
�

Fig. 4. A tree with two centers c1 and c2 and the induced rooted
trees rooted at c1 and c2.

H(c2) = j and H(x1) = H(x′
1) = j − 1. Hence the lemma

is proved.

Later in this section, we will propose a self-stabilizing al-

gorithm that finds the center(s) for the distributed system

T with a tree topology. The underlying model of computa-

tion employed here in the system was introduced by Dolev

et al. in [6] (cf. also [7]) that assumes the read/write sep-

arate atomicity instead of the commonly used read/write

composite atomicity. Thus, for each x ∈ V and for each

y ∈ N(x), let x maintain a register hxy, in which x writes

and from which y reads. The register is serializable with

respect to read and write operations. For each processor x

with deg(x) > 1 and for each y ∈ N(x), let x also maintain

a local variable ryx, in which x stores the value that it reads

from the shared register hyx of the neighbor y. The val-

ues of each register hxy and each local variable ryx are in

the range N = {0, 1, 2, . . .}. Nx,r = {ryx | y ∈ N(x)}

denotes the multi-set of values of all x’s local variables

whereas N−
x,r = Nx,r − {max Nx,r} denotes the set Nx,r

with one maximum value in it removed. For example, if

Nx,r = {3, 4, 4}, then N−
x,r = {3, 4}. The legitimate con-

figurations for the system are defined to be those configu-

rations in which ∀x ∈ V , [deg(x) = 1 ∧ hxy = 0 for the

unique y ∈ N(x)] or [deg(x) > 1∧(∀y ∈ N(x), ryx = hyx∧

hxy = 1 + maxN−
x,r)].

Theorem 6 (Uniqueness) If the system T = (V, E) is in

any legitimate configuration, then ∀x ∈ V and ∀y ∈ N(x),

hxy = H(x), the height of T (x).

Proof: Let the legitimate configuration be fixed.

Then in the legitimate configuration, ∀x ∈ V , [deg(x) =

5

1∧hxy = 0 for the unique y ∈ N(x)] or [deg(x) > 1∧(∀y ∈

N(x), ryx = hyx∧ hxy = 1 + maxN−
x,r)]. Also, let l be

the diameter of T and m =
⌊

l
2

⌋
.

Claim. ∀j ∈ {0, 1, . . . , m}, [∀x ∈ V with 0 ≤ H(x) ≤ j

and ∀y ∈ N(x), hxy = H(x)] and [∀x ∈ V with H(x) > j

and ∀y ∈ N(x), hxy ≥ j].

Proof of the Claim. We prove the claim by induction

on j. For j = 0, it is obvious that if H(x) = 0, then x is

a leaf node (i.e., deg(x) = 1) and hence hxy = 0 for the

unique y ∈ N(x). If H(x) > 0, then obviously hxy ≥ 0

for any y ∈ N(x). Hence the claim is true for j = 0. As-

sume that for j = k with 0 ≤ k < m, the claim is true,

that is, [∀x ∈ V with 0 ≤ H(x) ≤ k and ∀y ∈ N(x),

hxy = H(x)] and [∀x ∈ V with H(x) > k and ∀y ∈ N(x),

hxy ≥ k]. Let x ∈ V with H(x) = k + 1. By Lemmas 1,

2 and 3, we have that [∃y0 ∈ N(x) such that H(y0) ≥ k

] and [∃y1 ∈ N(x) − {y0} such that H(y1) = k] and [

∀y ∈ N(x) − {y0, y1}, H(y) ≤ k]. Thus, by induction hy-

pothesis, we get hy0x ≥ k, hy1x = k and hyx ≤ k for any

y ∈ N(x)−{y0, y1}. Since in any legitimate configuration,

Nx,r = {ryx | y ∈ N(x)} = {hyx | y ∈ N(x)}, we have

that max N−
x,r = k and hence hxy = 1 + max N−

x,r = 1 + k

for any y ∈ N(x). Thus, we have shown (�): ∀x ∈ V with

H(x) = k + 1 and ∀y ∈ N(x), hxy = H(x). Arguing analo-

gously as above, we can get (��): ∀x ∈ V with H(x) > k+1

and ∀y ∈ N(x), hxy ≥ k+1. Then, the induction hypothe-

sis, together with (�) and (��), implies that the above claim

is true for j = k + 1. Hence the claim is proved.

