
International Journal of Business and Economics, 2004, Vol. 3, No. 2, 123-138 

Modelling the Japanese Exchange Rate in Terms of I(d) Statistical 
Models with Parametric and Semiparametric Techniques 

Luis A. Gil-Alana* 
Department of Economics, University of Navarre, Spain 

Abstract 
In this article we model monthly data on the Japanese nominal exchange rate in relation 

to the US dollar by means of fractionally integrated statistical models. For this purpose, we 
use both parametric and semiparametric techniques proposed by P.M. Robinson in a number 
of papers. The results indicate that the order of integration of the series is higher than 1 and 
thus the standard approach of taking first differences to get series which are integrated of 
order 0 (which is required, for example, in the context of cointegration) may lead to spurious 
results, the series still having a component of long memory behaviour. 
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1. Introduction 

Modelling macroeconomic time series is a matter that still remains 
controversial. Initially, deterministic approaches based on linear (or quadratic) 
functions of time were proposed but they were shown to be inappropriate in many 
cases, especially after the seminal paper of Nelson and Plosser (1982) which showed, 
following the work and ideas of Box and Jenkins (1970), that many US 
macroeconomic series could be specified in terms of stochastic trends or unit root 
models. They showed that by taking first (or sometimes second) differences of the 
original series, the resulting series was integrated of order 0, defined for the 
purposes of the present paper as a covariance stationary process with spectral 
density function that is positive and finite at the zero frequency. Note that the 
differenced series may still be “weakly autocorrelated” (e.g., autoregressive), with 
the correlation structure describing its short run dynamics. Following this approach, 
a large variety of test statistics were proposed during the 80s and 90s for testing unit 
roots (e.g., Dickey and Fuller, 1979; Phillips and Perron, 1988; Kwiatkowski et al., 
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1992), and they have been widely applied to many economic and financial time 
series. 

In the last few years, however, a growing literature has emerged trying to 
model the stochastic behaviour of the series in terms of fractionally integrated 
(denoted I(d)) processes. This type of process was initially proposed by Granger and 
Joyeux (1980), Granger (1980, 1981), and Hosking (1981), though earlier work by 
Adenstedt (1974) and Taqqu (1975) show an awareness of its representation; it was 
theoretically justified in terms of aggregation of ARMA series by Granger (1980) 
and Robinson (1978) and more recently in terms of the duration of shocks by Parke 
(1999). Also, Cioczek-Georges and Mandelbrot (1995), Taqqu et al. (1997), 
Chambers (1998), and Lippi and Zaffaroni (1999) also used aggregation to motivate 
long memory processes, while Diebold and Inoue (2001) reported another source of 
long memory based on structural change/regime-switching. 

Let us consider, for example, the following process: 

...,,2,1,)1( ==− tuxL tt
d  (1) 

for any real value d. Clearly, if d = 0 in (1), xt = ut and a “weakly autocorrelated” xt 
is allowed for. If d > 0, xt is said to have long memory or to be “strongly dependent” 
or “strongly autocorrelated”, so-named because of the strong association between 
observations widely separated in time. This may also be seen by expressing the 
polynomial in (1) in terms of its binomial expansion; that is, for all real d, 
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Empirical applications of fractional models like (1) can be found in Diebold and 
Rudebusch (1989), Baillie and Bollerslev (1994), and Gil-Alana and Robinson 
(1997), and recent surveys of long memory processes are in Beran (1994) and 
Baillie (1996). 

The estimation and testing of the fractional differencing parameter d plays a 
crucial role from both statistical and economic viewpoints. In particular, if d ∈ (0, 
0.5), xt is covariance stationary and mean-reverting, i.e., with the effect of shocks 
dying away in the long run. If d ∈ [0.5, 1), xt is nonstationary but mean-reverting, 
while d ≥ 1 implies xt is neither stationarity nor mean-reverting. 

In this paper, we analyse monthly observations of the Japanese exchange rate 
by means of fractionally integrated techniques. Traditionally, it has been assumed 
that the exchange rates have a unit root implying that shocks have permanent effects 
on the series. (e.g., Taylor, 1995; Breuer, 1996; Rogoff, 1996), though other authors 
(e.g., Abuaf and Jorion, 1990; Glen, 1992; Lothian and Taylor, 1996) argued in the 
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opposite direction, suggesting mean-reverting behaviour. Most of these articles 
concentrate on real rather than nominal exchange rates, though Cheung (1993) 
reported evidence of long memory in the nominal exchange rates. Other articles, 
suggesting that the exchange rates are mean-reverting and, in particular, that they 
can be specified in terms of I(d) statistical models include Diebold et al. (1991), 
Cheung and Lai (1993), and more recently Gil-Alana (2000).  

