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Abstract 
A binomial model is developed to value options when the underlying process follows 

the constant elasticity of variance (CEV) model. This model is proposed by Cox and Ross 
(1976) as an alternative to the Black and Scholes (1973) model. In the CEV model, the 
stock price change ( dS ) has volatility / 2S βσ  instead of Sσ  in the Black-Scholes model. 
The rationale behind the CEV model is that the model can explain the empirical bias 
exhibited by the Black-Scholes model, such as the volatility smile. The option pricing 
formula when the underlying process follows the CEV model is derived by Cox and Ross 
(1976), and the formula is further simplified by Schroder (1989). However, the closed-form 
formula is useful in some limited cases. In this paper, a binomial process for the CEV 
model is constructed to yield a simple and efficient computation procedure for practical 
valuation of standard options. The binomial option pricing model can be employed under 
general conditions. Also, on average, the numerical results show the binomial option 
pricing model approximates better than other analytic approximations. 
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1. Introduction 

Black and Scholes (1973) derive the well-known option pricing formula by 
assuming the underlying stock price follows a geometric Brownian motion. Under 
this construction, the price distribution is lognormal, and ignoring the time effect, 
the volatility is constant. However, in general, empirical evidence neither supports 
the lognormal distribution nor the constant volatility. In applications, the existence 
of a volatility smile may be the empirical bias exhibited by the underlying process in 
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the Black-Scholes model. To deal with this problem, many authors have suggested 
alternative underlying processes, such as Merton’s (1976) jump-diffusion model, 
Cox and Ross’s (1976) CEV model, and many stochastic volatility models.  

The focus of this paper is the CEV model, which is a simple way to generalize 
the geometric Brownian motion in the Black-Scholes model. Following Black and 
Scholes (1973), Cox and Ross (1976) derive the European option pricing formula 
under the CEV model. Schroder (1989) shows this formula can be expressed in 
terms of the non-central chi-square distribution function, analogous to the standard 
normal distribution function in the Black-Scholes model. Since computations 
involving the non-central chi-square distribution function are more complicated, 
Schroder (1989) also provides an analytic approximation CEV option pricing 
formula in term of the standard normal distribution function. 

The main feature of the CEV model is that it allows the volatility to change 
with the underlying price. As documented in Beckers (1980) and Schroder (1989), 
there are theoretical arguments for and empirical evidence that volatility changes 
with stock prices. Also, several studies support the CEV pricing model instead of the 
Black-Scholes pricing model (MacBeth and Merville, 1980; Emanuel and Macbeth, 
1982). However, the CEV closed-form pricing formula involving the evaluation of 
the non-central chi-square distribution function and the analytic approximation 
method using the standard normal distribution function are only for European 
options, which can only be exercised at maturity, and not for American options, 
which can be exercised earlier.  

 The aim of this paper is to develop a simple binomial option pricing model 
when the underlying price process follows the CEV model. As shown in Cox et al. 
(1979), the early exercise valuation problem can be solved in the binomial 
framework. The binomial model was originally developed to approximate the 
normal distribution under a multiperiod setting in Cox et al. (1979). By choosing a 
proper transformation function, the binomial model can also be used to approximate 
the non-central chi-square distribution. This paper provides numerical results and 
compares the computational accuracy with an analytic approximation method.  

The rest of this paper is organized as follows. Section 2 presents the CEV 
model and some versions of the CEV option pricing formula. In Section 3, a 
discrete-time binomial process of the CEV model is developed. Section 4 presents 
numerical results from the binomial option pricing model and the analytic 
approximation method. Finally, Section 5 concludes. 

2. The CEV Model and the CEV Option Pricing Formula 

The CEV model extends the Black-Scholes model to allow for stochastic 
volatility with a closed-form solution for option pricing. In the CEV model, the 
stock price is assumed to be governed by the diffusion process: 

/ 2dS Sdt S dwβμ σ= + ,  
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where μ , σ , and β  are parameters for growth rate, volatility, and elasticity, 
respectively, and w is a Wiener process. If 2=β , the CEV model is just the 
geometric Brownian motion model. If 2<β , the volatility increases as the stock 
price decreases. This kind of probability distribution is similar to that observed for 
equities with a heavy left tail and a less heavy right tail. Thus, our analysis considers 
the situation when 2<β . 

