
A Strategy for Point-to-point Node Communication
Performance Prediction in Cluster Environments*

Kuan-Ching Li (李冠憬)
Hsiao-Hsi Wang (王孝熙)

Dept. of Computer Science and

Information Management
Providence University

Taiwan ROC
E-mail: {kuancli | hhwang}@pu.edu.tw

Jean-Luc Gaudiot

Dept. of Electrical Engineering and
Computer Science

Univ. of California-Irvine
USA

E-mail: gaudiot@uci.edu

* This research is supported by the National Science Foundation/USA under grants no. CSA-0073527
and INT-9815742, National Science Council/Taiwan under grants no. NSC92-2213-E-126-006 and
NSC92-2213-E-126-012. Special thanks to SMC Networks/USA and Accton/Taiwan.

Abstract

In this paper, we present and apply a
methodology for parallel programming, along
with MPI performance measurement and
prediction in a class of distributed computing
environments, named networks of workstations
(NOW). Our approach is based on a two-level
model where, at the top, a new parallel version
of timing graph representation is used to explicit
the parallel communication and code segments
of a given parallel program. At the bottom level,
analytical models are developed to represent
execution behavior of parallel communications
and code segments. Obtained execution time,
together with problem size and number of nodes
are input to the model, which allows us to
predict the performance of similar cluster
computing systems with a different number of
nodes. We validate our analytical model by
performing experiments over homogeneous
cluster of workstations. Results show that our
approach produces accurate predictions, within
6% of actual results.

Keywords. Communication modeling,
analytical modeling, MPI parallel program,
cluster computing

1. Introduction
Advances in networking, high-end

computers and middleware capabilities in recent
years have resulted in new computing
infrastructures called networks of workstations
(NOW), or PC-based clusters. The potential of

this computing infrastructure has attracted
attention from the computing industry, since this
technology depends solely on commodity
components. Furthermore, they have been
widely used to improve the performance of
applications with intensive demands for
computational power. In merely a few years,
computer clusters have become one of the most
convenient and cost-effective tools for solving
many complex computational problems such as
the Grand Challenges [14]. These problems are
fundamental in science and engineering with
broad scientific and economic impact, whose
solution can definitely be advanced by high-
performance computing. The popularity of
NOWs is due to their scalability, their ability to
provide significant cost effective computing, to
rely on commodity technology, and to efficiently
support both single processor interactive
processing and large batch parallel processing.

The workstations are typically
interconnected through a high-speed network,
such as Gigabit Ethernet, SCI, or Myrinet, and
they run commodity operating systems, such as
Microsoft Windows or Linux. Many software
tools have been developed to support distributed
computing over a network of workstations,
including popular tools such Parallel Virtual
Machine (PVM) [15] software and Message
Passing Interface (MPI) [16, 17, 18], and low-
level communication mechanisms, such as
Active Messages [20] or Fast Messages [19].

In any performance prediction
methodology or software tool, a high-level
abstraction of an application plays an important
role. Based on the distributed programming

mailto:gaudiot@uci.edu

paradigm used in MPI, PVM and other
programming systems, we defined a new class
of timing graphs, which we call Distributed
Processing Graph (DP*Graph), introduced in
[10, 21]. DP*Graph is designed based upon
previous works in [3, 4, 5, 6, 7, 9, 12, 13]. The
objective of this class of timing graphs is to
describe the parallel executions as well as the
communication and synchronization
relationships of the parallel computations. To
separately quantify the effects of the program
structure and those of the system, the
communication and synchronization points are
independently identified in the graph of the
application.

In this paper, we applied a methodology for
performance measurement and prediction of
parallel programs to study MPI point-to-point
communication primitives. Our proposed
methodology provides an integrated interface
that binds performance and analysis back to the
original source code, allowing users to estimate
the execution time of the execution under
excellent bounds. Also, this should afford a
better understanding and investigation of
parallel program structure, performance and
behavior.

The remainder of this paper is organized as
follows. Some related work is briefly discussed
in section 2, followed by the description of the
methodology in section 3. In section 4, we
present experiments and results of performance
measurements and predictions. Finally, we give
some remarks and conclusions in section 5.