A motivation for this work is as follows: Given interest and inflation rates in 
two countries and a constant risk premium, it could be argued that the nominal 
exchange rate should follow a pure random walk on the grounds that the market 
would immediately react to incorporate any expected future appreciation of the 
exchange rate. This would imply that future returns are unforecastable, i.e., a 
martingale difference sequence. However, and more generally, the exchange rate 
return (Et∆yt) can be written as the sum of the interest rate differential (or forward 
premium it – it

*) and a risk premium (rpt): Et∆yt = it – it
* + rpt (see, e.g., Engel, 1996). 

Baillie and Bollerslev (1994) reported evidence of fractional integration in it – it
*, 

and, in theory, this raises two possibilities: long memory in rpt or long memory in 
∆yt. On the other hand, it might also be reasonable to look for evidence of mean 
reversion in the nominal exchange rates if it was thought that governments or central 
banks had an informal policy of smoothing overly large exchange rate movements, 
as possibly suggested by the 1985 Plaza Accords.  

The structure of the paper is as follows. Section 2 briefly presents several ways 
of testing and estimating I(d) statistical models using both parametric and 
semiparametric techniques. These methods are applied in Section 3 to the Japanese 
exchange rate, and Section 4 contains concluding comments. 

2. Testing and Estimating I(d) Statistical Models 

We divide this section into two parts. In Section 2.1, we present a testing 
procedure of Robinson (1994a) that permits us to test I(d) statistical models in a 
fully parametric way. In Section 2.2, several semiparametric estimation procedures, 
due to Robinson (1994b, 1995a, b), are briefly explained. 

2.1 Testing I(d) Models with Parametric Techniques 

Following Bhargava (1986), Schmidt and Phillips (1992), and others on 
parameterization of unit root models, Robinson (1994a) considered the following 
regression model: 

...,2,1,' =+= txzy ttt β , (2) 

where yt is the time series we observe, β is a k×1 vector of unknown parameters, zt is 
a k×1 vector of deterministic regressors that may include an intercept (i.e., zt ≡ 1) or 
an intercept and a linear time trend (i.e., zt = (1,t)'), and xt are the regression errors, 
which are of the form described in (1). Robinson (1994a) proposed a Lagrange 
Multiplier (LM) test of the null hypothesis 
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,: oo ddH =  (3) 

for (1) and (2) for any real value do. Specifically, the test statistic is given by: 
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I(λj) is the periodogram of tû ; and the function g above is a known function coming 
from the spectral density function of tû , ( ) ),;(2);( 2 τλπστλ gf ⋅=  with τ̂  
obtained by minimising σ2(τ). Note that if ut is white noise, then g ≡ 1, and if ut is an 
AR process of the form φp(L)ut = εt, then g = |φp(eiλ)|-2, so that the AR coefficients 
are functions of τ. 

Robinson (1994a) established that under certain very mild regularity conditions, 

ˆ (0,1) as .dr N T→ → ∞  (5) 

Thus, an approximate one-sided test of Ho in (3) against the alternative Ha: d > 
do rejects Ho if r̂  > zα, where α is the probability that a standard normal variate 
exceeds zα, and conversely a one-sided test of Ho (3) against Ha: d < do rejects Ho if 
r̂  < −zα. As these rules indicate, we are in a classical large-sample testing situation 
for reasons described in Robinson (1994a), who also showed that the above test is 
efficient in the Pitman sense against local departures from the null. In other words, if 
the test is implemented against local departures of the form: Ha: d = do + δT-1/2 for δ 
≠ 0, the limiting distribution is normal with variance 1 and mean that cannot be 
exceeded by that of any rival statistic.  

This version of the test in Robinson (1994a) was used in empirical applications 
in Gil-Alana and Robinson (1997) and Gil-Alana (2000), and other versions of his 
tests based on seasonal (quarterly and monthly) and cyclical models can be found 
respectively in Gil-Alana and Robinson (2001) and Gil-Alana (1999, 2001). 