Setting j = m in the claim, Theorem 1 trivially follows.

The above theorem shows the meaning and the unique-

ness of the legitimate configuration. The converse is also

true, which shows the existence of the legitimate configu-

ration.

Theorem 7 (Existence) The configuration in which [

∀x ∈ V and ∀y ∈ N(x), hxy = H(x)] and [∀x ∈ V

with deg(x) > 1 and ∀y ∈ N(x), ryx = hyx] is a legitimate

configuration.

Proof: In the configuration, ∀x ∈ V with deg(x) = 1,

since H(x) = 0, we have that hxy = H(x) = 0 for the

unique y ∈ N(x). Also in the configuration, for any x ∈ V

with deg(x) > 1, let H(x) = i. Then by Lemmas 1, 2 and

3, we have that [∃y0 ∈ N(x) such that H(y0) ≥ i − 1]

and [∃y1 ∈ N(x) − {y0} such that H(y1) = i − 1] and [

∀y ∈ N(x) − {y0, y1}, H(y) ≤ i − 1]. Hence Nx,r = {ryx |

y ∈ N(x)} = {hyx | y ∈ N(x)} = {H(y) | y ∈ N(x)}

and thus, max N−
x,r = i − 1. Therefore, ∀y ∈ N(x), hxy =

H(x) = i = 1 + (i − 1) = 1 + max N−
x,r. From above, we

see that the configuration is a legitimate configuration.

The above two theorems reveal that there is actually a

unique legitimate configuration, that is, the configuration

in the statement of Theorem 2, and when the system is

in the legitimate configuration, for any x ∈ V and for any

y ∈ N(x), the register hxy records the height H(x) of T (x).

Now we equip the system with the algorithm.

Self-stabilizing center-finding algorithm

{For every leaf node x in the system}

1. repeat forever

2. if hxy �= 0 then write(hxy := 0) endif

(where y is the unique neighbor of x.)

6

3. endrepeat

{For every non-leaf node x in the system}

01. repeat forever

02. for each y ∈ N(x) do

03. read (ryx := hyx)

04. endfor

05. for each y ∈ N(x) do

06. if hxy �= 1 + max N−
x,r then write (hxy = 1 +

max N−
x,r) endif

07. endfor

08. endrepeat

It should be understood that each processor in the sys-

tem runs its own program indefinitely and at its own pace,

and the running of the program has to follow the order of

the statements in the program.

III. An Illustration

Figure 5 illustrates the distributed system that assumes

the read/write separate atomicity and is equipped with the

proposed algorithm. An execution of the algorithm in the

system is given in Table 1. In each configuration shown in

Table 1, the shaded part indicates the execution of a single

atomic step (or, a move) by the unique processor selected

by the central daemon. Note that the system reaches the

legitimate configuration at Configuration 43.

�
��

�
��

 �

�
��

�
��

�
��

�
��

�
��

�

�

�

� �

�
�� �

��

�
��

�
��

�
��

�
��

�
��

�
��

�
��

�
��

�
��

�
��

�
��

Fig. 5. The structure of a system that assumes the read/write sepa-
rate atomicity and is equipped with the proposed algorithm.

