Efficient Construction of the Evolutionary
Tree from Quartets

Che-Hao Wu and Damon Shing-Min Liu
Department of Computer Science and Information Engineering
National Chung Cheng University, Chiayi, Taiwan 621
{wch91, damon}@Qcs.ccu.edu.tw

Abstract

Scientists often need to use the information
of the species to infer the evolutionary re-
lationship among them. The evolutionary
relationships are generally represented by a
labeled binary tree, called the evolutionary
tree (or phylogenetic tree). The problem of
constructing the evolutionary tree for a set
of species is often known as the phylogeny
problem. The difficulty of such problem
is that the number of possible evolutionary
trees is very large. There are many methods
for solving the phylogeny problem including
parsimony, maximum likelihood, divide-and-
conquer approach and distance matrix meth-
ods [1, 5,6, 7, 8]. As the number of species in-
creases, so does the number of possible trees,
making it difficult to exhaustively enumer-
ate all possible relationships. The quanti-
tative nature of species relationships there-
fore requires the development of more rigor-
ous methods for tree construction.

In this paper, we proposed a new effective

approach to construct the evolutionary tree.
Our approach consists of three steps. First,
we will partition the species and dispatch
them onto different computers in order to
quickly find the candidate quartets. Sec-
ond, each computer will examine its local
candidate quartets for compatibility. Third,
a procedure will be applied to merge and
evaluate compatible quartets found on each
computer to form even larger quartets, with
which we can construct evolutionary trees.

Keywords Bioinformatics, evolution-
ary tree, divide-and-conquer approach, split,
quartet.

1 Introduction

Bioinformatics is a newly emerging interdis-
ciplinary research area, which may be de-
fined as the interface between biological and
computational sciences. Bioinformatics is the
recording, annotation, storage, analysis, and

searching of nucleic acid sequence, protein
sequence and structural information. Due
to the advances of biotechnological methods
for gathering biological data, the amount of
available data grows much faster than the
growth in available computing power. There-
fore, the collected data makes a strong de-
mand for efficient algorithms and computa-
tional techniques so that bioinformatic activ-
ities are expanding rapidly in both academia
and industry.

In biological research, it is often necessary
to describe the relationship among species.
An understanding of evolutionary relation-
ships is at the heart of modern pharmaceu-
tical research for drug discovery, helping re-
searchers understand (and defend against)
rapidly mutating viruses such as HIV [7, 8],
is also the basis for the design of genetically
enhanced organisms. Evolutionary history
is typically represented by an evolutionary
tree. Figure 1 shows two kinds of evolution-
ary tree: rooted and unrooted evolutionary
tree [5, 6, 7, 8]. In an evolutionary tree, leaf
nodes (and only leaf nodes) denote species. A
tree of species with the root being the oldest
common ancestor and the children of a node
being the species show that evolved directly
from that node. A path from the root to a
species shows the evolutionary path of that
species.

The problem of constructing the evolution-
ary tree for a set of species is known as the
phylogeny problem. The difficulty of this
problem is that the number of possible evo-
lutionary trees is very large. For example,
when you are given n species to construct
an unrooted evolutionary tree, the number

AhIA

Figure 1: Rooted and unrooted evolutionary
tree.

of possible unrooted trees is: N=(2n-5)!! [6],
so when n gets large (>10), this number is
huge (see Table 1). Consequently, exhaustive
enumeration is not feasible.

The methods for solving the phylogeny
problem include parsimony, maximum likeli-
hood, and distance matrix methods [1, 5, 6, 7,
8]. Use of these traditional methods to con-
struct trees with large collections of species
is problematic for two reasons: very time
consuming and optimization methods do not
work well.

In addition to forementioned methods, we
can also use divide-and-conquer approaches
[8] to solve the phylogeny problem. The re-
construction of larger evolutionary trees from
smaller subtrees is currently receiving consid-
erable attention in the computational biology
community. There is a clear computational
advantage to analyze small subsets of species.
There are also biological and statistical ad-
vantages of considering only small subsets of
sequences at a time. The main difficulty is
how to effectively build large trees from such
smaller ones.

In this paper, we present an effective

Table 1: Number of unrooted trees constructed.

Numberofspecies | Numberofunrootedtrees
2 1
3 1
4 3
17 6,190,283,353,629,375
18 191,898,783,962,510,625
19 6,332,659,870,762,850,625
20 221,643,095,476,699,771,875

method for solving such problems.
2 Preliminaries

In this section, we describe some relevant no-
tations and terminologies.

