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Categorical Variables in DEA 

Finn R. Førsund* 
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Abstract 
The standard DEA model can be applied to a mix of categorical and continuous variables 

by entering all combinations of them as different types of inputs and/or outputs. Theoretical 
implications for the nature of feasible peers are investigated. 
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1. Introduction 

In efficiency analysis of production units (DMUs) the input and output vari-
ables are usually assumed to be continuous. However, in practical applications some 
variables may be categorical. A categorical variable is a variable that takes on only a 
finite number of values. It is not unusual in Data Envelopment Analysis (DEA) ap-
plications, especially for DMUs where outputs are not sold on markets, that output 
variables are categorical, e.g., court cases completed are categorised into civil cases, 
assault, robbery, economic crimes, etc. Quality aspects will often be of the categori-
cal kind. But inputs may also be categorical, as is labour with different types of 
education. 

It should be noted that a general assumption underlying the rationale for com-
paring different production units by calculating efficiency scores is that the inputs 
and outputs are indeed comparable, i.e., that they are homogeneous across DMUs. 
Labour input measured in hours must be comparable across the units. It would not 
be so meaningful an analysis if one unit has highly educated employees while an-
other has unskilled ones if we believe that marginal productivity of these two types 
of labour are significantly different. One way to ensure comparability is to form 
categorical variables. 

DEA models with categorical variables are treated for the first time (to my 
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knowledge) in Banker and Morey (1986), and the approach is improved by Naka-
mura (1988) and also followed up in Rousseau and Semple (1993). Charnes et al. 
(1994) provide a further development, which is used in Puig-Junoy (1998) and also 
presented in Cooper, Seiford, and Tone (2000). However, the programming models 
developed in the first two papers are of the mixed integer type. Moreover, all papers 
mentioned are concerned only with ordered categorical variables (e.g., of the types 
“low,” “medium,” and “high” quality). Our purpose is to show how to adapt a stan-
dard LP programme formulation of the DEA model, as done in Charnes et al. (1994), 
but not restricted to hierarchically ordered variables only. A crucial assumption 
needed is that there is at least one continuous input and at least one continuous out-
put variable. 

There may be important applications of DEA analyses where imposing a hier-
archical structure would not be natural. In an efficiency analysis of the municipal 
nursing and home care sector, Erlandsen and Førsund (2002) use a limited set of age 
groups as categorical output variables and the number of clients within each group 
as the continuous variable, as well as whether nursing homes have single rooms or 
not. In a study of the efficiency of auction houses in selling Picasso paintings, Før-
sund and Zanola (2001) use Picasso paintings from different periods in the painter’s 
life as both categorical inputs and outputs. Such variables have no natural ordering. 

An important output of a DEA efficiency analysis is the identification of peers 
for inefficient units. Due to the general feature of models with categorical variables 
that the DMUs most often do not have observations of all variables, it is of interest 
to study the nature of peers with respect to composition of variables. The situation 
with hierarchically ordered categorical variables comes out as a special case. The 
DEA models for calculating efficiency scores are set out in Section 2, and our gen-
eral way of treating categorical variables is developed in Section 3. An illustration of 
the different approaches is provided in Section 4, and some concluding remarks are 
offered in Section 5. 

2. The DEA Efficiency Model 

The point of departure for the calculation of efficiency measures is the piece-
wise linear frontier technology expressed by the following production possibility set: 
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where x  is the input vector and y  is the output vector, and in the last expression 
we have introduced J  observations and indexed output by m and input by n . The 
variables ) ..., ,1  ( Jjj =λ  are non-negative weights (intensity variables) defining 
frontier points. Constant returns to scale is assumed for simplicity. The nature of 
scale does not matter for the question of model specification type with categorical 
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variables. Basic standard properties are that the production set is convex and in-
cludes all points and that envelopment is done with minimum extrapolation, i.e., the 
fit is as “tight” as possible. 