Considering a stock option with strike price K  and time to maturity tT −  in 
a constant interest rate r  economy, the CEV call option pricing formula when 

2<β  in its Cox’s original form is as follows: 

⎥
⎦

⎥
⎢
⎣

⎢
+

−
++−

⎥
⎦

⎥
⎢
⎣

⎢

−
+++=

∑

∑

∞

=

−−

∞

=

0
)(

0

)1'()
2

11'(        

)
2

11'()1'(

j
tTr

jt

jKGjSge

jKGjSgSC

β

β
  

where 

.)()(

)(
)(

,
)1)(2(

2
,'

'

1

)2()(2

2

)2()(2

dymygmxG

m
xemxg

e
rk

kKK
keSS

x

mx

tTr

tTr

∫
∞

−−

−−

−

−−−−

=

Γ
=

−−
=

=

=

β

β

ββ

βσ
 

 

Schroder (1989) shows that this option pricing formula can be expressed in 
terms of the non-central chi-square distribution function: 
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where ),;( kvzQ  is a complementary non-central chi-square distribution function 
with z , v , and k  the evaluation point of the integral, degrees of freedom, and 
non-centrality parameter. For evaluating the distribution function, Schroder (1989) 
presents a simple and efficient algorithm for computation. Although the CEV option 
formula can be represented in terms of non-central chi-square distributions that are 
easier to interpret, the evaluation of an infinite sum of these distributions can be 
computationally slow. The algorithm suggested for computing )2,2;2( kvzQ  may 
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converge slowly when z  and k  are large. Furthermore, to make this pricing 
formula useful, the parameter β  must be equal to some specific value such that the 
degrees of freedom is an integer in the non-central chi-square distribution. A number 
of approximations to the non-central chi-square distribution have been developed. 
One particularly good approximation is derived by Sankaran (1963): 
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and Φ  is the standard normal distribution function. 

3. A Binomial CEV Model 

In this section, a general method for constructing binomial models proposed by 
Nelson and Ramaswamy (1990) is adopted. To approximate the CEV diffusion 
process with a binomial model, the interval [ ],t T  is divided into n  equal pieces, 
each of width tΔ . Over each time increment, the stock price can either increase to a 
particular level or decrease to another level. For the CEV model, the volatility is not 
constant but varies with the level of the underlying price. When the volatility varies 
with the level of the price, the probability of an upward move has to be recomputed 
at each node. 

At the beginning, we need to transform the diffusion process to one in which 
the volatility is constant and then approximate the transformed process by a simple 
lattice. Finally, we have to modify the probabilities on the lattice when their 
computed values are negative or exceed one. 

Assume the stock price follows the CEV diffusion process given by: 

dwSSdtdS ασμ −+= 1 ,  

where 21 βα −= . Considering the process ασαSx =  and using Ito’s lemma 
we have: 
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Substituting into the above equation and using the fact that αασ 1)(xS = , Equation 
(1) becomes: 
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Through transformation, this results in a new process with a constant volatility equal 
to 1.  

Next, a binomial approximation is made to the transformed process. In each 
increment the approximation to Equation (2) is given by: 

           txx Δ+=+  

x 

           txx Δ−=− . 

 

Given the values on the x  lattice, we can recover the dynamics of the stock price 
on its lattice: 

                  )( ++ = xfS  

)(xfS =   

                  )( −− = xfS . 

 

We can now construct a lattice for the x  values: 
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txx Δ+= +++  

           txx Δ+=+   

x                               xx =−+  

           txx Δ−=−   

                                txx Δ−= −−− . 

 

Equivalently, we could construct the lattice for the S  values: 

)( ++++ = xfS  

                  )( ++ = xfS   

)(xfS =                               )(xfS =−+  

                  )( −− = xfS            

)( −−−− = xfS . 