2. Related work
A number of performance evaluation and

prediction research projects are known. These
include algorithms, techniques and projects, and
can be recognized as iterative algorithms [13],
analytical approaches [3, 4, 7], trace
transformation, symbolic performance modeling
[5, 6], or adaptive sampling statistics techniques
[9, 12]. However, these techniques and
algorithmic approaches are not well suited for
general studies of interactions between PC-
based cluster systems performance and parallel
programming with MPI.

H. W. Cain, B. P. Miller and B. J. Wylie [2]
have introduced strategies for performance
diagnosis, G. Karypis and V. Kumar [8]
introduced analysis techniques for multilevel
graph partitioning, while P. Puschner and A.
Schedl [11] introduced an analytical technique
to analyze program execution times. Timing
graphs are used to describe the sequence of
execution of a program code. The computation
of MAXTs (maximum execution time) is
mapped to a graph problem, a generalization of

maximum cost circulation calculus of a directed
graph.

3. Methodology
The methodology introduced by Li in [10]

eases performance analysis and prediction of
parallel programs implemented with message
passing interface, executed in a homogeneous
network of workstations environment (Figure 1).
The methodology basically entails the definition
of an extension for T-Graphs (timing graphs),
which we name DP*Graphs, a class of graphs
from which we can represent not only sequential
programs, but also parallel programs
instrumented with communication and
synchronization. Moreover, new strategies are
defined for the performance measurement and
prediction of parallel applications described by a
parallel programming language, for this class of
distributed computing system [10]. Analytical
models are developed using experimental
execution times, allowing us to accomplish
performance analysis and to predict execution
times.

Parallel
Program
with MPI

Performance
Prediction

Representation of
Parallel Program
with DP*Graph

Execution of Parallel
Program in a NOW

System

Performance
Measurements

Execution Results
as Input Data to
Analytical Model

Figure 1. Methodology scheme.

Once we obtained the graph representation

of the parallel program and its analytical model,
it is possible to proceed with experimental
evaluations and studies of the performance
prediction, based on the experimental data
obtained previously.

3.1. Program representation with DP*Graph

Using DP*Graph elements (Figure 2), we
can represent correctly the synchronization and
communication stages in a message passing
program. Also, it’s possible to study the
execution flow and analyze the structure of the
parallel program. The representation of parallel
programs with MPI (or any other message
passing interface) can be worked out as show in
Figure 3.

 segment of sequential code

send operation

receive operation

edge

node

all-to-all operation

Figure 2. Graph elements for representation of
parallel programs.

3.2. Execution time calculus

To obtain the execution time of a parallel
application, it is needed to evaluate the
execution time of all running processes in each
processing node of a parallel computer system.
The process of calculating the total execution
time of a parallel program with MPI is
introduced in Figure 3.

The execution time of a parallel program is
taken as the maximum execution time among all
processing nodes, each of them obtained through
the sum of the partial execution times ti.

T exec = max (∑ t1

i, ∑ t2
j, ∑ t3

k, …, ∑ tn
t)

where ∑ tn
t stands for: sum of all partial times tt

of the n-th processing node.

t1
S1

S2 S3

S4t3

t2

S1

S2 S3

S4

t"2

t"1

t"3

Node 0 Node 1

1 0

1 0

01

t'1

t'2

t'3

Segment I

Segment II

Segment III

(a) (b)
Figure 3. Example of execution time calculation
process.

Figure 3 shows the graph representations of
a parallel application; Figure 3(a) is the graph
representation of a parallel application, in
execution process view, while figure 3(b) shows
in detail the execution of the parallel application,
considering the execution of each process in
each processing node. The total execution time
for this parallel application can be given as:

T exec = max (t’1 + t’2 + t’3, t’’1 + t’’2 + t’’3)

3.3. Communication operation modeling

The time spent in communication is an
important factor to be considered in the study
and analysis of parallel applications designed to
run on clusters of workstations. Considering a
message with n elements, this time can be
decomposed into the following components [10]:
• te(n) = time spent to transfer the message

from memory to network buffer;
• tt(n) = time spent to transfer the message by

the network between two nodes;
• tr(n) = time spent to receive the message

from the network buffer.