The input- and output-oriented Farrell radial efficiency measures, respec-
tively iE1  and iE2  for each DMU i  (henceforth DMUi) in the set of J  obser-
vations, are calculated by solving the following linear programmes set up according 
to the definition of the measures (with the necessary change that in the out-
put-oriented case we solve for the inverse measure ii E2/1=φ  in order to maintain 
a linear programming problem): 
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Each type of input is scaled down with the same factor, iθ , and each type of output 
is scaled up with the same factor, iφ , until the frontier is reached according to the 
definition of the Farrell efficiency measures. DMUs with positive iλ  (for conven-
ience the same symbol is used in the input- and output- oriented cases) are termed 
peers. These DMUs have to be frontier units, and the linear combinations define the 
frontier point that is the point of comparison with the DMUi under investigation. In 
the case of zero slacks on the input (output) constraints, the radial contraction (ex-
pansion) of the DMUi observation coincides with the weighted peer values as the 
comparison point. 

 

 



International Journal of Business and Economics 36

3. Features of the DEA Solution with Categorical Variables  

3.1 Handling of Categorical Variables 

In the DEA model a general way of handling categorical variables may be to 
interpret the different attributes or states as different types of inputs and/or outputs, 
recognising the need for homogenous variables across DMUs. Let x

kjz  be a cate-
gorical characteristic ) ..., ,1( Kkk =  of DMUj )  1( J...,,j =  regarding types of in-
puts, y

pjz  be a categorical characteristic )  1( P...,,pp =  of DMUj regarding types 
of outputs, and let njx  be a continuous input variables of type ) ..., ,1( Nnn =  and 

mjy  be a continuous output variables of type ) ..., ,1( Mmm = . We then have 
NK ×  different types of inputs (each continuous input variable is matched with 

each of the K  types of inputs) and MP ×  different types of outputs (each con-
tinuous output variable is matched with each of the P  types of categorical outputs). 
Thus, the situation with a mix of categorical and continuous variables is converted to 
a standard DEA LP model. Note that we may run into a dimensionality problem as 
to the number of observations and number of variables. One way out is to use some 
categorical variables as variables in a second stage of correlating efficiency scores 
with explanatory variables (e.g., type of ownership). 

Each DMU may typically employ fewer characteristics than the total number 
existing, resulting in a value of zero for the unobserved types of categorical inputs. 
An extreme case would be that each DMU employs only one type of input (e.g., 
only labour of one category of education), and then there may be a number of com-
binations of having and not having certain variables. This situation imposes some 
restrictions on what kind of peers that will emerge. We now go on to explore these 
restrictions. 

3.2 Input Orientation 

Let us look at the input restrictions in the efficiency score programme (2) above 
and reinterpret the number of inputs, N , as including all categorical variables con-
verted to homogeneous types. We assume that each type of input is employed by at 
least one unit. The production unit under investigation is DMUi. The restriction sys-
tem for inputs is: 
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Both jλ  and njx  are non-negative variables. Fulfillment of the constraint then 
requires all the products of jλ  and njx  to be zero. If njx  is positive for a peer 
j  (i.e., we are considering an input type that the unit under investigation does not 

have), then the corresponding jλ  must be zero. This implies that the peers cannot 
have positive njx . The peers cannot employ types of inputs that the unit under in-
vestigation is not using [see also Banker and Morey (1986, p.1618)]. 

For the case that DMUi has input of type n , but that some of the peer DMUs 
do not have this type, we may denote the set of DMUs with this input n  as nJ ′  
and the set of DMUs without it as nJ ′′ . The constraint then reads: 
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The ) ..., ,1( Nnxnj =  are positive by assumption. Is it possible that none of the 
peers employ a factor of type n ? Equation (6) will hold with inequality even if all 
the peer variables of input type n should be zero. The optimal value of the efficiency 
score must then be determined from other binding input constraints. If the constraint 
(6) is not binding, it cannot influence the solution for the weights and the efficiency 
score. The weight is the same for all inputs and outputs of a peer unit, j . Notice 
that no unit can have all inputs zero and still have positive outputs by assumption on 
the production set (1). A peer must then at least have one type of input in common 
with the unit under investigation, since by Equation (5) we have that a peer cannot 
employ input types the unit under investigation does not use. 

