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Abstract 
This study develops a new futures pricing model and derives its analytic solution. 

Comparative static and simulation results are also presented. Under this general equilibrium 
framework, we find that bounded degrees of state variables in the broad economy determine 
co-varying extents among various important market variables. However, increasing event 
risk, including the sizes of occurrence probability and corresponding impulse effects, makes 
their analysis intractable. 
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1. Introduction 

Major events like technological innovations and catastrophes often trigger 
abrupt changes in financial markets. A well known example of the latter is the 
September 11, 2001, terrorist attacks in the US. The connection between cash and 
derivative markets in such events becomes an important issue. This study develops a 
stock index futures pricing model and derives an analytic solution to advance 
understanding of this connection. 

In the literature, asset pricing can be approached by constructing a no-arbitrage 
portfolio or using a general equilibrium model. The argument of no-arbitrage 
replication is one of the most exciting ideas in modern finance. Its implications 
continue to flourish in asset pricing fields. Its axiom is based on a comparison of 
expected returns and risks from different positions. In particular, by adjusting 
weights and replicating components repeatedly, an investor may create portfolios 
without bearing any risk from cash markets. Thus, these portfolios should yield 

                                                 
Received February 23, 2006, revised October 22, 2007, accepted November 5, 2007. 
*Correspondence to: Department of Finance, Feng Chia University, 100 Wenhwa Road, Seatwen, 
Taichung, Taiwan. E-mail: wangjj@fcu.edu.tw. 



International Journal of Business and Economics 

 

104 

risk-free returns. If not, gradual elimination of arbitrage opportunities will achieve 
this goal eventually. Several studies use this methodology successfully. The most 
notable is the Black and Scholes (1973) option pricing theory. 

In order to make comparisons, the no-arbitrage argument needs traded or 
marketable assets to replicate positions and adjust weights. This suggests an 
analytical framework within a partial equilibrium economy because we need 
exogenous economic variables to assist in asset pricing. It is very useful if traded 
assets are available in markets; however, some risks may not be simply hedged or 
otherwise offset because they are non-traded economic variables. An additional 
assumption is needed to deal with this situation in incomplete markets. For example, 
Merton (1976) and Cox and Ross (1976) assume a constant Sharpe ratio and 
diversifiable property to deal with jump risk. The cost of these “unseen” 
assumptions is that risk premia will appear in fundamental valuation equations and 
resulting contingent prices (e.g., Cox et al., 1985, henceforth CIR; Hull and White, 
1987). These limitations become obstacles for practical implementation of these 
pricing models. 

Second, even though assets or positions for constructing arbitrage portfolios in 
partial equilibrium models are available, endogenous variables like interest rates and 
spot prices are affected by salient events simultaneously. Therefore, it is important to 
realize endogenous properties of these variables and their sensitivity to state 
variables or major events. A good general equilibrium model helps to provide an 
exhaustive analytical framework connecting and explaining relationships among 
economic variables. 

A general equilibrium model helps to comprehend various economic 
phenomena. But one cost of this elegant analytical framework is an unobservable 
preference assumption of representative agents. Hemler and Longstaff (1991) try to 
overcome this; in their general equilibrium stock index futures pricing model, an 
important and surprising feature is that the futures price does not depend on an 
agent’s preference except through a time-preference parameter. This results because 
the market prices of risk in Equation (31) of CIR are cancelled out by the covariance 
terms owing to Hemler and Longstaff’s (1991) “separable” property. In fact, Hemler 
and Longstaff’s futures pricing formula is a special case of the CIR model. 