These components can be best viewed in
the conceptual model presented in Figure 4.

Figure 4. The communication time components
involved in a message transfer.

In order to construct a proper and
consistent model, it is important to identify the
factors that may influence the communication
performance. Among these many factors that
may influence the time spent in the
communication, this work considers two of them
represented by the following constants [10]:
• kl, the network latency;
• kb, its bandwidth.

In order to construct a proper and
consistent model, it is important to identify the
factors that may influence the communication
performance. Among these many factors that
may influence the time spent in the
communication, this work considers two of them
represented by the following constants [10]:
• kl, the network latency;
• kb, its bandwidth.

Thus, the components of communication
time viewed above can be represented by these
equations:

te(n) = n * c1
tt(n) = kb * n + kl
tr(n) = n * c2 , where c1 and c2 are constants.

From these considerations, the
communication time of a message with n
elements is given by:

tc(n) = te(n) + tt(n) + tr(n)
tc(n) = n*c1 + kb*n + kl + n*c2
tc(n) = (c1+ kb+c2)*n + kl
tc(n) = c*n + kl , where c is a constant

4. Experiments
The example program used to perform the

tests was implemented in C with some
communication primitives of the message-
passing interface. This program was designed to
run with exactly two processes: a sender and a
receiver. Each of these processes runs on one
node of the clusters described in section 4.1.

The first process runs a sequential code,
sends a message to the second process, runs
another segment of sequential code and then
terminates. The second process, named receiver,

Local

Memory
Local

Memory

Network Network

tr
 tr

Networ

is similar to the first process, but it receives a
message from the sender instead of sending a
message. In this parallel MPI program, a
message is an array of elements of a given type,
and the type used in our experiments was
MPI_INT. Figure 5 shows a graph
representation of the program, according to the
DP*Graph representation introduced in previous
section.

Node 0 Node 1

1 0

Segm ent of Code

M PI Com m unication
prim itives

Figure 5. Representation of the program used in
this experiment.

4.1. Experimental setup

To validate our methodology, tests have
been done on two clusters of workstations with
the follow characteristics:

 Cluster 1 Cluster 2
Nodes 16 8

Processor Celeron 433 MHz Pentium4 1.6 GHz
Memory 128 MB 384 MB
Network Fast-Ethernet Fast-Ethernet

OS Linux Red Hat 6.2 Linux Red Hat 7.2
MPI

version LAM 6.4 MPICH 1.2.1

Table 1. Clusters used in experiments

4.2. Experimental results
This section presents the results of the tests

performed on two homogeneous PC-based
clusters described previously. The tests with the
four send modes (standard, Buffered, Ready and
Synchronous) were performed, considering the
following message sizes (# of integers): 100,000,
250,000, 400,000, 550,000, 700,000, 850,000
and 1,000,000. The average times (in seconds)
of these experiments are presented in Table 2,
where tsender and treceiver represent the time spent
respectively by the process sender and the
process receiver.

Primary analysis indicates that all processes
present a linear increase in their communication
time. For instance, considering the synchronous
mode executed on cluster 1, the average time for
the sender process presented an increase by
approximately 0.062 as each new message
length introduced. In fact, this behavior can be
best observed in Figure 6.

However both clusters described in section
4.1 use the same network type (Fast-Ethernet),
the time spent by all processes in each send
mode on cluster 2 was smaller than on cluster 1
(as we can see in Table 2). This fact may be
explained by the greater influence of overhead
on communication performance than network
latency. Cluster 2 has better configuration than
cluster 1, considering issues as processor and
memory, so it presented smaller overhead and
faster communication times.

As noted in section 3, the communication
time can be expressed by tc(n) = c*n + kl.
From the average time of the tests presented in
Table 2, some equations were developed to
represent the behavior of the send modes
analyzed. An interpolation method was used to
construct these equations, which form the
analytical model to estimate the communication
time (Table 3).

