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Abstract 

In this paper, we present and apply a 
methodology for parallel programming, along 
with MPI performance measurement and 
prediction in a class of distributed computing 
environments, named networks of workstations 
(NOW). Our approach is based on a two-level 
model where, at the top, a new parallel version 
of timing graph representation is used to explicit 
the parallel communication and code segments 
of a given parallel program. At the bottom level, 
analytical models are developed to represent 
execution behavior of parallel communications 
and code segments. Obtained execution time, 
together with problem size and number of nodes 
are input to the model, which allows us to 
predict the performance of similar cluster 
computing systems with a different number of 
nodes. We validate our analytical model by 
performing experiments over homogeneous 
cluster of workstations. Results show that our 
approach produces accurate predictions, within 
6% of actual results. 
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1. Introduction 
Advances in networking, high-end 

computers and middleware capabilities in recent 
years have resulted in new computing 
infrastructures called networks of workstations 
(NOW), or PC-based clusters. The potential of 

this computing infrastructure has attracted 
attention from the computing industry, since this 
technology depends solely on commodity 
components. Furthermore, they have been 
widely used to improve the performance of 
applications with intensive demands for 
computational power. In merely a few years, 
computer clusters have become one of the most 
convenient and cost-effective tools for solving 
many complex computational problems such as 
the Grand Challenges [14]. These problems are 
fundamental in science and engineering with 
broad scientific and economic impact, whose 
solution can definitely be advanced by high-
performance computing. The popularity of 
NOWs is due to their scalability, their ability to 
provide significant cost effective computing, to 
rely on commodity technology, and to efficiently 
support both single processor interactive 
processing and large batch parallel processing. 

The workstations are typically 
interconnected through a high-speed network, 
such as Gigabit Ethernet, SCI, or Myrinet, and 
they run commodity operating systems, such as 
Microsoft Windows or Linux. Many software 
tools have been developed to support distributed 
computing over a network of workstations, 
including popular tools such Parallel Virtual 
Machine (PVM) [15] software and Message 
Passing Interface (MPI) [16, 17, 18], and low-
level communication mechanisms, such as 
Active Messages [20] or Fast Messages [19]. 

In any performance prediction 
methodology or software tool, a high-level 
abstraction of an application plays an important 
role.  Based on the distributed programming 
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paradigm used in MPI, PVM and other 
programming systems, we defined a new class 
of timing graphs, which we call Distributed 
Processing Graph (DP*Graph), introduced in 
[10, 21]. DP*Graph is designed based upon 
previous works in [3, 4, 5, 6, 7, 9, 12, 13].  The 
objective of this class of timing graphs is to 
describe the parallel executions as well as the 
communication and synchronization 
relationships of the parallel computations. To 
separately quantify the effects of the program 
structure and those of the system, the 
communication and synchronization points are 
independently identified in the graph of the 
application. 

In this paper, we applied a methodology for 
performance measurement and prediction of 
parallel programs to study MPI point-to-point 
communication primitives. Our proposed 
methodology provides an integrated interface 
that binds performance and analysis back to the 
original source code, allowing users to estimate 
the execution time of the execution under 
excellent bounds. Also, this should afford a 
better understanding and investigation of 
parallel program structure, performance and 
behavior. 

The remainder of this paper is organized as 
follows. Some related work is briefly discussed 
in section 2, followed by the description of the 
methodology in section 3. In section 4, we 
present experiments and results of performance 
measurements and predictions. Finally, we give 
some remarks and conclusions in section 5. 

2. Related work 
A number of performance evaluation and 

prediction research projects are known. These 
include algorithms, techniques and projects, and 
can be recognized as iterative algorithms [13], 
analytical approaches [3, 4, 7], trace 
transformation, symbolic performance modeling 
[5, 6], or adaptive sampling statistics techniques 
[9, 12]. However, these techniques and 
algorithmic approaches are not well suited for 
general studies of interactions between PC-
based cluster systems performance and parallel 
programming with MPI. 

H. W. Cain, B. P. Miller and B. J. Wylie [2] 
have introduced strategies for performance 
diagnosis, G. Karypis and V. Kumar [8] 
introduced analysis techniques for multilevel 
graph partitioning, while P. Puschner and A. 
Schedl [11] introduced an analytical technique 
to analyze program execution times. Timing 
graphs are used to describe the sequence of 
execution of a program code. The computation 
of MAXTs (maximum execution time) is 
mapped to a graph problem, a generalization of 

maximum cost circulation calculus of a directed 
graph. 