Furthermore, Hemler and Longstaff (1991) transform state variables from 
unobservable ones to observable interest rates and spot market volatility. Spot 
market volatility is rarely discussed in the early futures pricing literature. Under the 
cost-of-carry model, unbiased expectation theory, or the complete market 
assumption, partial equilibrium models take spot volatility as a perturbation 
irrelevant for futures pricing because futures prices reflect discounted expectations 
of future cash prices. The size of the second moment does not affect the size of the 
first moment. Hemler and Longstaff (1991) propose a different viewpoint. They use 
a general equilibrium framework to show that spot volatility does matter in futures 
pricing because all market variables are endogenous. Thus, volatility in cash markets 
emerges in their formula. This motivates us to explore a different volatility structure 
in cash markets: namely the event or jump risk noted in Merton (1976). 
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The traditional log-normal diffusion process proposed by Black and Scholes 
(1973) has been widely used in intertemporal asset pricing models: 

dzdt
S

dS σμ += , (1) 

where S  denotes the return of an underlying asset, μ  and σ  are its 
instantaneous drift and diffusion terms, dt  is an instantaneous time span, and dz  
is Brownian motion. Equation (1) means that a percentage change in the spot price 
S  is composed of a certain drift term dtμ  and a normally distributed stochastic 
term dzσ . As dt  gets small, this process predicts that dttS +  will not differ much 
from tS . Nevertheless, numerous academic studies found evidence of leptokurtosis, 
fat tails, and other phenomena deviating from a normal distribution for underlying 
asset price changes. See for instance Epps and Epps (1976), Kon (1984), and 
Johnson and Shanno (1987). 

The reason for this behavior is explained by Merton (1976) and Cox and Ross 
(1976): unanticipated jumps during various price evolutions. They assert that 
surprises or jumps do arrive even in the short run, which make intertemporal models 
inapplicable or unrealistic when forming dynamic portfolio strategies. Thus, Cox 
and Ross (1976) employ the following alternative formulation: 

( ) πμ dLdt
S

dS 1−+= , (2) 

where π  is a continuous-time Poisson process, λ  is the intensity of the process, 
and 1−L  is the jump amplitude. That is, the percent price change is )1( −+ Ldtμ  
with probability dtλ  and dtμ  with probability dtλ−1 . Cox and Ross (1976) 
explain λ  as the arrival possibility of an information packet. This means that S  
changes deterministically via its drift term until a unit of information arrives and an 
extra stochastic perturbation occurs. 

Likewise, Merton (1976) explains these jumps as important pieces of 
information arriving, which cause extra price changes above and beyond the original 
Brownian motion. The return dynamics of an underlying asset is written as: 

( ) dqdzdtk
S

dS
++−= σλμ , (3) 

where μ  is an instantaneous expected return on the stock allowing for expected 
jump effect, 2σ  is the instantaneous variance of the return, conditional on no 
arrivals of important new information, dz  is a standard Wiener process, )(tq  is a 
Poisson process which is 1−L  with probability dtλ  and 0 with probability 

dtλ−1 , dz  and )(tq  are assumed independent, λ  is the mean number of new 
information packet arrivals per unit time, and )1( −≡ LEk , where 1−L  is the 
random variable percent change in the asset price if the Poisson event occurs, i.e., an 
impulse function producing a finite jump in S  to LS × . 
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Assumptions that trading takes place continuously in time and that the 
underlying stochastic variables follow diffusion-type motions are standard for 
intertemporal asset pricing models even though they are not completely consistent 
with reality. The existence of jump risk makes this portfolio hedging risky and 
attempts to obtain a “no-arbitrage” closed-form solution vain. Cox and Ross (1976) 
and Merton (1976) solve this problem and derive new option pricing formulas by 
allowing for occasional jumps. While their original intention is to remedy the 
problem of replicating discontinuity, their design sheds lights on information-time 
modeling, while Merton’s (1976) design contributes much to valuations of real 
options, technology innovations, and catastrophe impacts. See Chang et al. (1998) 
for discussion about the information-time setting, Subramanian (2004) for real 
options, and Liu et al. (2003) for event risk applications. 

There are at least two forerunners of general equilibrium futures pricing models 
in the literature. Richard and Sundaresan (1981) construct an intertemporal rational 
expectations model in a multi-good economy with identical consumers. They find 
that effectiveness of consumption hedging is the key to discerning normal 
backwardation or the Contango phenomenon. If an investor can successfully use 
contracts to hedge consumption risks, then the Contango phenomenon prevails. 
Otherwise, normal backwardation emerges. Cox et al. (1981) derive another 
closed-form futures pricing formula based on 11 propositions. They show that if a 
futures price and a bond price are positively correlated, then the futures price is less 
than the forward price; if they are negatively correlated, then the reverse holds. 
However, neither pricing formula is preference-free. There are other well-known 
related studies. For instances, Ramaswamy and Sundaresan (1985) derive values of 
American options on futures contracts. Their futures pricing formula is not 
preference-free either. Even though market prices of risk do not enter into their 
model, the local expectation hypothesis is assumed to hold. 