The efficiency score may be calculated from a binding constraint of type (6): 
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where N ′  is the set of inputs with a binding constraint in (6). We need at least one 
binding constraint to calculate an efficiency score. For the case of the unit under 
investigation being inefficient we also need at least one other constraint in (2) to 
hold with equality in order to determine at least one positive weight, jλ . 

Let us similarly reinterpret the number of outputs, M , to include all categori-
cal variables converted to homogeneous types. The constraint for an output type, m , 
not produced by the unit under investigation reads: 
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This constraint does not exclude peers from having positive amounts of an output m 
that the unit under investigation does not produce. If that should be the case, then 
constraint (8) is not binding and thus cannot influence the solution for the weights 
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and the efficiency score. 
For the case that DMUi has output of type m , but that some of the potential 

peer DMUs do not have this type, we may now denote the set of DMUs with this 
output m  as mJ ′  and the set of DMUs without it as mJ ′′ . The constraint then 
reads: 
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A peer may according to (9) have fewer types of outputs than the unit under investi-
gation. Since there is only one weight for each unit we must have at least two con-
straints of type (6) or (9) to hold with equality to determine a weight and the effi-
ciency score. A peer unit must be involved in at least one binding constraint of type 
(6) or (9) for a positive weight to be determined. In general we have as the maximal 
number of non-negative solutions for the efficiency score and the weights the num-
ber of constraints that are binding. We cannot have a feasible solution with just the 
efficiency score positive and all weights zero. The extreme case is a unit becoming a 
self-evaluator where only the weight for the self-evaluator becomes positive, and 
equal to one, and the same value for the efficiency score. All the NM ×  constraints 
in (2) are then binding, but only two endogenous variables have positive solutions.   

Is it possible that no peers have an output of type m ? If that should be the case, 
we must have: 

Mmymi  ..., ,1 ,0 =≥− . (10) 

But this is not possible by the assumption of variables being non-negative, so we can 
conclude that for outputs it is necessary that at least one peer is producing the same 
output as the unit under investigation for each of its outputs. 

3.3 Output Orientation 

In the case of outputs as categorical variables equation (5) is the same. The 
same conclusion as in the case of input orientation can be drawn: A peer cannot em-
ploy more inputs than the unit under investigation. The constraint (6) for inputs now 
reads: 
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where the set nJ ′  contains peers employing inputs of type n  and the set nJ ′′  
does not. The same conclusions are valid: Peers may have fewer types of inputs than 
the unit under investigation, but must have at least one type of input in common. 
One or more types of inputs may be completely missing and thereby reduce the di-
mensionality of the frontier. 
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For the outputs in the case of peers having outputs of a type not being produced 
by the unit under investigation, we have the same situation as shown in equation (8), 
implying that this is possible. But since the equations of this type are inequalities 
they will not influence the solutions for efficiency score and weights. 

In the case of dividing the set into DMUs producing the output of type m  and 
those which do not, we have: 
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Again we have, as from (10), that the set mJ ′  cannot be empty. There must be at 
least one peer producing each of the outputs of DMUi under investigation.  

The inverse of the efficiency score is in the optimal solution calculated from 
binding constraints: 
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where M ′  is the set of outputs for which (13) holds with equality. It is only outputs 
of the type employed by the unit under investigation that will count in the solution 
for the efficiency measure. If a peer should have more outputs, these will not influ-
ence the choice of this unit as a peer (i.e., the jλ -values). The frontier will have the 
same dimensionality as to outputs as the types produced by the unit under investiga-
tion. A peer with fewer outputs than the unit under investigation can compensate, in 
the expression (13) for an output not produced, for one element less in the sum of 
the numerator of (13) by higher values for the outputs produced than the other peer 
DMUs have. 