3. Methodology 
The methodology introduced by Li in [10] 

eases performance analysis and prediction of 
parallel programs implemented with message 
passing interface, executed in a homogeneous 
network of workstations environment (Figure 1). 
The methodology basically entails the definition 
of an extension for T-Graphs (timing graphs), 
which we name DP*Graphs, a class of graphs 
from which we can represent not only sequential 
programs, but also parallel programs 
instrumented with communication and 
synchronization. Moreover, new strategies are 
defined for the performance measurement and 
prediction of parallel applications described by a 
parallel programming language, for this class of 
distributed computing system [10]. Analytical 
models are developed using experimental 
execution times, allowing us to accomplish 
performance analysis and to predict execution 
times. 
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Figure 1. Methodology scheme. 
 
Once we obtained the graph representation 

of the parallel program and its analytical model, 
it is possible to proceed with experimental 
evaluations and studies of the performance 
prediction, based on the experimental data 
obtained previously. 

3.1. Program representation with DP*Graph 

Using DP*Graph elements (Figure 2), we 
can represent correctly the synchronization and 
communication stages in a message passing 
program. Also, it’s possible to study the 
execution flow and analyze the structure of the 
parallel program. The representation of parallel 
programs with MPI (or any other message 
passing interface) can be worked out as show in 
Figure 3. 
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Figure 2. Graph elements for representation of 
parallel programs. 

3.2. Execution time calculus 

To obtain the execution time of a parallel 
application, it is needed to evaluate the 
execution time of all running processes in each 
processing node of a parallel computer system.  
The process of calculating the total execution 
time of a parallel program with MPI is 
introduced in Figure 3. 

The execution time of a parallel program is 
taken as the maximum execution time among all 
processing nodes, each of them obtained through 
the sum of the partial execution times ti. 

 
T exec = max ( ∑ t1

i,  ∑ t2
j,  ∑ t3

k, …,  ∑ tn
t ) 

where ∑ tn
t stands for: sum of all partial times tt 

of the n-th processing node. 
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Figure 3. Example of execution time calculation 
process. 

Figure 3 shows the graph representations of 
a parallel application; Figure 3(a) is the graph 
representation of a parallel application, in 
execution process view, while figure 3(b) shows 
in detail the execution of the parallel application, 
considering the execution of each process in 
each processing node. The total execution time 
for this parallel application can be given as: 

T exec = max ( t’1 + t’2 + t’3,  t’’1 + t’’2 + t’’3 ) 

3.3. Communication operation modeling 

The time spent in communication is an 
important factor to be considered in the study 
and analysis of parallel applications designed to 
run on clusters of workstations. Considering a 
message with n elements, this time can be 
decomposed into the following components [10]: 
• te(n) = time spent to transfer the message 

from memory to network buffer; 
• tt(n) = time spent to transfer the message by 

the network between two nodes; 
• tr(n) = time spent to receive the message 

from the network buffer. 

These components can be best viewed in 
the conceptual model presented in Figure 4. 

 
 
 

 
 
 

 
 
 
Figure 4. The communication time components 
involved in a message transfer. 
 

In order to construct a proper and 
consistent model, it is important to identify the 
factors that may influence the communication 
performance. Among these many factors that 
may influence the time spent in the 
communication, this work considers two of them 
represented by the following constants [10]: 
• kl, the network latency; 
• kb, its bandwidth. 

In order to construct a proper and 
consistent model, it is important to identify the 
factors that may influence the communication 
performance. Among these many factors that 
may influence the time spent in the 
communication, this work considers two of them 
represented by the following constants [10]: 
• kl, the network latency; 
• kb, its bandwidth. 

Thus, the components of communication 
time viewed above can be represented by these 
equations: 

te(n) = n * c1 
tt(n) = kb * n + kl 
tr(n) = n * c2  , where c1 and c2 are constants. 