 

The risk-neutral probability of an upward move depends on the level of S  and the 
values of +S  and −S . The risk-neutral probability of an upward move is 
calculated by: 

−+

−Δ

−
−

=
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SSeP

tr

u .  

4. Numerical Results 

Based on the examples in Cox et al. (1979), numerical results for checking the 
model performances are presented in Tables 1 and 2. We choose α  equal to 0.1 
and 0.5 because the two numbers can fit into Schroder’s (1989) formula, which 
requires integer degrees of freedom in the complementary non-central chi-square 
distribution function. The stock price is 40 and the interest rate is 5%. The values of 
σ  in the CEV model are chosen such that the annual standard deviations of stock 
returns equal 0.2, 0.3, and 0.4. These parameter values are the same as in Cox et al. 
(1979). Furthermore, an approximate analytic solution using the normal distribution 
function is given for comparison. 

As with other binomial applications, the values of the options converge quickly 
to the closed-form solutions as the number of steps n  increases. When 20=n , on 
average, the value from the binomial option pricing model is closer to the 
closed-form solutions than the approximate analytic solution using the normal 
distribution function. For 50=n , the numerical results show that the difference 
between the binomial model the closed-form formula is less than or equal to 0.02. 
However, the results from the approximate analytic solution show larger deviation, 
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especially for longer maturity. For instance, when the time to maturity is 7 months 
and the annual standard deviation is 20%, the value of the at-the-money option is 
2.86 by the approximate analytic solution, while the closed-form solution is 3.02. 

Table 1. Values of European Call Options on Stock for the CEV Process ( 5.0=α ) 

   40=S  and %5=r  Annually 

   %20=σ  Annually  %30=σ  Annually  %40=σ  Annually 
tT −  1/12 4/12 7/12  1/12 4/12 7/12  1/12 4/12 7/12 

Panel A: Binomial Approximation 
n  k    
 35  5.15 5.82 6.51  5.22 6.37 7.23  5.44 6.95 8.08 

5 40  1.05 2.26 3.13  1.53 3.22 4.37  2.02 4.17 5.62 
 45  0.01 0.50 1.10  0.10 1.22 2.05  0.42 1.91 3.15 

 
 35  5.15 5.80 6.46  5.23 6.34 7.29  5.43 7.01 8.21 

20 40  1.00 2.15 2.99  1.45 3.05 4.16  1.90 3.94 5.33 
 45  0.02 0.48 1.05  0.14 1.21 2.14  0.39 2.01 3.29 

 
 35  5.15 5.79 6.46  5.23 6.33 7.26  5.42 6.99 8.26 

50 40  1.00 2.17 3.01  1.46 3.07 4.18  1.91 3.97 5.36 
 45  0.02 0.47 1.05  0.14 1.20 2.14  0.39 2.01 3.32 

 
 35  5.15 5.80 6.46  5.24 6.32 7.28  5.42 7.00 8.25 

1000 40  1.00 2.18 3.02  1.46 3.07 4.20  1.92 3.99 5.39 
 45  0.02 0.47 1.05  0.15 1.19 2.14  0.39 2.01 3.30 

 
Panel B: CEV (Normal) 
 k             
 35  5.15 5.78 6.39  5.24 6.32 7.27  5.42 7.02 8.29 
 40  1.00 2.13 2.92  1.46 3.07 4.19  1.92 4.01 5.43 
 45  0.02 0.44 0.97  0.14 1.18 2.13  0.39 2.02 3.34 
 
Panel C: CEV (Closed-Form) 
 k             
 35  5.15 5.79 6.44  5.23 6.31 7.26  5.42 6.99 8.23 
 40  1.00 2.17 3.00  1.46 3.07 4.19  1.92 3.98 5.37 
 45  0.02 0.47 1.04  0.14 1.18 2.13  0.38 2.00 3.29 
Notes: S  denotes spot price; r  represents interest rate; k , t , and n  indicates strike price, time to 
maturity, and the number of steps in the binomial model, respectively. The value of σ  is set such that 
the annual standard deviations σ  are 0.2, 0.3, and 0.4 at the spot price 40. The option values in Panel B 
are calculated with the approximate analytic formula using the normal distribution function. The option 
values in Panel C are the closed-form solutions for the CEV process. 