 
 



Luis A. Gil-Alana 127

2.2 Estimating I(d) Models with Semiparametric Techniques 

Several methods of estimating semiparametrically the fractional differencing 
parameter d were examined in a number of papers by Robinson (1994b, 1995a, 
1995b), which we now describe. The estimates of these methods, based on the 
frequency domain, are the log-periodogram regression estimates (LPEs) initially 
proposed by Geweke and Porter-Hudak (1983) and modified later by Künsch (1986) 
and Robinson (1995a), the averaged periodogram estimate (APE) proposed by 
Robinson (1994b), and the quasi-maximum likelihood estimate (QMLE, Robinson, 
1995b). The first of these estimates is based on the regression model: 

log ( ) 2 logj j jI c dλ λ ε= − + , (6) 
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and the estimate is just the OLS estimate of d in (6). Unfortunately, it has not been 
proven that this estimate is consistent for d, but Robinson (1995a) modified the 
former regression introducing two alterations: the use of a pooled periodogram 
instead of the raw periodogram, and a trimming number q so that frequencies λj, j = 
1,2, … q, are excluded from the regression, where q tends to infinity slower than J, 
so that q/J tends to zero. Thus, the final regression model is: 
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where k = q+J, q+2J, …, m, J controls the pooling, and q controls the trimming. The 
estimate of d is: 
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and assuming normality, Robinson (1995a) proves the consistency and asymptotic 
normality of d1 in a multivariate framework. 

The averaged periodogram estimate of Robinson (1994b) is based on the 
average of the periodogram near zero frequency, 
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where ,0,2 →= TmTmm πλ  for any constant q ∈ (0, 1). Robinson (1994b) 
proved the consistency of this estimate under very mild conditions, and Lobato and 
Robinson (1996) showed asymptotic normality for 0 < d < 1/4 and non-normality of 
the limiting distribution for 1/4 < d < 1/2. 

Finally, the quasi-maximum likelihood estimate in Robinson (1995b) is 
basically a “local Whittle estimate” in the frequency domain, based on a band of 
frequencies that degenerates to zero. The estimate is implicitly defined by: 
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Under finiteness of the fourth moment and other conditions, Robinson (1995b) 
proved the asymptotic normality of this estimate, which is more efficient than the 
former ones (Robinson, 1995a, 1994b). Multivariate extensions of these estimation 
procedures can be found in Lobato (1999). 

3. Testing and Estimating Order of Integration in the Japanese Exchange Rate 

The time series data analysed in this section correspond to the monthly 
(seasonally adjusted) observations of the Japanese exchange rate in relation to the 
US dollar for the time period January, 1971, to April, 2001. 

Figure 1 contains plots of the original series and first differences along with 
their corresponding correlograms and periodograms. Looking at the correlogram of 
the original series, we observe a slow decay in the values, which may be consistent 
with the presence of unit or fractional roots. This is substantiated by the 
periodogram where we observe a large peak around the zero frequency. However, in 
the correlogram of the first differenced series, we still observe significant 
autocorrelations with apparent slow decay and/or oscillation in some cases, which 
could be indicative of fractional integration smaller than or greater than a unit root. 

We start with the parametric approach, testing the order of integration of the 
series in a fully parametric way and using the tests of Robinson (1994a) described in 
Section 2.1. Denoting the time series yt, we assume throughout the model in (1) and 
(2) with zt = (1, t)' for t ≥ 1 and (0, 0)' otherwise, i.e., 
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...,2,1,10 =++= txty tt ββ , (10) 
...,2,1,)1( ==− tuxL tt

d . (11) 

We test Ho (3) for values of do between 0.5 and 2 in 0.1 increments, i.e., we test for 
stationarity (d = 0.5), unit roots (d = 1), I(2) processes (d = 2), and other fractionally  

Figure 1. Original and Differenced Japanese Exchange Rate with Correlogram and Periodogram 

Japanese exchange rate to US dollar First differences of the Japanese exchange rate 

  

Correlogram of original time series* Correlogram of first differenced series* 

  

Periodogram of original time series Periodogram of first differenced series 

    
* The large-sample standard error under the hypothesis of no autocorrelation is 1/√T or roughly 0.052. 
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integrated possibilities. We treat separately the cases β0 = β1 = 0 a priori (i.e., 
including no regressors in the undifferenced regression (10)), β0 unknown and β1 = 0 
a priori (i.e., including an intercept), and finally β0 and β1 unknown (i.e., with a 
linear time trend). The I(0) disturbances are modelled as either white noise or 
weakly autocorrelated. The reason for the inclusion of a linear time trend is this: If ut 
is white noise and do = 1, the differences (1 – L)yt behave, for t > 1, like a random 
walk when β1 = 0 and a random walk with a drift when both β0, β1 ≠ 0. 