From these considerations, the 
communication time of a message with n 
elements is given by: 

tc(n) = te(n) + tt(n) + tr(n) 
tc(n) = n*c1 + kb*n + kl + n*c2 
tc(n) = (c1+ kb+c2)*n + kl 
tc(n) = c*n + kl , where c is a constant 

4. Experiments 
The example program used to perform the 

tests was implemented in C with some 
communication primitives of the message-
passing interface. This program was designed to 
run with exactly two processes: a sender and a 
receiver. Each of these processes runs on one 
node of the clusters described in section 4.1. 

The first process runs a sequential code, 
sends a message to the second process, runs 
another segment of sequential code and then 
terminates. The second process, named receiver, 
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is similar to the first process, but it receives a 
message from the sender instead of sending a 
message. In this parallel MPI program, a 
message is an array of elements of a given type, 
and the type used in our experiments was 
MPI_INT. Figure 5 shows a graph 
representation of the program, according to the 
DP*Graph representation introduced in previous 
section. 

Node  0 Node  1

1 0

Segm ent of Code

M PI Com m unication
prim itives

 
Figure 5. Representation of the program used in 
this experiment. 

4.1. Experimental setup 

To validate our methodology, tests have 
been done on two clusters of workstations with 
the follow characteristics: 

 Cluster 1 Cluster 2 
# Nodes 16 8 

Processor Celeron 433 MHz Pentium4 1.6 GHz 
Memory 128 MB 384 MB 
Network Fast-Ethernet Fast-Ethernet 

OS Linux Red Hat 6.2 Linux Red Hat 7.2 
MPI 

version LAM 6.4 MPICH 1.2.1 

Table 1. Clusters used in experiments 

4.2. Experimental results 
This section presents the results of the tests 

performed on two homogeneous PC-based 
clusters described previously. The tests with the 
four send modes (standard, Buffered, Ready and 
Synchronous) were performed, considering the 
following message sizes (# of integers): 100,000, 
250,000, 400,000, 550,000, 700,000, 850,000 
and 1,000,000. The average times (in seconds) 
of these experiments are presented in Table 2, 
where tsender and treceiver represent the time spent 
respectively by the process sender and the 
process receiver. 

Primary analysis indicates that all processes 
present a linear increase in their communication 
time. For instance, considering the synchronous 
mode executed on cluster 1, the average time for 
the sender process presented an increase by 
approximately 0.062 as each new message 
length introduced. In fact, this behavior can be 
best observed in Figure 6. 

However both clusters described in section 
4.1 use the same network type (Fast-Ethernet), 
the time spent by all processes in each send 
mode on cluster 2 was smaller than on cluster 1 
(as we can see in Table 2). This fact may be 
explained by the greater influence of overhead 
on communication performance than network 
latency. Cluster 2 has better configuration than 
cluster 1, considering issues as processor and 
memory, so it presented smaller overhead and 
faster communication times. 

As noted in section 3, the communication 
time can be expressed by tc(n) = c*n + kl. 
From the average time of the tests presented in 
Table 2, some equations were developed to 
represent the behavior of the send modes 
analyzed.  An interpolation method was used to 
construct these equations, which form the 
analytical model to estimate the communication 
time (Table 3).  

Figure 6 shows the communication time to 
cluster 1 in relation to the message length, 
considering each send mode.  The lines tpre_sender 
and tpre_receiver represent an interpolation of the 
points which correspond to the sender and 
receiver communication times respectively.  

Despite the almost linear behavior 
presented by tpre_sender and tpre_receiver, the results 
point the performance of the send modes 
considering message lengths.  When other 
lengths, much larger or smaller than these values, 
are used, factors such as operating system 
overhead or bandwidth may highly influence the 
performance communication.  It may therefore 
lead to erratic communication times. 

The results from cluster 2 have presented a 
similar behavior, as we can see analyzing the 
values presented in Table 2. 

  



 
(a) Cluster 1 

 
(b) Cluster 2 

Table 2. Experimental results for cluster 1 and cluster 2 introduced. 

Thousands of 
integers 100 250 400 550 700 850 1000 

Tsender 0.0385 0.0990 0.1611 0.2223 0.2839 0.3463 0.4076 
St. 

Treceiver 0.0484 0.1178 0.1881 0.2588 0.3294 0.4007 0.4723 

Tsender 0.0067 0.0168 0.0266 0.0375 0.0485 0.0578 0.0690 
B. 