IV. Correctness Proof

We now give the correctness proof in the following theo-

rem. To facilitate the presentation in the following proof,

we define a terminology. We say that a node x with

deg(x) > 1 just completes a full round of reading all its

neighbors whenever x just completes a full execution of

the loop from statement 02 to statement 04 in the above

algorithm. Note that due to the content of the above algo-

rithm and the way the algorithm is executed by processors

in the system (as mentioned earlier), the moves designated

by the central demon in any execution of the algorithm has

to obey certain restrictions. For instance, in any execution

of the algorithm, each non-leaf processor makes read action

infinitely often. For another instance, in any execution, if

after having completed a full round of reading all its neigh-

bors, a non-leaf processor finds itself able to make a write

action (i.e., it finds that the guard condition of statement

7

06 in the algorithm evaluates to true), then the very write

action has to follow as the next move by the processor. In

other words, if we view an execution of the algorithm in

the system as an infinite sequence (C0, m1, C1, m2, . . .) in

which ∀i, the configuration Ci+1 is obtained from the con-

figuration Ci after a unique processor in the system makes

the move mi+1, then the sequence cannot be arbitrary and

without any restriction. To prove that the algorithm is

self-stabilizing, we are required to show that for any such

execution sequence (C0, m1, C1, m2, . . .) which obeys the

restrictions induced from the content of the algorithm and

the way the algorithm is executed, there exists a natural

number p such that ∀i ≥ p, Ci is the legitimate configura-

tion. For any time instant t, we use hxy(t+) to denote the

value of hxy right after t and hxy(t−) to denote the value of

hxy right before t. If hxy(t+) = hxy(t−), the value of hxy at

t is well-defined and is denoted as hxy(t); otherwise, hxy(t)

is undefined. Likewise, ryx(t+) and ryx(t−) stand for the

value of ryx right after t and the value of ryx right before

t, respectively. If ryx(t+) = ryx(t−), the value of ryx at t

is well-defined and is denoted as ryx(t); otherwise, ryx(t)

is undefined. To illustrate how to use these notations, for

instance, if a processor x executes a write action “write

(hxy = 1 + max N−
x,r)” at a time instant t, then, since

hxy(t+) �= hxy(t−), hxy(t) is undefined. On the other hand,

if a processor x executes a read action “read (ryx := hyx)”

at t, then either ryx(t+) = ryx(t−) or ryx(t+) �= ryx(t−) is

possible. In the former case, ryx(t) is defined whereas in the

latter case, ryx(t) is undefined. Note also that due to the

difference in computational model, the proof to be given in

the following comes with quite different flavor from those

proofs in [1][8] which study self-stabilizing systems that use

the computational model of Dijkstra type. Moreover, some

parts in the following proof may seem unnecessarily com-

plicated, but they are really indispensable for the rigor of

the proof, as we have checked very carefully. Also be ad-

vised that although we have abused some notations in the

following proof, for the sake of simplicity in presentation,

we have done so with great care lest it should cause any

confusion to the readers.

Theorem 8 (Self-stabilization) Regardless of any initial

state, the system will converge to the legitimate state and

then stay in the legitimate state thereafter.

Proof: Let 0 be the initial time instant and l be the

diameter of T . Let m =
⌊

l
2

⌋
.

Claim. ∀j ∈ {0, 1, . . . , m}, there exists an instant tj > 0

such that ∀t > tj , [∀x ∈ V with 0 ≤ H(x) ≤ j and

∀y ∈ N(x), hxy(t) = H(x)] and [∀x ∈ V with H(x) > j

and ∀y ∈ N(x), hxy(t+) ≥ j].

Proof of the Claim. We prove the claim by induction

on j. For j = 0, in view of statement 2 in the algorithm,

it is obvious that for each x ∈ V with H(x) = 0 (i.e.,

deg(x) = 1), there exists a t0(x) > 0 such that ∀t > t0(x),

hxy(t) = 0 for y ∈ N(x). Let t0 = max
H(x)=0

t0(x). Then,

∀t > t0, [∀x ∈ V with H(x) = 0, hxy(t) = 0 for y ∈ N(x)]

and [∀x ∈ V with H(x) > 0 and ∀y ∈ N(x), hxy(t+) ≥ 0].

Hence the claim is true for j = 0. Let 0 ≤ k < m. Assume

that for j = k, the claim is true, that is, there exists a

tk > 0 such that ∀t > tk, [∀x ∈ V with 0 ≤ H(x) ≤ k and

∀y ∈ N(x), hxy(t) = H(x)] and [∀x ∈ V with H(x) > k

8

and ∀y ∈ N(x), hxy(t+) ≥ k].

Subclaim 1. If x ∈ V with H(x) = k+1, then there exists

a t1(x) > tk such that ∀t > t1(x), maxN−
x,r(t) = k.