2.1 Splits

Let T be an unrooted tree and let e be an edge
of T. If we remove e then we divide T into
two components. Let A be the leaves in one
component and B be the leaves in the other
component. Then A|B is a partition of L(T)
into two blocks, called a split or bipartition
of L(T). The split A|B is said to be the split
corresponding to the edge e. The set of those
splits corresponding to edges in T is called the
set of splits of T or just the splits in T and
is denoted § (T) [2, 3]. We say that a split
A|B isin T if A|B corresponds to an edge of
T.If [A| = 1 or |B| = 1 then A|B is trivial,
otherwise it is non-trivial. Generally, a tree

can be reconstructed in linear time from its
set of splits.

2.2 Quartet

For every three leaves a, b, ¢ there is only
one unrooted tree with the leaf set {a, b, ¢}
although there are three unrooted trees for
any set of four leaves. The three binary trees
with four leaves are called quartets [2, 3, 4].
A quartet is an unrooted binary tree on four
species. A quartet induces a unique biparti-
tion of the four species and can be denoted
by that bipartition.

The quartet with two pendant pairs {a, b}
and {c, d} is denoted ablcd. We say that a
quartet ablcd fits a tree T if the path from
a to b in T does not share any vertices with
the path from c to d in T. The quartet set of
a tree or just the set of quartets in a tree is
the set of quartets that fits T, and is denoted
q(T).

To illustrate, we give a simple example
(Figure 2).

abcdh | efg

W

{Odhg} g

ah | bcdefg

h {obcd}

ab |l cd ah |l dg

Figure 2: Splits and quartets of an unrooted
evolutionary tree.

We have selected two internal edges to get
two splits (ah|bedefg and abedhl|efg) and give
the induced quartets (ablcd and ah|dg).

3 Tree Construction
Algorithm

The problem is: suppose that we are given a
set of quartets, how can we build trees? If we
can find an unrooted tree T that corresponds
to quartet sets Q, we call quartet sets QQ are
compatible or T extends Q. To date, there
have been no polynomial-time algorithms for
building a tree from quartets, thus the set of
quartets would have to be small.

Here we introduce an algorithm to deter-
mine compatibility of any small- to medium-
sized quartet sets. This algorithm is called
ConstructTree algorithm [2]. The inputs are
leaves (i.e., species) L={a , ..., a, } and some
quartet sets Q.

We first label the leaves L={a; , ... , a,}
in order and construct one star tree with

leaves L={ay, ay, az}. The resulting tree
is named 75. Parameters to the procedure
ConstructTree are k, T, and the quartet set

Q (shown as below).

Procedure ConstructTree (k, T} ,Q)

1. FOR all edges e in T, DO

2. Construct Ty, from the tree T} by su-
bdividing e with a new internal vertex
and appending aj; to this vertex.

3. IF Ty extends Q THEN

4. IF k +1 =n THEN output this tree
5. ELSE ConstructTree(k + 1, T;41,Q)
6. END(IF)

7. END(FOR)

For example, we are given leaves L={a,
b, ¢, d, e}and quartet sets = {ablcd,
ablce}. First we construct one star tree
with leaves a, b, ¢ as shown in Figure 3(a).
Then we insert a new leave d. We can get
three possible results shown as in Figure
3(b)(c)(d). However, only tree in Figure
3(d) extends Q. Next we insert leave e and
obtain five possible results as shown in
Figure 3(e)(f)(g)(h)(i). Eventually there are
three trees (Figure 3(g)(h)(i)) extend Q after
inserting all leaves.

4 Approach

Obviously, splits provide more useful infor-
mation compared to quartets. For an un-
rooted tree, if we are given n species, there are
(2n-3) edges [6]. It also means that if there
are n species we can find (2n-3) splits. How-
ever, in it only (n-3) splits are non-trivial.

a C

@

T

Sov 4y dA

) © G))

%\

Q\ e b b b
g@ f;% J@%% /%x
a e()d C a <1c>c d (g) d a c(me d a

;

@

a € ¢ C (S

(S

Figure 3: The example of ConstructTree algorithm.

Therefore, if we can find those non-trivial
splits, we can use the information to con-
struct the unrooted tree. Nevertheless, it is
not easy and straightforward to find those
non-trivial splits.