Figure 6 shows the communication time to
cluster 1 in relation to the message length,
considering each send mode. The lines tpre_sender
and tpre_receiver represent an interpolation of the
points which correspond to the sender and
receiver communication times respectively.

Despite the almost linear behavior
presented by tpre_sender and tpre_receiver, the results
point the performance of the send modes
considering message lengths. When other
lengths, much larger or smaller than these values,
are used, factors such as operating system
overhead or bandwidth may highly influence the
performance communication. It may therefore
lead to erratic communication times.

The results from cluster 2 have presented a
similar behavior, as we can see analyzing the
values presented in Table 2.

(a) Cluster 1

(b) Cluster 2

Table 2. Experimental results for cluster 1 and cluster 2 introduced.

Thousands of
integers 100 250 400 550 700 850 1000

Tsender 0.0385 0.0990 0.1611 0.2223 0.2839 0.3463 0.4076
St.

Treceiver 0.0484 0.1178 0.1881 0.2588 0.3294 0.4007 0.4723

Tsender 0.0067 0.0168 0.0266 0.0375 0.0485 0.0578 0.0690
B.

Treceiver 0.0484 0.1178 0.1876 0.2592 0.3308 0.3989 0.4707

Tsender 0.0401 0.1025 0.1660 0.2288 0.2918 0.3551 0.4174
R.

Treceiver 0.0499 0.1213 0.1926 0.2639 0.3351 0.4062 0.4777

Tsender 0.0397 0.1017 0.1649 0.2272 0.2898 0.3529 0.4148 Sy
. Treceiver 0.0503 0.1234 0.1964 0.2689 0.3415 0.4148 0.4890

 Cluster 1 Cluster 2

tss(n) 4.10604E-07*n - 0.0031578 0,000339883*n - 0,0003657

tr(n) 4.7111E-07*n + 0.0002422 0,000363441*n + 0,0002894

(a) Standard Send

 Cluster 1 Cluster 2

tbs(n) 6.92293E-08*n - 0.0005128 0,0000179555*n - 0,0000086

tr(n) 4.69539E-07*n + 0.0008028 0,000381352*n + 0,0003167

(b) Buffered Send

Table 3. Analytical models for Send modes.

0
0,05

0,1
0,15

0,2
0,25

0,3
0,35

0,4
0,45

0,5

100 250 400 550 700 850 1000

Message length (thousands of integers)

Ti
m

e
(s

ec
on

ds
)

tsender
treceiver
tpre_sender
tpre_receiver

0
0,05

0,1
0,15

0,2
0,25

0,3
0,35

0,4
0,45

0,5

100 250 400 550 700 850 1000

Message length (thousands of integers)

Ti
m

e
(s

ec
on

ds
)

(b) Buffered Send

 (a) Standard Send

Figure 6

where: tss(n
tbs(n
tys(n
trs(n)
tr(n)

4.3. Performance pre

Let us test the analytic
previous section on
described in section
executed with new
obtained results to
presented in Table 4.
methodology produc
error of the predict
0.06% to 16%.

Size (thousands

Standard

Buffered

Synchronous

Ready

(d) Ready Send

0

0,1

0,2

0,3

0,4

0,5

0,6

100 250 400 550 700 850 1000

Message length (thousands of integers)

Ti
m

e
(s

ec
on

ds
)

0

0,1

0,2

0,3

0,4

0,5

0,6

100 250 400 550 700 850 1000

Message length (thousands of integers)

Te
m

po
 (s

eg
un

do
s)
(c) Synchronous Send

. Communication time variation related to message length - cluster 1.

) is the time spent to send a message with n elements with a standard send;
) is the time spent to send a message with n elements with a buffered send;
) is the time spent to send a message with n elements with a synchronous send;
 is the time spent to send a message with n elements with a ready send;

 is the time to receive a message with n elements in one of the send modes.

diction

al models described in the
 the program examples
4.2. The tests were re-

message lengths and the
each send modes are

 The results show that the
ed accurate models: the
ion studies change from

After these initial tests, we applied later
our methodology on a more complex example,
the benchmark program IS (Integer Sort) / NPB
(NASA Parallel Benchmarks). This benchmark
can be described as its main goal to sort a given
set of numbers in parallel. All experiments were
done using problem sizes A and B. More
information about this and other NAS benchmark
programs can be found at [1].

