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Abstract 
Assuming that a futures price is a function of the underlying asset and the basis, and 

that a Brownian bridge process drives the basis, this article provides the closed-form 
solution of futures with basis risk (FBR). The Brownian bridge process ensures that the 
basis is zero at the maturity of a futures contract. The FBR model is empirically tested with 
daily S&P500 futures data and is found to outperform both the Cornell and French (CF, 
1983a) and Yan (2002) models. The overall mean errors in terms of index points and 
percentages are 0.1918 and −0.002% for the FBR model, compared to −1.8806 and 
−0.2088% for the CF model, and 2.5072 and 0.0973% for the Yan model. 
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1. Introduction 

In recent years, there has been a steady growth in the number of financial assets, 
which might be properly called derivative assets, which are available for trading on 
organized exchanges. Among these, the most notable are contracts of futures and 
options written on futures contracts. In the Chicago Mercantile Exchange, the total 
trading volume of equity and index futures and futures options was 48 million 
contracts in 1999, reaching 313 million in 2004. This spectacular growth has 
prompted many researchers to take a closer look at the pricing between futures 
contracts and the underlying indexes. 
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Traditionally, the pricing of stock index futures has been based on the Cornell 
and French (CF, 1983a) model, which is known as the cost-of-carry model. Under 
the assumption of a perfect market, they derived the futures prices for a stock or a 
portfolio of stocks with constant dividend payout and interest rate. In addition, they 
extended their model by introducing a forward rate, seasonal dividends, and a simple 
tax structure. Since this prominent model was developed, many extensions and 
modifications have been proposed, one of which investigates stochastic interest rates. 
Ramaswamy and Sundaresan (1985) provided closed-form solutions for futures and 
futures options using the stochastic interest rate model of Cox et al. (1985) arguing 
that stochastic interest rate models could explain the mispricing of options on S&P 
500 futures. Hemler and Longstaff (1991) developed a general equilibrium model of 
stock index futures prices with stochastic interest rates and market volatility. Their 
model allows the stock index futures price to depend on the variance of returns on 
the market, instead of just the prices of assets traded. 

Gibson and Schwartz (1990) developed a two-factor model for commodity 
futures in which the first factor is the spot price of the commodity and the second 
factor is the instantaneous convenience yield. Schwartz (1997) extended the 
two-factor model by introducing the stochastic interest rate as a third stochastic 
factor. Hilliard and Reis (1998) investigated the pricing of commodity futures and 
futures options under the stochastic convenience yield, stochastic interest rate, and 
jumps in the spot price. Nevertheless, all of these models leave the market price of 
convenience yield risk as a parameter in their pricing formulas. Meanwhile, standard 
no-arbitrage arguments leave no room for the explicit modeling of mean reversion 
via the drift of the spot commodity price. 

Miltersen and Schwartz (1998) obtained closed-form solutions for the pricing 
of options on futures contracts, as well as the forward contract price, by assuming 
normality of continuously compounded forward interest rates, mean-reversion 
convenience yields, and log-normality of the spot price of the underlying commodity. 
Yan (2002) proposed a general commodity valuation model for futures and futures 
options by incorporating stochastic convenience yields, stochastic interest rates, 
stochastic volatility, and simultaneous jumps in spot prices and volatility. He found 
that the closed-form solution of the futures price is not a function of spot volatility 
or jumps. However, numerical examples show that the two play important roles in 
pricing options on futures. 

The articles discussed above use the tax structure, convenience yield (or 
dividend), term structure of interest rates, market volatility, and jumps in spot price 
and volatility to indirectly model the difference between the log futures price and the 
log spot price, henceforth called the basis (Yan, 2002). However, there is no 
agreement on the appropriate number of state variables to include in a futures model 
or basis function. In the current study, a futures price is assumed to be a function of 
the underlying asset and the basis, where a Brownian bridge process drives the basis. 
A Brownian bridge process is used to directly describe the basis process, instead of 
indirectly modeling the basis functions through the state variables discussed above. 
Thus, the number of variables in a basis function does not need to be determined. 
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The first purpose of the current study is to derive the closed-form solution of 
futures pricing using a basis risk approach. A Brownian bridge is like Brownian 
motion except that, with probability one, it reaches a specified point at a specified 
time. Under the assumption of no arbitrage, the spot and futures prices will converge 
at the expiration of the futures contract. In other words, the basis value is zero at the 
time when the futures contract expires. However, the volatility of the Brownian 
bridge process is only a function of time-to-maturity. Therefore, using the 
time-varying volatility modifies the Brownian bridge process, ensuring that the basis 
is zero at maturity and reflecting the time variation of basis volatility. The setup 
allows for the prices of futures and futures options to be functions of the spot price, 
initial basis, and volatilities of the spot return and interest rate. 