Proposition: Consider a DEA problem with categorical variables in the form of in-
puts or outputs and at least one input and one output variable being continuous. Fur-
ther, the variables are transformed into an exhaustive set of unique types of inputs 
and outputs, and not all DMUs have a full set of inputs and outputs. Then calculat-
ing either an input- or output-oriented Farrell efficiency score for a unit implies that:  
(i) the DMU under investigation will only be compared with peer DMUs having 

the same or fewer types of inputs. 
(ii) a peer will have at least one type of input in common with the unit under  

investigation. 
(iii) the DMU under investigation may be compared with peer DMUs having both 

more or fewer types of outputs, but the peer unit must have at least one type of 
output in common with the DMU under investigation. 

(iv) in the set of peers, all types of outputs of the DMU under investigation must be 
represented. 
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Remarks: The results for the nature of peers is independent of whether the effi-
ciency measure is input- or output-oriented. There is an asymmetry in the results for 
input and outputs, cf., points (i) and (iii). This is due to the fact that the variables are 
constrained to be non-negative, and the inequality constraints for outputs and inputs 
go in opposite directions, see (2) and (3) or equations (5) and (8). More inputs re-
duces efficiency while more outputs improve efficiency. There may be a “bias” 
against peers having more outputs than the DMU under investigation, because such 
occurrences do not influence the optimal solution while extra outputs in general 
draw resources. To overcome this drawback such peers must be “extra” productive. 
In the same manner, if a peer has fewer outputs than the DMU under investigation, 
then it has to be especially productive in providing the more limited range of outputs. 
This asymmetry may be of help for the classification of variables into inputs and 
outputs. 

4. Illustration of the Approaches 

Controllable categorical variables in the DEA literature are only treated as hi-
erarchically ordered, e.g., classified into categories as “poor,” “average,” and 
“good,” or similar orderings, with respect to attributes like quality. The peer DMUs 
are restricted to be of same or higher service orientation producers. There is a dis-
cussion whether peers should belong to only one type, as advocated by Kamakura 
(1988), or a mix of types, as in Banker and Morey (1986) and reformulated by 
Rosseau and Semple (1993). Charnes et al. (1994) solved the problem of mixing 
peers from different quality groups by simply doing away with different quality 
groups in a special way. Remember that there is at least one continuous variable as-
sociated with each input or output type. For each DMU being investigated the data 
set is split into two groups: DMUs belonging to higher quality groups, or lower and 
their own category regarding inputs, and DMUs belonging to the same or higher 
output quality groups, or lower groups concerning outputs. To achieve a comparison 
with DMUs in the same or more disadvantaged categories, the standard DEA LP 
model is then only run for DMUs belonging to the set of DMUs in the lower or their 
own quality category regarding inputs, and for DMUs belonging to the same or 
higher output quality groups concerning outputs. All feasible sets are covered. 

The same approach is adapted in Cooper, Seiford, and Tone (2000) in the case 
of categorical outputs. The Charnes et al. procedure will then give the same structure 
of results as in Rosseau and Semple, but with the standard LP formulation and no 
additional constraints. 

To illustrate the differences between our general formulation and the 
hierarchical approaches in Kamakura (1988) and in Charnes et al. (1994), the five 
data points used in Kamakura used for constructing frontiers are set out in Figure 1 
with the quality indications H, M, and L. As a variable returns to scale is used in the 
literature, we will add to problem (3) the constraint that the weights, jλ , add to one. 

According to the Charnes et al. procedure, the unit with low quality may be 
compared with DMUs from all the three quality groups; there are no restrictions on 
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the choice of peers or how reference points are related to the peers. The frontier is 
the connection line between A and B with the vertical extension through E and the 
horizontal extension from B. Both the medium-quality DMUs and the low-quality 
DMU become inefficient. For the case of medium-quality DMUs, the peers can ei-
ther have medium- or high- quality, implying that the reference point on the frontier 
can be a mix of medium- and high-quality DMUs. For high-quality DMUs, this 
group has to be run separately. The frontiers for all three runs remain the same. Thus 
the peers for all three possible groups remain units A and B. 