(a) Cluster 1.

 of integers) 40 60 1600 1700

Measure 0.0124 0.0224 0.6521 0.6927

Predict 0.0133 0.0215 0.6538 0.6949

error(%) 6.846 -4.0179 0.2684 0.3129

Measure 0.0027 0.0042 0.109 0.1162
Predict 0.0023 0.0036 0.1103 0.1172

error(%) -16.009 -14.286 1.1494 0.8741

Measure 0.0129 0.0224 0.6659 0.7074

Predict 0.0145 0.0215 0.6654 0.7072

error(%) 11.704 -4.0179 -0.0631 -0.0341

Measure 0.0131 0.0235 0.6693 0.711
Predict 0.0147 0.0231 0.6696 0.7116

error(%) 12.135 -1.7021 0.0496 0.0831

(b) Cluster 2.

Figure 7. Predicted versus measured results for IS/NPB benchmark program.

Figure 7 shows execution results of the

program IS. The curve named
Real_Exec_Time brings us results from
experimental executions of the benchmark
program executed in the cluster 1.

A second curve, named
Pred_Exec_Time, shows results obtained
from the models elaborated with our
methodology applied to IS parallel program.
After analyzing these results, the largest
difference among the data checked for same
points were less than 6%.

Figure 7. Predicted versus measured results for
IS/NPB benchmark program.

5. Conclusion
In this paper, a methodology for the

performance analysis and prediction of parallel
programs is applied. A new graph representation
for parallel programs was defined, mainly
representation issues regarding on
communication operations. Concurrently,
analytical models are constructed to represent the
behavior of the communication operations. The

accuracy of the methodology introduced was
confirmed by experimental tests realized on two
different clusters with the verification of the
predicted and measured results.

As a next step in this research, new studies
about performance analysis and prediction about
factors that may contribute to improve
communication overhead will be done. Also,
studies will be done on other interconnection
networks, such as Gigabit Ethernet, SCI, Myrinet
and ATM.

Heterogeneous cluster systems are more
popular today than ever, since it is easy to
connect a computer system into an existing
cluster computing system. In our research
investigation, once a graph representation of a
parallel application is mapped, load balancing
can be applied for task distribution, to minimize
the total execution time.

0
1
2
3
4
5
6
7
8

2 nodes 4 nodes 8 nodes 16 nodes

Number of Processing Nodes

E
xe

cu
tio

n
Ti

m
e

(s
) Real Exec Time

Pred Exec Time

There is a high demand for parallel program
analysis tools and, at the same time, a need for
tools to study and analyze those applications that
demand high performance. Nowadays, from a
cost/benefit point of view, PC-based cluster
systems are an excellent way to access
supercomputing.

Acknowledgements
Special thanks to SMC Networks / USA and

Accton / Taiwan, who contributed with a
generous equipment donation. Any opinions,
findings, and conclusions or recommendations
expressed in this material are those of the authors
and do not necessarily reflect the views of the
National Science Foundation/USA or National
Science Council/Taiwan.

Also, the authors wuld like to thank the

anonymous reviewers for suggestions that led to
improvements in the presentation of this paper.

References

1. D. H. Bailey, J. T. Barton, T. A. Lasinski and
H. D. Simon. The NAS parallel benchmarks.
Tech. Report NASA memorandum 103863,
NASA Ames Research Center, July 1993.

2. H.W. Cain, B.P. Miller and B.J.Wylie. “A
callgraph-based search strategy for automated
performance diagnosis”. In: Proceedings of
the Euro-Par 2000, Munich, Germany, 2000.

3. M. E. Crovella. Performance Prediction and
Tuning of Parallel Programs. Ph.D. thesis,
Department of Computer Science, University
of Rochester, 1994.