To investigate the effects of basis risk on the futures with basis risk (FBR) model, 
which is the second purpose of the study, the analysis will be performed using a 
numerical approach. The numerical analysis will show that the futures price is 
positively related to the initial basis and basis volatility. The final purpose of the 
study is to empirically test the FBR model using the daily S&P 500 Composite Price 
Index and S&P 500 futures. Compared with the CF and Yan models, the empirical 
test provides evidence supporting the occurrence of basis risk in the futures on the 
stock index. In addition, the empirical results imply that the general framework of 
the futures model proposed by Yan (2002) has an over-sufficiency of information in 
identifying the futures price (Gujarati, 2002, p.747). The over-sufficiency of 
information may result from the fact that the Yan model incorporates most stochastic 
factors discussed in the futures literature, and, therefore, the futures price estimated 
is generally higher than the actual price. The test in Section 3 illustrates that the FBR 
model is superior to the CF and Yan models due to a smaller bias, lack of 
time-to-maturity and SF  ratio biases, and better goodness-of-fit. The overall 
mean errors in terms of index-point and percentage are 0.1918 and −0.002% for the 
FBR model, compared to −1.8806 and −0.2088% for the CF model and 2.5072 and 
0.0973% for the Yan model. 

An outline of this study is as follows. Section 2 presents the valuation 
framework for the futures with basis risk, while Section 3 contains a numerical 
analysis of the FBR model. Section 4 empirically tests the performance of the FBR 
model, and Section 4 summarizes the paper. 

2. The Valuation Framework 

When the pricing of financial instruments is subject to basis risk, it is essential 
to construct a proper model for the basis process. In this section, we assume that the 
futures price is affected by the underlying asset and the basis, where a Brownian 
bridge process drives the basis. 

Under the spot martingale measure Q , we will assume that the underlying 
security S  follows a geometric Brownian motion with continuous dividend-yield 
δ , and the spot interest rate )(tr  follows the extended Vasicek model. The 
stochastic differential equations (SDEs) are given by: 
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where Sσ  and rσ  are the volatilities of the spot return and the interest rate and 
)(tW Q  denotes three-dimensional standard Brownian motion, which is a martingale 

defined on a filtered probability space ))(,,,( 0
∞
=Ω ttQ FPF . The model of the 

underlying security price process is always positive, has an instantaneous mean rate 
of return ( )r t δ− , and is driven by a single Brownian motion. In a world where 
investors are risk neutral, the instantaneous mean rate of return on the underlying 
asset is the risk-free interest rate r  minus the dividend-yield δ . This is because 
risk-neutral investors do not require a premium to induce them to take risks. 

The spot interest rate r  in (2) is mean-reverting since the expected rate moves 
toward the value )(tθ  (i.e., )(tθ  can be regarded as a long-term average rate). 
The drift of the process r  is positive when the short rate is below )(tθ  and 
negative otherwise, so r  is constantly pushed closer, on average, to the level )(tθ . 

Let ),( TtfS  be the forward price of the stock index at time t  with maturity 
T , which satisfies: 
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where ),( TtB  is the price at time t  of a zero-coupon bond paying one unit of 
cash at time T . Under the measurable space ),( FΩ , there exists a forward 
risk-neutral probability measure TP  (i.e., ),( TtB  is taken as the numeraire). The 
Radon-Nikodym derivative is: 
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where || ⋅  denotes the Euclidean norm in 3R . By the Girsanov theorem, we have: 

( )T ( ) ( , )QdW t dW t b t T dt= −  for all [ ]0,t T∈ , (7) 

where )(tW T  denotes three-dimensional Brownian motion under the forward 
measure TP . Therefore, the forward price of a stock index is a TP -martingale and 
satisfies: 
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where ),(~),( TvbTv s −= ση . 
The traditional, standard modeling procedure for the pricing of futures 

contracts is to specify the state variables related to the futures price. The futures 
price may be a function of a one- or multiple-state variable. Cornell and French 
(1983a) suggested a one-factor model, Ramaswamy and Sundaresan (1985) and 
Gibson and Schwartz (1990) proposed two-factor models, Schwartz (1997) and 
Hemler and Longstaff (1991) proposed three-factor models, and Yan (2002) 
suggested a multi-factor model. However, no research has investigated how many 
state variables should be included in futures models. 

This paper proposes an alternative model for the pricing of stock index futures 
by assuming that a futures price is a function of the underlying asset and the basis, 
and the stochastic process of basis behaviors is a modified Brownian bridge process. 
Following the definition proposed by Yan (2002), the basis ),( TtZ  is defined as 
the log futures price at time t  with delivery date T  minus the log spot price at 
time t . That is: 

)(ln),(ln),( tSTtFTtZ −= . (9) 

In this article, the basis process is assumed to follow a Brownian bridge process, 
which is used to mimic the basis process directly, instead of indirectly modeling the 
basis function through state variables, such as tax structure, convenience yield (or 
dividend), term structure of the interest rate, stochastic volatility, and so on. With 
this assumption, the appropriate number of state variables to include in the futures 
model, as well as in the basis function, need not be determined. 