The test statistic reported in Tables 1 to 3 is the one-sided version given by r̂  
in (4), so that significantly positive values of this ( αzr >ˆ ) are consistent with orders 
of integration higher than the one hypothesized under the null (d > do), whereas 
significantly negative ones ( r̂  < αz− ) imply orders of integration smaller than do. A 
notable feature observed across Table 1 (in which ut is white noise) is the fact that r̂  
monotonically decreases with do. This is something to be expected in view of the 
previous discussion and since it is a one-sided statistic. Thus, for example, if Ho (3) 
is rejected with do = 1 against the alternative Ha: d > 1, an even more significant 
result in this direction should be expected when do = 0.75 or do = 0.50 are tested. We  

Table 1. Testing Order of Integration with Robinson Tests and White Noise Disturbances 
zt  /  do 0.50 0.60 0.70 0.80 0.90 1.00 1.10 1.20 1.30 1.40 1.50 
No 
regressors 26.09 18.62 12.15 7.03 3.20 0.40* -1.64 -3.16 -4.31 -5.20 -5.89 

An    
intercept 28.32 21.95 17.11 12.88 9.04 5.74 3.03 0.87* -0.81* -2.13 -3.17 

A linear 
time trend 27.59 22.90 18.01 13.32 9.17 5.73 2.98 0.83* -0.84* -2.15 -3.18 

Note: Values with * (and bolded) are not rejected at the 5% significance level. 

Table 2. Testing Order of Integration with Robinson Tests and AR(1) and AR(2) Disturbances 

Note: Values with * (and bolded) are not rejected at the 5% significance level; “―” means that 
monotonicity in the value of the test statistic with respect to do was not achieved. 

Robinson Tests with AR(1) Disturbances 
zt   /  do 0.50 0.60 0.70 0.80 0.90 1.00 1.10 1.20 1.30 1.40 1.50 
No 
regressors 

― ― ― ― ― ― 1.73 1.72 0.74* -0.32* -1.30* 

An    
intercept 

― ― ― 0.32* 0.08* -0.46* -1.17* -1.93 -2.65 -3.30 -3.86 

A linear 
time trend 

― ― ― 0.39* 0.12* -0.46* -1.20* -1.96 -2.68 -3.32 -3.87 

Robinson Tests with AR(2) Disturbances 

zt   /  do 0.50 0.60 0.70 0.80 0.90 1.00 1.10 1.20 1.30 1.40 1.50 
No 
regressors ― ― ― ― ― ― ― 8.02 6.77 5.03 3.79 

An    
intercept 

― ― ― 1.03* 1.02* 0.66* 0.09* -0.58* -1.29* -1.98 -2.62 

A linear 
time trend 

― ― ― 1.12* 1.05* 0.65* 0.05* -0.62* -1.33* -2.01 -2.64 
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see in this table that if we do not include regressors, the only non-rejection value 
occurs when d = 1; however, if an intercept or an intercept and a linear time trend 
are included in the regression model, the unit root null hypothesis is rejected in 
favour of higher orders of integration, and the non-rejection values now occur when 
d = 1.2 or 1.3. 

However, the significance of the above results might be in large part due to the 
unaccounted for I(0) autocorrelation in ut. Thus, in Tables 2, we perform the same 
procedure as in Table 1 but allow AR(1) and AR(2) disturbances. Higher AR orders 
were also tried and, though not reported here, the results were very similar to those 
given in the table. We observe a lack of monotonicity in r̂  for small values of do. 
This may be an indication of model misspecification, as is argued, for example, in 
Gil-Alana and Robinson (1997). Note that in the event of misspecification, 
monotonicity is not necessarily to be expected: frequently, misspecification inflates 
both numerator and denominator of r̂  to varying degrees, and thus affects r̂  in a 
complicated way. In order to solve this problem, we perform, in Table 3, the tests of 
Robinson (1994a), using a non-parametric approach for modelling the I(0) 
disturbances due to Bloomfield (1973). In his model, the disturbances are 
exclusively specified in terms of the spectral density, which is given by: 
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Bloomfield (1973) showed that the logarithm of the spectral density function of 
an ARMA(p,q) process is a fairly well-behaved function and it can thus be 
approximated by a truncated Fourier series. He showed that the log of (12) 
approximates well the log of the spectrum of ARMA processes when p and q are 
small values, which is often seen in economics. Like the stationary AR(p) case, this 
model has exponentially decaying autocorrelations and thus, using this specification, 
we do not need to rely on so many parameters as in the ARMA processes, which is 
often tedious in terms of estimation, testing, and model specification. The results of 
the tests of Robinson (1994a) based on Bloomfield’s (1973) disturbances are given 
in Table 3. We see that monotonicity is now always achieved and the non-rejection 
values occur with d ranging between 1.0 and 1.2 in case of k = 1 and between 1.0 
and 1.3 when k = 2. Thus, the unit root null hypothesis cannot be rejected though 
fractional processes with orders of integration greater than one may also be plausible 
in this context. 