The Kamakura procedure happens to yield the same frontier and the same effi-
ciency scores for the data introduced by Kamakura. But now it is only the 
high-quality DMUs A and B that can serve as peers in principle, because of the re-
quirements that they have to be from the same or higher quality group and that they 
can only belong to one group. 

Our general model yields three different frontiers and all DMUs efficient, i.e., 
all units are peers within their quality groups. Since the DMUs have only one type of 
output, each DMU is only compared with DMUs having the same type of outputs. 
The data set disaggregates to three sets without any interaction between them. The 
inefficient DMUs E and D in the medium-quality group and C in the low-quality 
group become technically efficient (but not scale efficient). Figure 1 illustrates the 
three frontiers for the groups, the solid line between DMUs A and B, and the vertical 
and horizontal extensions from A and B, constitute the frontier for the high-quality 
group, the broken line between DMUs E and D, including the vertical and horizontal 
extensions from the points E and D, constitute the frontier for the medium-quality 
group, and the vertical and horizontal broken lines out from point C form the fron-
tier for the low-quality group of one unit. The difference between the hierarchical 
approaches and our approach is that the former allows peers to be from different 
quality groups, while the latter demands at least one common type.  

Fig. 1. The frontiers  

In general, in the case of DMUs having outputs only of one service category, as 
in Banker and Morey (1986) and Kamakura (1988), each unit will be compared with 
DMUs of only the same category according to point (ii) or (iii) of the proposition 
above. But this is the same as running separate DEA problems for each group as il-
lustrated above. Similarly, in the case of all DMUs employing only a single type of 
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input, running separate DEA models for each group gives identical results. (One 
does not have to separate the groups before running a standard DEA programme, our 
solution will automatically have this separation property.) In Puig-Junoy (1998) it is 
stated that with respect to the hierarchical categorical input, probability of survival 
at the time of hospitalisation, one is only interested in comparing DMUs that employ 
the same types of inputs (p. 268); the model used is Charnes et al. (1994). Our stan-
dard model, however, accommodates this because the categorical input can only be 
in one of three states for each DMU. Separate DEA models may also have been run. 

5. Conclusions 

When dealing with categorical variables in DEA models, a hierarchical struc-
ture has so far been imposed in the literature. Our approach is designed for situations 
when it is not natural to order categorical variables hierarchically. A standard LP 
format of the DEA model can be used, if both categorical and continuous variables 
are present, by writing out all the combinations of the categorical variables as dif-
ferent types of inputs and/or outputs. Most DMUs will then not have full sets of 
positive variables. Using a standard LP DEA model of type (2) or (3) will not in 
general give the same results (with respect to efficiency scores and peers) as using 
the mixed integer LP model of Banker and Morey (1986), the reformulation in Ka-
makura (1988), or the special aggregation introduced in Charnes et al. (1994). 

We have formulated a more general setting with no ordering of categories and 
investigated the nature of the selected peers in both the input and output dimensions. 
A general feature of the characterisation of peers is that there is a basic asymmetry 
between inputs and outputs due to the inequality constraints going in opposite direc-
tions and all variables restricted to being non-negative. A peer may have at most the 
same types of inputs, but may have less than the DMU under investigation, but may 
have either fewer or more outputs. There may thus be peers with a different mix of 
characteristics than the DMU under investigation, but a peer must always have at 
least one input, and at least one output, in common. The results in Førsund and 
Zanola (2001) illustrate the empirical importance of mix of characteristics and link-
age effects through types in common with peers and the DMU under investigation. 

The special case of Charnes et al. (1994) can easily be incorporated. If each 
DMU has only one of the possible types of inputs or outputs, and a comparison only 
with the same or higher-ranked types is wanted, formation of new subsets of DMUs, 
as required in Charnes et al. (1994), is not necessary, because employing the stan-
dard model with the full set of types of variables will yield separate group results for 
DMUs with the same type of variable by definition. 
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