Based on Hemler and Longstaff’s (1991) model, our study derives a general 
equilibrium futures pricing formula to address event risk as noted by Merton (1976). 
The remainder of this article is organized as follows. We develop an economic 
model allowing for possible jumps and derive a closed-form pricing formula 
allowing for event risk in Section 2. Comparative static and simulation results are 
provided in Section 3. Section 4 concludes. 

2. General Equilibrium Stock Index Futures Pricing Allowing for Event Risk 

In the world created by Hemler and Longstaff (1991), a fixed number of 
identical agents seek to maximize their time-additive preferences in a perfectly 
competitive, continuous economy for risk-free borrowing and lending and for a 
variety of contingent claims including stock futures contracts. An agent’s lifetime 
utility is of standard log-form. Investment and consumption are described by a 
single physical good which may be allocated to consumption or to investment. All 
values are expressed in terms of units of this good with constant returns to scale. 
Such settings are common in the economic literature. See the Appendix for more 
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technical pricing details. 
Production possibility in this economy is not only affected by its growth and 

volatility features but also by rare jump events. Specifically, it can be described by the 
following stochastic differential equation with a drift term Xμ  that does not allow 
for expected jump effects and a diffusion term Yσ . These two terms separately 
represent the growth and volatility features of the production possibility set: 

dqdzYXdt
p

dp
P ++= σμ . (4) 

As in Black and Scholes (1973), Pdz  is a Wiener process, while as in Merton 
(1976), dq  denotes a Poisson variable governing jump events with probability 

dtλ  and 1−L  is its impulse function. Here two state variables X  and Y  are 
designated to represent economic variables. The state variables induce random 
changes and can be described by the stochastic differential equations: 

( ) XdzXcdtXbadX +−=  (5) 

( ) YdzYhdtYgfdY +−= , (6) 

where 0,,, >hcfa  and Xdz  and Ydz  are Wiener processes. Equations (5) and 
(6) are typical Ornstein-Uhlenback processes where ),( fa  are measures of 
mean-reverting speed, ),( gb  are long-term averages, and ),( hc  are diffusion 
terms of ),( YX . Note that we also assume that the jump risk and the Wiener 
processes Xdz  and Ydz  are mutually independent. 

A representative investor plans in advance to allocate his consumption C  and 
reinvest his unconsumed wealth in physical production in order to maximize his 
lifetime utility. In this general equilibrium model, the uniqueness assumption of the 
production process P  guarantees that the agent’s wealth W  is equivalent to the 
value of the stock market or the stock index. Note that futures prices are available 
now and that ρ  has the intuitive interpretation of a dividend yield. Nevertheless, 
X  and Y  are unobservable state variables, and we transform variables in order to 

more clearly express the futures price. 
From standard stochastic programming procedures, we obtain the equilibrium 

interest rate: 

( ) VkXr −+= λμ . (7) 

That is, the equilibrium riskless interest rate equals the expected return of the 
production activity Xμ  plus the expected jump effect kλ  minus the variance of 
market returns V , which completes our variable transformation from the 
unobservable state variables X  and Y  to the observable interest rate r  and the 
market variance V . We can now obtain the dynamic of the value of the stock 
market in terms of observable r  and V : 
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( ) WdqdzVWdtkVrWdW P ++−−+= ρλ . (8) 

According to the general equilibrium framework of Hemler and Longstaff 
(1991) and Cox et al. (1985), the additional jump risk differentiates the equilibrium 
interest rate with the expected impulse component kλ− . Thus, the stock index 
futures price F  satisfies the fundamental valuation equation: 

( ) ( )[ ] ( )[ ]
( )[ ]

τγη

ηλφγ

ϕλεαρ
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VkVrFVFVWF

rVkaFVfFrWF
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2222
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subject to )()0,,,,( TWqVrWF = . According to Equation (9), it is obvious that 
other than the time-preference parameter ρ , futures prices do not depend on any 
preference parameter after allowing for jump effects. On the other hand, although 
the futures price is explicitly a function of non-traded variables, the covariance 
terms of index returns with changes in r  and V  affect the expected returns and 
the variances of futures dynamics simultaneously. These two terms exactly offset 
each other. 