Proof of Subclaim 1.

Case 1. x is not a center. Then, by Lemma 1, [H(p(x)) ≥

k + 2], [∀y ∈ N(x) − {p(x)}, H(y) ≤ k] and [

∃y0 ∈ N(x) − {p(x)} such that H(y0) = k]. Thus,

by the induction hypothesis, ∀t > tk, [hp(x)x(t+) ≥ k

], [∀y ∈ N(x) − {p(x)}, hyx(t) = H(y) ≤ k] and [

hy0x(t) = H(y0) = k]. Let tp(x) > tk be an instant

at which x reads rp(x)x = hp(x)x. Then ∀t ≥ tp(x), if

we let t′p(x) be the last instant in the time interval (tk, t]

at which x reads rp(x)x = hp(x)x, then we can see that

rp(x)x(t+) = hp(x)x(t′p(x)) and thus rp(x)x(t+) ≥ k. Simi-

larly, ∀y ∈ N(x) − {p(x)}, ∃ty > tk such that [∀t ≥ ty,

ryx(t+) ≤ k] and [∀t ≥ ty0 , ry0x(t+) = k]. Let

t1(x) = max
y∈N(x)

ty. Then t1(x) > tk and ∀t ≥ t1(x), max

N−
x,r(t

+) = k. Consequently, ∀t > t1(x), max N−
x,r(t) = k.

Case 2. x is the unique center of T . By employing Lemma

2 and arguing analogously as in Case 1, we will get a

t1(x) > tk such that ∀t > t1(x), max N−
x,r(t) = k.

Case 3. x is one of the two centers of T . By employing

Lemma 3 and arguing analogously as in Case 1, we will

obtain a t1(x) > tk such that ∀t > t1(x), max N−
x,r(t) = k.

Therefore, Subclaim 1 is proved.

Subclaim 2. If x ∈ V with H(x) = k + 1 and t1(x) is

as in Subclaim 1, then ∀y ∈ N(x), ∃t̄y > t1(x) such that

∀t > t̄y, hxy(t) = H(x).

Proof of Subclaim 2. Let t′(x) > t1(x) be the first in-

stant after t1(x) at which x just completes a full round

of reading all its neighbors. Let y ∈ N(x) be arbitrary.

(a) If after t1(x), the value of hxy is never changed, then

hxy(t′(x)) = 1 + maxN−
x,r(t′(x)) (otherwise, x will execute

statement 06 in the algorithm to change the value of hxy

after t′(x), a contradiction.) Hence, hxy(t′(x)) = 1 + k,

by Subclaim 1. Therefore, we have (�): ∀t > t1(x),

hxy(t) = hxy(t′(x)) = 1 + k = H(x). (b) If after t1(x),

the value of hxy is ever changed, then let t̄y > t1(x) be the

first instant after t1(x) at which the value of hxy is changed.

Then hxy(t̄+y) = 1 + maxN−
x,r(t̄y). Hence, hxy(t̄+y) = 1 + k,

again by Subclaim 1. Since after t̄y, the guard condition

in statement 06 in the algorithm never evaluates to true,

node x will never execute the write action. Therefore, we

have (��): ∀t > t̄y, hxy(t) = 1 + k = H(x). From (�) and

(��) above, Subclaim 2 follows.

By letting t∗(x) = max
y∈N(x)

t̄y, we have that ∀t > t∗(x)

and ∀y ∈ N(x), hxy(t) = H(x). Then, by letting t∗ =

max
H(x)=k+1

t∗(x), we have that t∗ > tk and ∀t > t∗, [∀x ∈ V

with H(x) = k + 1 and ∀y ∈ N(x), hxy = H(x)]. Thus,

we have obtained

Subclaim 3. ∃t∗ > tk such that ∀t > t∗, [∀x ∈ V with

H(x) = k + 1 and ∀y ∈ N(x), hxy(t) = H(x).