So far, we have tested the degree of integration in the Japanese exchange rate 
with the tests of Robinson (1994a), which impose a parametric model in the process. 
(Note that even with Bloomfield’s (1973) exponential model for the disturbances, 
the model is still parametric since it describes the process with a parametric model 
for the spectral density function of the disturbances.) Next, we present the results 
based on the semiparametric procedures described in Section 2.2. In all cases, the 
estimates are based on the first differenced series, so that in order to obtain the 
proper estimates of d we need to add 1 to the values obtained through the procedures.  
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Table 3. Testing Order of Integration with Robinson Tests and Bloomfield (1) and (2) ut 

Testing Order of Integration with Robinson Tests and Bloomfield (1) ut 
zt   /  do 0.50 0.60 0.70 0.80 0.90 1.00 1.10 1.20 1.30 1.40 1.50 
No 
regressors 

12.39 8.97 5.78 3.30 1.99 -0.12* -1.37* -1.54* -2.85 -3.46 -3.92 

An    
intercept 

11.39 6.86 4.40 2.22 1.75 -0.42* -1.52* -1.59* -3.25 -3.93 -4.44 

A linear 
time trend 

9.26 6.69 4.48 2.72 1.88 -0.43* -1.57* -2.57 -3.29 -3.97 -4.47 

Testing Order of Integration with Robinson Tests and Bloomfield (2) ut 

zt    /  do 0.50 0.60 0.70 0.80 0.90 1.00 1.10 1.20 1.30 1.40 1.50 
No 
regressors 

7.45 4.89 4.68 3.66 1.91 0.91* -0.54* -0.58* -1.43* -4.27 -4.67 

An    
intercept 

6.93 4.51 3.09 3.04 1.82 0.71* -0.95* -1.62* -1.58* -2.43 -3.09 

A linear 
time trend 

9.90 5.15 4.35 3.65 1.80 0.71* -1.02* -1.63* -1.78 -2.51 -2.85 

Note: Values with * (and bolded) are not rejected at the 5% significance level. 

Figure 2. Log-Periodogram Regression Estimate of d (d1 in (7)) 

 

LPE in the Interval (189, 235) 

Note: The horizontal and vertical axes refer to the bandwidth parameter m and the estimated values of d. 
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We start with the log-periodogram regression estimate (LPE) of Robinson 
(1994b), i.e., d1 given by (7). The results displayed in Figure 2 correspond to d1 for 
trimming values q = 0, 1, and 5 and J initially (in the upper panel) from 50 to 300. 
We see that if J is between 50 and 100, the estimates are very sensitive to q. 
However, if J > 100, the values behave similarly for the three cases of q. We also 
observe that the most stable behaviour is obtained when J is between 189 and 235. 
Thus, in the lower part of the table, we report the same estimates but only for that 
range of values for J. We see here that d1 oscillates between 1.22 and 1.25 if q = 0, 
around 1.27 if q = 1, and around 1.30 if q = 5. These results indicate that according 
to the LPE, the order of integration of the series is higher than 1, ranging between 
1.2 and 1.3 in all cases. 

Figure 3. Averaged Periodogram Estimate of d (d2 in (8)) 

 
APE in the Interval (170, 220) 

       
Note: The horizontal and vertical axes refer to the bandwidth parameter m and the estimated values of d. 