Since under the independence assumption that the jump risk is uncorrelated 
with Pdz , Xdz , and Ydz , expectation operation allowing for jump randomness is 
separable. We can solve (9) and obtain the equilibrium futures price: 
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Equation (10) shows that the equilibrium stock index futures price is a function 
of W , r , ν , and τ , the dividend-yield/time-preference parameter ρ , the 
expected impulse effect of the percent change due to the jump event on the 
production activity k , and the instantaneous jump occurrence probability, λ . 
Substituting 0=τ  into (10) verifies that the equilibrium stock index futures price 
satisfies the boundary condition )()0,,,,( TWqVrWF =  at expiration date. 

Actually, (10) is not complete without specifying the expected impulse effect of 
the jump event. Merton (1976) discusses two possible situations. If his “special case 
1” assumption is adopted, then 1−=k  and the instantaneous equilibrium interest 
rate is downsized by λ . This is also described by Samuelson (1973): there is a 
positive probability of immediate ruin. If “special case 2” is valid, then the random 
variable L  has a log-normal distribution with mean k , and the instantaneous 
equilibrium interest rate is marked up by kλ . If we ignore the jump effect (i.e., if 

0=λ ), then (10) is simplifies to Hemler and Longstaff’s (1991) case. 

3. Results of Comparative Static and Simulation Analysis 

3.1 Comparative Statics of Equilibrium Futures Prices and Variables 

Comparative static results help us to understand relationships between the 
general equilibrium futures price and other important market variables. From (10), it 
is evident that: 
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where ( ) ( )cosh( ) ( ) 2e e⋅ − ⋅⋅ = +  and ( ) ( )sinh( ) ( ) 2e e⋅ − ⋅⋅ = − . 
It is worthwhile to note several functional regularities and behavioral 

assumptions before proceeding. First, absolute values of negative mean-reverting 
parameters represent contraction to long-term averages. That is, the dynamics of the 
interest rate r  and the spot volatility V  become more stable or more tightly 
bounded with larger a  and f . Smaller diffusion terms in the dynamics of r  and 
V  create the same effect. In consequence, smaller 2γ , smaller 2φ , and larger κ  
are equivalent. Second, )(1 τQ  in (10) must be positive to accord with the 
non-negative property of the stock index W . This condition implies that 22 2φ>a  
in functional regularity and that the interest rate dynamics are stable, in agreement 
with economic intuition. This condition also guarantees that )(3 τQ  is positive. 
Nevertheless, )(2 τQ  and )(4 τQ  are indeterminate. Third, λ  is nonnegative 
because it is an occurrence probability and k  is undetermined and depends on 
properties of jump events. For instance, k  is positive for new major technology 
innovations but negative for catastrophes. 

Equation (11) shows that the general equilibrium stock index futures price F  
is a positive and monotonically increasing function of the stock index level W . 
This is due to the nonnegative dynamics of the square roots of )(1 τQ  and W . 
Similarly, the stock index futures price is a decreasing function of the time 
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preference parameter ρ  as shown in (12). Next, Equation (13) reveals that the 
stock index futures price is a uniformly increasing function of the risk-free rate if the 
functional regularity 22 2φ>a  holds. This result is consistent with the cost-of-carry 
model that the interest rate is a carrying cost for underlying assets. In addition, this 
relationship becomes even stronger with a longer time-to-maturity τ  and a smaller 
mean-reverting tendency κ , i.e., within a more stable economy. 