4. T. Fahringer. Automatic performance
prediction for parallel programs on massively
parallel computers. PhD thesis, Tehnischen
Universität Wien, Vienna, 1993.

5. A.J.C. van Gemund. Performance modeling
of parallel systems. PhD thesis, Delft
University of Technology, Delft University
Press, ISBN 90-407-1326-X, 1996.

6. A.J.C. van Gemund. Compile-time
performance prediction of parallel systems. In:
Computer Performance Evaluation: Modeling
Techniques and Tools (Tools´95), LNCS 977,
1995, pp. 299-313.

7. P.G. Harrison, N.M. Patel. Performance
modeling of communication networks and
computer architectures. Addison-Wesley,
1993.

8. G. Karypis, V. Kumar. Analysis of multilevel
graph partitioning. Technical report 98-037,
University of Minnesota, 1998.

9. J. Landrum, J. Hardwick and Q.F. Stout.
“Predicting algorithm performance”.
Computing Science and Statistics, 30, 1998,
pp. 309-314.

10. K.C. Li. Performance measurement and
prediction of parallel programs on network of
workstations. Ph.D. thesis, Department of
Computer Engineering and Digital Systems,
University of São Paulo, Brazil, 2001.

11. P. Puschner, A. Schedl. “Computing
Maximum Task Execution Times – a graph-

Based Approach”, Journal of Real-Time
Systems, vol. 13, no.1, 1997, pp. 67-91.

12. E. Strohmaier. Statistical performance
modeling: case study of the NPB 2.1 results.
Technical report UTK-CS-97-354, Dept. of
CS, University of Tennessee, Knoxville,
1997.

13. D.F.Vrsalovic, D.P. Siewiorek, Z.Z. Segall
and E.F. Gehringer. “Performance prediction
and calibration for a class of multiprocessors”.
IEEE Transactions on Computers, v. 37, n. 11,
1988, pp. 1353-1364.

14. A. Beguelin and J. Dongarra, Solving
computational Grand Challenges using a
network of heterogeneous supercomputers,
Proceedings of 5th SIAM Conference on
Parallel Processing, 1991.

15. G. Geist, A. Beguelin, J. Dongarra, W. Jiang,
R. Manchek and V. Sunderam, PVM: Parallel
Virtual Machine – a user’s guide and tutorial
for networked parallel computing. MIT press,
1994.

16. Argonne National Laboratory. MPICH: a
portable implementation of MPI, 2003.
http://www-unix.mcs.anl.gov/mpi/mpich.

17. W. Gropp, E. Lusk and A. Skjellum, Using
MPI: portable parallel programming with the
Message Passing Interface, MPI Press,
Cambridge, MA, 1994.

18. M. Snir and W. Gropp, MPI: The complete
reference, MIT press, 2nd edition, 1998.

19. M. Lauria and A. Chien, MPI-FM: high
performance MPI on workstation clusters,
Journal of Parallel and Distributed
Computing, 1997.

20. S. S. Lumetta, A. M. Mainwaring and D. E.
Culler, Multi-Protocol active messages on a
cluster of SMP’s, Proceedings of SC’97, San
Jose, 1997.

21. K.C. Li, J-L. Gaudiot and L.M. Sato,
Performance measurement and prediction of
parallel programs for NOW environments
using P3MP, in NPDPA´2002 IASTED
International Conference on Networks,
Parallel and Distributed Processing, and
Applications, Tsukuba, Japan, 2002.
(Published by IEEE Computer Society)

http://www-unix.mcs.anl.gov/mpi/mpich

	A Strategy for Point-to-point Node Communication Performance Prediction in Cluster Environments*
	
	Abstract

	1. Introduction
	2. Related work
	3. Methodology
	3.1. Program representation with DP*Graph
	3.2. Execution time calculus
	3.3. Communication operation modeling
	4. Experiments
	4.1. Experimental setup
	
	
	Cluster 1

	4.3. Performance prediction
	5. Conclusion
	Acknowledgements
	References