On the contrary, it is much easier to com-
pute quartets than to compute splits. Given
any four species, there are three possible
quartets. If there are n species, we can com-
pute (7) combinations of any four species.
Each combination has three possible quar-
tets. So, there are totally 3(1) combinations
of candidate quartets. If n >= 5, for exam-
ple, it is impossible to emulate all combina-
tions of quartets in a reasonable time frame
(see Table 2).

In fact, there exists more than one quar-
tet combination to reconstruct evolutionary
trees, however, it is impossible to emulate all
of them. Our approach is to find the first
quartets that are compatible, and use those
quartets to reconstruct the tree. The pro-
posed approach is described as follows.

In the first step, we will exhaustively enu-
merate and partition species into clusters.
Each cluster has a multiple of four species.
However, clusters may not be disjoint. We
will then dispatch clusters onto different com-
puters for processing. The dispatching strat-
egy will take into account each machines com-
puting capability. Machine that has higher
computing power will process larger clus-
ters, while those are less capable will process
smaller clusters. If we have n species and
m computers, we will dispatch fi, fo, ...
fm clusters to each computer according to its
computing power, where fi, fo, ... , f, may
not be equal and | fi|+|fa|+...4+|f|=(1). In

order to determine the quartet we will add
some rules.Each computer will calculate its
own possible quartet sets, and all candidate
quartet sets are computed in parallel.

However, not all quartet sets are compat-
ible. Therefore, in the second step we will
evaluate their compatibility by using Con-
structTree algorithm. The iteration starts
with a compatible quartet set, every time we
add a new quartet and re-evaluate the com-
patibility of the newly formed quartet set
to decide whether we should reject the last
added quartet or keep adding another one to
form a larger quartet set. This iteration may
be parallelized to for best performance. If
there exists a tree that extends all quartets,
it means that all quartets must be compati-
ble. In other words, if there exists no quartet
set that is compatible, there is no solution for
the tree. If this is the case, we should termi-
nate at the second step. Otherwise, we may
continue.

In the last step, we will try to merge
compatible quartets found on each machine
to form even larger quartet sets. The proce-
dure is realized by exhaustively enumerating
all possible unions of compatible quartets
between any two machines. Note that the
resulting evolutionary tree may not be
unique, thus we have the choice to either
stop on finding the first good answer, or keep
on searching for all valid tree topologies.
In either case, the technique of parallelism
can be applied to achieve better efficiency.
Furthermore, step 2 and step3 may also be
integrated to exploit concurrent computing.

Table 2: Number of combinations of quartets.

Numberofspecies | Numbercombinationso fallquartets
4 3
5 243
6 14,348,907
7

50,031,545,098,999,707

5 Conclusion and Future
Work

In this paper, we present an effective method
to create and determine quartets which are
compatible, and then use these quartets
to construct evolutionary trees. Although
we can find a correct evolutionary tree to
describe the relationship among the species,
it may not be the optimal solution. There is
still room for improvement of our method.
In the future, we will explore heuristics in
order to find an optimal tree topology.

References

[1] H. O. Andrzej Lingas and A. Ostlin. Effi-
cient merging and construction of evolu-
tionary trees. In Journal of Algorithms,
volume 41, pages 41-51, 2001.

D. Bryant. Building trees, hunting
for trees, and comparing trees. In
Ph.D.Thesis. University of Canterbury,
NZ., 1997.

D. Bryant and M. Steel. Constructing
optimal trees from quartets. In Journal

of Algorithms, volume 38, pages 237259,
2001.

K. S. John, T. Warnow, B. M. Moret, and
L. Vawter. Performance study of phy-
logenetic methods: (unweighted) quartet
methods and neighbor-joining. In ACM-

SIAM Symposium on Discrete Algorithms
(SODA), 2001.

J. A. Jones and K. A. Yelick. Parallelizing
the phylogeny problem. 1995.

R. C. T. Lee. Computational biology.
In Department of Computer Science and
Information Engineering, National Chi-
Nan University, 2001.

B. M. E. Moret, D. A. Bader, and
T. Warnow. High performance algorithm
engineering for computational phyloge-
netics. In Lecture Notes in Computer Sci-
ence, volume 2074, page 1012, 2001.

L. A. Salter. Algorithms for phylogenetic
tree reconstruction. In Proceeding of the
International Conference on Mathematics
and Engineering Techniques in Medicine
and Biological Sciences, volume 2, pages
459-465, 2000.