The partial differentiation result in (14) shows that the relationship between the 
stock index futures price and the spot market volatility is indeterminate because 

02)1)(()1(2 >+−+− κκ κτκτ eae  while 02)1)(()1(2 <+−+−− νν ντντ efe . It is 
interesting to notice that we can view the former roughly as a bounded measure of 
the dynamics of the interest rate since a larger κ  or a larger a  makes 

κκ κτκτ 2)1)(()1(2 +−+− eae  smaller, and thus the bounded interest rate dynamic 
tends to yield a negative relationship between the futures price and the spot market 
volatility. In contrast, a more tightly bounded spot volatility dynamic comes from a 
larger f  or a smaller γ ; however, they affect νν ντντ 2)1)(()1(2 +−+− efe  in 
opposite directions. Therefore, the total effect from the volatility dynamic in the spot 
market is inconclusive. 

Even though the partial differential results in (15) and (16) show indeterminate 
comparative static results about the jump occurrence probability λ  and the 
corresponding expected impulse effect k , it is obvious that connections between 
possible jump events and the equilibrium futures prices are related with the bounded 
degrees of the dynamics of the interest rate and spot volatility. The relationship 
between the length of time-to-maturity τ  and the equilibrium stock index futures 
price shown in (17) is difficult to comprehend. The bounded degrees of the interest 
rate and the spot volatility in the economy and the expected impulse effect interact 
in a very complicated manner. Thus, convergence toward Contango or 
backwardation between the equilibrium futures prices and the stock index before the 
expiration date is not monotonic as the cost-of-carry model predicts. We discuss this 
issue further in the next section. 

3.2 Simulations of Equilibrium Futures Prices and Variables 

From the results of the comparative statics, we know that the indeterminate 
relationships are related with the bounded degrees of variables and the sizes of jump 
parameters. Therefore, in this subsection we simulate different scenarios categorized 
by bounded degrees of the economy and the occurrence of jump events to visualize 
relationships among important variables. In each simulation scenario, 251× 5,000 
trials are generated to simulate variable trajectories and distributions. Results are 
presented accordingly in Figure 1. 

The three time-series distributions shown in the figure convey clear information 
that stationary conditions of the economy to determine dispersed degrees of futures 
price evolving dynamics. With larger diffusion terms σ , c , and h , and smaller 
mean-reverting speed coefficients a  and f , the peak of Panel B is fatter than in 
Panel A. Moreover, disconnected jump events exaggerate such uncertainty in an 
unpredictable way as irregular emerging spikes in Panel C. That is, jumps in the 
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index lead to distributions for spot and futures prices that have degrees of skewness 
and kurtosis that are very different from those distributions that disallow for event 
risk. 

Figure 1. Simulated Futures Price Time-Series Distributions within Different Bounded Degrees of 
Economy with- and without Allowing Jump Effects 

Parameter settings: 02.0=μ , 02.0=σ , 95.0=a , 1=b , 02.0=c , 95.0=f , 1=g , 02.0=h , 
0=ρ , 250=− tT , and 0=λ . 

Parameter settings: 04.0=μ , 04.0=σ , 05.0=a , 1=b , 04.0=c , 05.0=f , 1=g , 04.0=h , 
0=ρ , 250=− tT , and 0=λ . 

 

(A) Simulated futures price time-series distribution
      within a bounded economy without jump effects

(B) Simulated futures price time-series distribution 
      within a less bounded economy without jump effects
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Parameter settings: 04.0=μ , 04.0=σ , 05.0=a , 1=b , 04.0=c , 05.0=f , 1=g , 04.0=h , 
01.0=λ , 0=ρ , 250=− tT , and 0=k  (with corresponding impulse effects %101 ±=−L  with 

equal occurring probability 0.5). 

It is worthwhile to examine relationships among the futures price, interest rate, 
and spot volatility by simulations as well. In a bounded economy without event risk 
as shown in Panel A of Figure 2, the three variables interact with each other in a 
clear manner as simulation points scatter adjacently within very narrow bands. In 
contrast, these bands get wider in a less bounded economy without jump events as 
shown in Panel B. Nonetheless, they are still correlated with the same signs as in 
Panel A. For instance, the expected futures price is positively correlated with the 
expected interest rate, and the expected interest rate is negatively correlated with the 
spot volatility. However, Panel C exhibits wildly different, more complex 
relationships after the introduction of event risk. This explains why the literature 
separates possible jumps from spot volatility when discussing various issues even 
when the stochastic spot volatility setting is also taken into account. See Duffie et al. 
(2000) and Liu et al. (2003) for discussion. 