The averaged periodogram estimate of Robinson, (APE, 1994b), i.e., d2 in (8) 
was next performed for trimming values q = 0.25, 0.33, and 0.50. The upper part of 
Figure 3 displays the results of d2 with J from 50 to 300. If J < 170, we see that the 
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estimates are very sensitive to q. Thus, similar to the previous figure, we concentrate 
on those cases where d2 remains relatively stable across J, i.e., from 170 to 220. We 
see here that d2 oscillates between 1.22 and 1.30 if q = 0.50, around 1.40 when q = 
0.33, and slightly above 1.40 when q = 0.25. The estimates here are slightly superior 
to those given in Figure 2 (LPE), being further away from the unit root case. 

Finally, the quasi-maximum likelihood estimate (QMLE) of Robinson (1995b) 
was also computed. The results for a range of values of m from 50 to 300 are 
displayed in the upper panel of Figure 4. We also include in this figure the 95% 
confidence intervals corresponding to the I(0) case (I(1) in the original series). We 
see that practically all estimates of d are strictly above that interval, suggesting 
orders of integration higher than 1. We see that d3 ranges between 1.10 and 1.30, 
and two different sets of values for m are considered in which d3 remains relatively 
constant. 

Figure 4. Quasi-Maximum Likelihood Estimates of d (d3 in (9)) 

       

QMLE in Interval (50, 100) QMLE in Interval (201, 232) 
  

Note: The horizontal and vertical axes refer to the bandwidth parameter m and the estimated values of d. 

The first corresponds to m between 50 and 100 while the second range is from 210 
to 232. In the first case d3 is around 1.12, and in the second it is around 1.29. Once 
more, we obtain estimates higher than 1. It should be finally noted that results based 
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on these semiparametric procedures should be interpreted with care since the most 
stable behaviour for these estimates is obtained for large m, which includes medium 
and short cycles and thus might be biased. This may be due in part to the seasonal 
nature of the series, and though the data are seasonally adjusted, it might be possible 
that a seasonal structure is still present in the data. In any case, they are completely 
in line with the results based on the parametric procedure, finding strong evidence 
against the unit root hypothesis and in favour of I(d) statistical processes with d > 1. 

5. Concluding Comments 

Monthly data of the Japanese exchange rate are examined in this article by 
means of fractionally integrated models. Using parametric and semiparametric 
techniques proposed by P.M. Robinson in a number of papers, we show that the 
series can be well described in terms of an I(d) process with d equal to or greater 
than 1.  

We start by employing a version of one of the tests in Robinson (1994a), which 
is a parametric procedure for testing I(d) statistical models. The results indicate that 
if the disturbances are white noise, the unit root null hypothesis cannot be rejected 
when we do not include regressors, however, if an intercept or an intercept and a 
linear time trend are included, the order of integration seems to be much higher than 
one. If the disturbances are autoregressive, we observe a lack of monotonic decrease 
in the value of the test statistic with respect to d, which might be an indication of 
model misspecification. If the disturbances follow the Bloomfield’s (1973) 
exponential spectral model, the orders of integration range between 1.0 and 1.3.  

Several semiparametric procedures proposed by Robinson (1994b, 1995a, b) 
for estimating the fractional differencing parameter d are also employed; in 
particular, the log-periodogram regression estimate (Robinson, 1995a), the averaged 
periodogram estimate (Robinson, 1994b), and the quasi-maximum likelihood 
estimate (Robinson, 1995b). In all cases, the estimated values of d are greater than 
one, suggesting that first differences may not be sufficient to get I(0) differenced 
series.  

This result has strong economic implications. Shocks affecting the series have 
permanent effects, and strong policy actions are required to return the variable to its 
original level. Also, the fact that the first differenced series still exhibits a 
component of long memory behaviour suggests that the standard practise of taking 
first differences to achieve I(0) stationarity may be erroneous; thus, all the analysis 
of the real exchange rates, based, for example, on cointegration techniques (at least 
in its classical sense) should be interpreted with care. A follow-up step in this 
direction is to examine the possibility of fractional cointegration. Pioneering work in 
this area are the papers of Cheung and Lai (1993), Baillie and Bollerslev (1994), and 
Dueker and Startz (1998). More recently, Gil-Alana (2003) proposes a very simple 
procedure for testing the null hypothesis of no cointegration against the alternative 
of fractional cointegration, and more elaborate techniques of fractional cointegration 
were proposed by P.M. Robinson and his co-authors (e.g., Robinson and Marinucci, 
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2001; Robinson and Yajima, 2002; and Robinson and Hualde, 2003). Any of these 
approaches can be explored to further examine the behaviour of the Japanese 
exchange rate. 
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