Then, arguing analogously as from Subclaim 1 till Sub-

claim 3, we can also prove

Subclaim 4. ∃t̃ > tk such that ∀t > t̃, [∀x ∈ V with

H(x) > k + 1 and ∀y ∈ N(x), hxy(t+) ≥ k + 1].

Finally, by letting tk+1 = max{t∗, t̃}, we have that tk+1 >

tk and ∀t > tk+1, [∀x ∈ V with 0 ≤ H(x) ≤ k + 1 and

∀y ∈ N(x), hxy(t) = H(x)] and [∀x ∈ V with H(x) > k+1

and ∀y ∈ N(x), hxy(t) ≥ k + 1], that is, the claim is true

9

for j = k + 1. Therefore, by the postulate of mathematical

induction, the claim at the beginning is proved.

According to above claim, there exists a tm > 0 such that

∀t > tm, ∀x ∈ V with 0 ≤ H(x) ≤ m and ∀y ∈ N(x),

hxy(t) = H(x). This obviously implies that ∀x ∈ V and

∀y ∈ N(x), hxy = H(x) never changes after tm. Conse-

quently, in view of the algorithm, there exists a t∗m > tm

such that after t∗m, ∀x ∈ V with deg(x) > 1 and ∀y ∈ N(x),

ryx = hyx. Therefore, after t∗m, [∀x ∈ V and ∀y ∈ N(x),

hxy = H(x)] and [∀x ∈ V with deg(x) > 1 and ∀y ∈ N(x),

ryx = hyx], that is, the system is in the legitimate config-

uration. Hence, the proof is completed.

V. Concluding Remarks

In the above, we have shown that the proposed algorithm

is indeed self-stabilizing in a distributed system whose un-

derlying computational model assumes the read/write sep-

arate atomicity and in the legitimate configuration, all

hxy’s records the height H(x) of T (x). Arguing analogously

as in the proof of Theorem 1, we can get that the h-value

h(x) defined in [1] and H(x) defined in this paper are actu-

ally the same. Thus, by Theorem 4.4 in [1], as soon as the

system reaches the legitimate configuration, identifying a

center of T is to select a node x that satisfies hxy ≥ hyx for

any y ∈ N(x). Hence the center-finding problem is solved.

References

[1] S. C. Bruell, S. Ghosh, M. H. Karaata and S. V. Pemmaraju, Self-

stabilizing algorithms for finding centers and medians of trees,

SIAM Journal on Computing 29 (2), 600-614, (1999).

[2] F. Buckley and F. Harary, Distance in Graphs, Addison-Wesley,

Redwood City, CA, (1990).

[3] E. W. Dijkstra, Self-stabilizing systems in spite of distributed

control, Communications of the Association of the Computing

Machinery 17, 643-644, (1974).

[4] E. W. Dijkstra, Self-stabilization in spite of distributed control.

In Selected writings on computing: a personal perspective, 41-46,

Berlin-Heidelberg-New York: Springer-Verlag, (1982).

[5] E. W. Dijkstra, A belated proof of self-stabilization, Distributed

Computing 1, 5-6, (1986).

[6] S. Dolev, A. Israeli and S. Moran, Self-stabilization of dynamic

systems assuming only read/write atomicity, Distributed Com-

puting 7, 3-16, (1993).

[7] S. Dolev, Self-stabilization, MIT Press, (2000).

[8] Tetz C. Huang ,Ji-Cherng Lin and H. J. Chen, A self-stabilizing

algorithm which finds a 2-center of a tree, Computers and Math-

ematics with Applications 40, 607-624, (2000).

��������	
��� � � � � � � �

����
� � ��

� �

� �

� �

� �

� �

� �

� �

� �

	 �

 �

�� �

�� �

�� �

�� �

�� �

�� �

�� �

�� �

�	 �

�
 �

�� �

�� �

�� �

�� �

�� �

�� �

�� �

�� �

�	 �

�
 �

�� �

�� �

�� �

�� �

�� �

�� �

�� �

�� �

�	 �

�
 �

�� �

�� �

�� �

�� �

�� �

�� �

�� �

�� �

�	 �

�
 �

�� �

�� �

�� �

Figure 6: An example which illustrates the execution of the algorithm