The cost-of-carry model claims that if carrying cost is positive, the futures price 
is greater than the spot price and the Contango phenomenon prevails. In contrast, 
backwardation occurs when the futures price is less than the spot price or when 
carrying cost is negative. In our case, the carrying cost is r ρ− , and the converging 
tendency between spot and futures prices is determined by exogenous parameters, 
cash market volatility V , and the endogenous interest rate r  jointly as shown in 
(10). Although without a definite monotonic pattern, it is obvious that the cash 
market volatility V  and the interest rate r  are key to determining Contango or 
backwardation and the exogenous combination of those parameters. Since r  varies 
inversely with V  as shown in Panels A and B, we predict that an economy with a 
greater unbounded degree or a higher level of market volatility has a higher 
probability of backwardation. Nonetheless, it is not always the case that an higher 
level of jump effects makes the relationships as complex as shown in Panel C. 

(C) Simulated futures price time-series distribution 
      within a less bounded economy with jump effects
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Figure 2. Simulated Relationships among Expected Futures Price, Expected Interest Rate, and 
Expected Spot Market Volatility 

(A) Bounded economy without jump effects 

Parameter settings: 02.0=μ , 02.0=σ , 95.0=a , 1=b , 02.0=c , 95.0=f , 1=g , 02.0=h , 
0=ρ , 250=− tT , and 0=λ . 

(B) Less bounded economy without jump effects 

Parameter settings: 04.0=μ , 04.0=σ , 05.0=a , 1=b , 04.0=c , 05.0=f , 1=g , 04.0=h , 
0=ρ , 250=− tT , and 0=λ . 
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(C) Less bounded economy with jump effects 

Parameter settings: 04.0=μ , 04.0=σ , 05.0=a , 1=b , 04.0=c , 05.0=f , 1=g , 04.0=h , 
01.0=λ , 0=ρ , 250=− tT , and 0=k  (with corresponding impulse effects %101 ±=−L  with 

equal occurring probability 0.5). 

4. Concluding Remarks 

Numerous studies have constructed models that explicitly allow for large 
market movements or fat tails in return distributions. For example, Merton (1976) 
notes that the Black-Scholes continuous-time framework can be improved upon with 
a mixture of a diffusion process and a Poisson-directed process. The diffusion 
process component can be used to represent the frequent local changes and the 
Poisson-directed component can be used to incorporate rare but influential events 
such as major technology innovations or catastrophes. Hemler and Longstaff (1991) 
propose a general equilibrium model that addresses the role of stochastic volatility in 
pricing futures contracts. 

By adapting Hemler and Longstaff’s (1991) preference-free model and 
Merton’s (1976) jump setting, this study develops a new futures pricing model that 
differs considerably from the usual cost-of-carry model. According to our 
closed-form solution and comparative statics and simulation results, we find that 
market volatility and jump events, which are not shown in the cost-of-carry model, 
affect futures pricing due to dynamic and endogenous connections. We find that a 
decreasing level of cash market volatility tends to create a Contango convergence 
pattern in that it varies inversely with the equilibrium interest rate. Nevertheless, the 
emergency of jump events makes relationships among economic variables 
indeterminate. 
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Appendix 

We assume that identical agents seek to maximize their time-additive 
preferences. Their lifetime utility is of the form: 