In additional to the numerical example in Cox et al. (1979), we consider 
numerical results when the stock price equals either 30 or 40 and the interest rate 
equals 2% or 8% to check the robustness of the results. Comparing the three models, 
the accuracy of results is similar to Tables 1 and 2. As a consequence, the additional 
results are not reported here (but are available from the authors upon request). 
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Table 2. Values of European Call Options on Stock for the CEV Process ( 1.0=α ) 

  40=S  and %5=r  Annually 

  %20=σ  Annually %30=σ  Annually %40=σ  Annually 
tT −  1/12 4/12 7/12 1/12 4/12 7/12 1/12 4/12 7/12 

Panel A: Binomial Approximation 
n  k   
 35 5.15 5.79 6.48 5.21 6.32 7.18 5.41 6.89 7.96 
5 40 1.05 2.26 3.13 1.53 3.22 4.37 2.02 4.17 5.62 
 45 0.02 0.54 1.15 0.11 1.27 2.11 0.45 1.98 3.27 

 
 35 5.15 5.78 6.42 5.23 6.29 7.22 5.40 6.94 8.10 

20 40 1.00 2.15 2.99 1.45 3.05 4.15 1.90 3.94 5.32 
 45 0.02 0.50 1.11 0.15 1.27 2.22 0.42 2.08 3.40 

 
 35 5.15 5.77 6.42 5.23 6.28 7.20 5.39 6.91 8.15 

50 40 1.00 2.17 3.01 1.46 3.07 4.18 1.91 3.97 5.36 
 45 0.02 0.50 1.10 0.16 1.25 2.22 0.42 2.09 3.43 

 
 35 5.15 5.78 6.43 5.22 6.27 7.20 5.40 6.92 8.14 

1000 40 1.00 2.18 3.02 1.46 3.08 4.20 1.92 3.99 5.38 
 45 0.02 0.50 1.10 0.16 1.25 2.22 0.41 2.09 2.41 

 
Panel B: CEV (Normal) 
 k          
 35 5.15 5.74 6.32 5.22 6.24 7.13 5.40 6.90 8.09 
 40 1.00 2.11 2.86 1.46 3.04 4.11 1.92 3.96 5.32 
 45 0.02 0.46 0.98 0.16 1.21 2.14 0.41 2.06 3.35 
 
Panel C: CEV (Closed-Form) 
 k          
 35 5.15 5.78 6.43 5.22 6.27 7.20 5.40 6.90 8.13 
 40 1.00 2.17 3.02 1.46 3.08 4.19 1.92 3.98 5.38 
 45 0.02 0.50 1.10 0.16 1.24 2.22 0.41 2.08 3.40 
Notes: S  denotes spot price; r  represents interest rate; k , t , and n  indicates strike price, time to 
maturity, and the number of steps in the binomial model, respectively. The value of σ  is set such that 
the annual standard deviations σ  are 0.2, 0.3, and 0.4 at the spot price 40. The option values in Panel B 
are calculated with the approximate analytic formula using the normal distribution function. The option 
values in Panel C are the closed-form solutions for the CEV process. 

5. Conclusion 

In this paper, we follow a general method for constructing binomial models to 
develop a binomial lattice for pricing options when the underlying process follows 
the CEV model. The CEV model was proposed by Cox and Ross (1976) as a more 
general alternative to the Black and Scholes (1973) model. In the CEV model, the 
stock price can exhibit volatility changes with the price level. The motivation behind 
the CEV model is that it can explain the empirical bias exhibited by the 
Black-Scholes model, such as a volatility smile. Though the CEV closed-form 
pricing formula and the analytic approximation method for CEV option pricing have 
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been developed, they are only for European-style options and not for American-style 
options. 

In this paper, a binomial process for the CEV model is constructed to yield a 
simple and efficient computational procedure for practical valuation of standard 
options. This binomial option pricing model can be used for options with early 
exercise features. On average, the numerical results show the binomial option 
pricing model approximates well compared with the analytic approximation method. 
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