Treceiver 0.0484 0.1178 0.1876 0.2592 0.3308 0.3989 0.4707 

Tsender 0.0401 0.1025 0.1660 0.2288 0.2918 0.3551 0.4174 
R. 

Treceiver 0.0499 0.1213 0.1926 0.2639 0.3351 0.4062 0.4777 

Tsender 0.0397 0.1017 0.1649 0.2272 0.2898 0.3529 0.4148 Sy
. Treceiver 0.0503 0.1234 0.1964 0.2689 0.3415 0.4148 0.4890 

 Cluster 1 Cluster 2 

tss(n) 4.10604E-07*n - 0.0031578 0,000339883*n - 0,0003657 

tr(n) 4.7111E-07*n + 0.0002422 0,000363441*n + 0,0002894 

(a) Standard Send 

 Cluster 1 Cluster 2 

tbs(n) 6.92293E-08*n - 0.0005128 0,0000179555*n - 0,0000086 

tr(n) 4.69539E-07*n + 0.0008028 0,000381352*n + 0,0003167 

(b) Buffered Send 

Table 3. Analytical models for Send modes. 
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) is the time spent to send a message with n elements with a standard send; 
) is the time spent to send a message with n elements with a buffered send; 
) is the time spent to send a message with n elements with a synchronous send; 
 is the time spent to send a message with n elements with a ready send; 

 is the time to receive a message with n elements in one of the send modes. 
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After these initial tests, we applied later 
our methodology on a more complex example, 
the benchmark program IS (Integer Sort) / NPB 
(NASA Parallel Benchmarks). This benchmark 
can be described as its main goal to sort a given 
set of numbers in parallel. All experiments were 
done using problem sizes A and B. More 
information about this and other NAS benchmark 
programs can be found at [1]. 

(a) Cluster 1. 

 of integers) 40 60 1600 1700 

Measure 0.0124 0.0224 0.6521 0.6927

Predict 0.0133 0.0215 0.6538 0.6949

error(%) 6.846 -4.0179 0.2684 0.3129

Measure 0.0027 0.0042 0.109 0.1162
Predict 0.0023 0.0036 0.1103 0.1172

error(%) -16.009 -14.286 1.1494 0.8741

Measure 0.0129 0.0224 0.6659 0.7074

Predict 0.0145 0.0215 0.6654 0.7072

error(%) 11.704 -4.0179 -0.0631 -0.0341

Measure 0.0131 0.0235 0.6693 0.711
Predict 0.0147 0.0231 0.6696 0.7116

error(%) 12.135 -1.7021 0.0496 0.0831

  



 
(b) Cluster 2. 

Figure 7. Predicted versus measured results for IS/NPB benchmark program. 
 
Figure 7 shows execution results of the 

program IS. The curve named 
Real_Exec_Time brings us results from 
experimental executions of the benchmark 
program executed in the cluster 1. 

A second curve, named 
Pred_Exec_Time, shows results obtained 
from the models elaborated with our 
methodology applied to IS parallel program. 
After analyzing these results, the largest 
difference among the data checked for same 
points were less than 6%. 

Figure 7. Predicted versus measured results for 
IS/NPB benchmark program. 

5. Conclusion 
In this paper, a methodology for the 

performance analysis and prediction of parallel 
programs is applied. A new graph representation 
for parallel programs was defined, mainly 
representation issues regarding on 
communication operations. Concurrently, 
analytical models are constructed to represent the 
behavior of the communication operations. The 

accuracy of the methodology introduced was 
confirmed by experimental tests realized on two 
different clusters with the verification of the 
predicted and measured results. 

As a next step in this research, new studies 
about performance analysis and prediction about 
factors that may contribute to improve 
communication overhead will be done.  Also, 
studies will be done on other interconnection 
networks, such as Gigabit Ethernet, SCI, Myrinet 
and ATM.  

Heterogeneous cluster systems are more 
popular today than ever, since it is easy to 
connect a computer system into an existing 
cluster computing system.  In our research 
investigation, once a graph representation of a 
parallel application is mapped, load balancing 
can be applied for task distribution, to minimize 
the total execution time. 
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There is a high demand for parallel program 
analysis tools and, at the same time, a need for 
tools to study and analyze those applications that 
demand high performance.  Nowadays, from a 
cost/benefit point of view, PC-based cluster 
systems are an excellent way to access 
supercomputing. 
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