( )( )[ ]∫
∞ −

t

s
t dssCeE lnρ , (A1) 

where [ ]tE ⋅  is a conditional expectation operator, )(sC  denotes consumption at 
time s , and ρ  is the agent’s intertemporal discount rate of lifetime utility. Since 
the underlying asset is a stock index, we assume that the economy can be described 
by a single physical good that may be allocated to consumption or investment. It is 
governed by the following stochastic differential equation with a drift term Xμ  
that does not allow for expected jump effects and a diffusion term Yσ : 

dqdzYXdt
p

dp
P ++= σμ , (A2) 

where Pdz  is a Wiener process and )1()( −×= Ltdndq , with )(tdn  a Poisson 
variable controlling jump occurrence with probability dtλ  and 1−≡ Lk  is a 
impulse function of the percent change in production activity due to the jump event. 
Here X  and Y  are economic state variables that induce random changes and can 
be described by the stochastic differential equations: 

( ) XdzXcdtXbadX +−=  (A3) 

( ) YdzYhdtYgfdY +−= , (A4) 

where 0,,, >hcfa  and Xdz  and Ydz  are Wiener processes. Equations (A3) and 
(A4) are typical Ornstein-Uhlenback processes, where ),( fa  are measures of 
mean-reverting speed, ),( gb  are long-term averages, and ),( hc  are diffusion 
terms of ),( YX . Note that we also assume that the jump risk and the Wiener 
processes Xdz  and Ydz  are mutually independent. 

A representative investor plans in advance how she will allocate her 
consumption C  and investing unconsumed wealth in physical production in order 
to maximize lifetime utility, (A1), subject to the budget constraint: 

Cdt
p

dpWdW −= , (A5) 

where W  is the agent’s wealth. Thus, the value function can be stated as: 

( ) ( ) ( )tqYXGWetqYXWJ
t

,,,ln,,,, +=
−

ρ

ρ

, (A6) 

and the optimal consumption is Wρ . Substituting the optimal consumption into 
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(A5) gives the wealth dynamics: 

( ) dqdzYdtX
W
dW

P ++−= σρμ . (A7) 

In this general equilibrium model, the uniqueness assumption of the production 
process P  guarantees that the wealth W  is equivalent to the value of the stock 
market and (A7) can be used to represent the stock index dynamics. Nevertheless, 
X  and Y  are unobservable state variables, and we transform variables in order to 

more clearly express the futures price. 
From standard stochastic programming procedures, we can obtain the 

equilibrium interest rate: 

( ) VkXr −+= λμ . (A8) 

That is, the equilibrium riskless interest rate equals the expected return on the 
production activity Xμ  plus the expected jump effect kλ  minus the variance of 
market return V , where: 

YV 2σ=  (A9) 

Equations (A8) and (A9) form a simultaneous linear system that is globally 
invertible for X  and Y . That is: 

( )kVrX λ
μ

−+=
1

 
(A10) 

2σ
VY = . (A11) 

Equations (A10) and (A11) help to complete our variable transformations from the 
unobservable state variables X  and Y  to the observable interest rate r  and 
market variance V . Applying Itô’s lemma gives the following dynamics of r  and 
V : 

( ) YdzVdtVfdV γα +−=  (A12) 

( )[ ] YX dzVdzkVrdtrVkadr ηλφϕλε +−++−−+= , (A13) 

where g2σα = , hσγ = , )( afb αμε −= , )1( af−=ϕ , μφ c= , and 
γη −= . In addition, we can obtain the dynamic of the value of the stock market in 

terms of observable r  and V : 

( ) WdqdzVWdtkVrWdW P ++−−+= ρλ . (A14) 

According to the general equilibrium framework of Hemler and Longstaff 



International Journal of Business and Economics 

 

118 

(1991) and Cox et al. (1985), it is evident that the additional jump risk differentiates 
the equilibrium interest rate with the extra component kλ− . Thus, the stock index 
futures price F  satisfies the fundamental valuation equation: 

( ) ( )[ ] ( )[ ]

( )[ ] τγηηλφγ

ϕλεαρ

FVFVkVrFVF

VWFrVkaFVfFrWF

VrrrVV

WWrVW

=++−+++

+−−++−+−

222

2

2
1

2
1

2
1

 (A15) 

subject to )()0,,,,( TWqVrWF = . We can solve (A15) and obtain the equilibrium 
futures price: 

( ) ( ) ( ) ( )VQrQQeQWeqVrWF τττρτ ττ 432

1),,,,( ++−= , (A16) 

where 
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