A Brownian bridge is a stochastic process that is like Brownian motion except 
that it will reach a specified point at a specified time. Under a no-arbitrage 
assumption, the spot and futures prices will be the same at the maturity of the futures, 
which means that the basis is zero at that time. A Brownian bridge process describes 
the zero value for the basis quite well at the maturity of the futures. However, the 
volatility of the Brownian bridge process is only a function of time-to-maturity and 
cannot reflect the time variation of basis volatility. Therefore, using time-varying 
volatility modifies the Brownian bridge process. Let the basis ),( TtZ  be a 
modified Brownian bridge in the time interval ],0[ T  with 

)0(ln),0(ln),0( STFTZ −=  and 0),( =TTZ . Under spot martingale measure 0P , 
the basis process is defined as follows: 
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where T  is the expiration date of the futures contract and ),( TtZσ  is the 
time-varying basis volatility. The modified Brownian Bridge process considers the 
basis volatility, and ),( TtZ  is equal to zero as t  approaches T  (Klebaner, 1988). 
The solution of the basis process is presented in Proposition 1. 

Proposition 1: Under the forward measure TP , the basis is as follows: 
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The basis is directly modeled as an exogenous stochastic process, so we do not 
need to determine the number of state variables in the basis function. Moreover, 

),( TtZ  will approach zero almost surely when Tt =  (Klebaner, 1988, p. 124). 
We now derive the closed-form solution of futures with basis risk. According to 

(9), the futures equal )(tS  multiplied by the exponential of ),( TtZ  as shown in 
Proposition 2. 

Proposition 2: The solution of the futures by basis risk approach is: 
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for all [0, ]t T∈ . Using the technique of moment generating functions, the mean 
and variance of futures with basis risk are: 
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There are several important characteristics of the futures process. First, the 
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expectation of the futures price is a function of the spot price, volatility of the spot 
return, initial basis, and basis volatility. Second, the basis is modeled directly 
without regard to the appropriate number of state variables in a futures contract. 
Third, the basis is not only stochastic but also has a zero value at the maturity of the 
futures contract. The Brownian bridge process describes the convergence behavior 
of the spot price and the futures price quite well at the expiration of the futures 
contract. The features of the futures model with basis risk are presented graphically 
by numerical analysis in the next section. 

3. Numerical Analysis 

To investigate the properties of the FBR model, numerical results are illustrated 
in Figures 1 and 2. The numerical analysis focuses on the effects of the basis risk, 
rather than the effects of the spot price, on the futures price. Therefore, only the two 
parameters of initial basis and basis volatility are used to assess the impact of the 
basis risk on the futures price. The effects of the parameters for the spot price and 
interest rate on the futures price have been investigated by other researchers. 
Therefore, these factors are not mentioned in the current study. Figure 1 shows the 
relation between the futures price and the initial basis ),0( TZ . Let the futures 
prices be computed using 100)0( =S , 03.0=r , 015.0=δ , 5.0=T , 3.0=t , 

09.0=Zσ , and ),0( TZ , which ranges from −0.5 to +0.5. Here ),0( TZ  is 
defined as the log futures price minus the log spot price. When ),0( TZ  is a 
negative number, the futures market is an inverted market; otherwise, if ),0( TZ  is 
a positive value, it is a normal market. As shown, the solution for the futures price in 
(14) increases with respect to the initial basis. When the initial basis is less than zero, 
the futures price is also less than the spot price. Holding the spot price unchanged, a 
higher initial basis results in a higher futures price. In addition, the futures price is a 
function of the exponential of the initial basis, so it has growth on an upward curve. 

Figure 1. The Effect of the Initial Basis on the Price of Futures Contracts 

Figure 2 shows the impact of basis volatility Zσ  on the futures price. Let 
05.0),0( =TZ , Zσ  range from 0 to 1, and the values of other parameters remain 
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the same as above. In Figure 2, the futures price in (14) increases with respect to the 
basis volatility. This suggests that the holder of the futures contract should be 
compensated for taking risk when the basis volatility is high. 

The numerical analysis suggests that the initial basis and basis volatility have 
significant and positive impacts on the futures price. The next section provides 
empirical evidence for the occurrence of basis risk in stock futures and assesses the 
performance of the FBR model using S&P 500 futures. 

Figure 2. The Effect of the Basis Volatility on the Price of Futures Contracts 

4. Empirical Test 

This section includes an empirical test of the performance of the FBR model. 
The CF and Yan models are used to assess the efficiency of the FBR model. The CF 
model is the model of non-basis risk. The basis risk is the only difference between 
the FBR and CF models, so if the FBR model can significantly improve the biases 
and goodness-of-fit created by the CF model, we can determine the existence of 
basis risk. 

The Yan (2002) model is used to perform another empirical test of a general 
futures model that incorporates most stochastic factors investigated in the futures 
literature. The FBR model directly formulates the basis as an exogenous stochastic 
process, while Yan’s model indirectly formulates the basis through the stochastic 
convenience yield, stochastic interest rate, stochastic volatility, and simultaneous 
jumps in the spot price and volatility. The comparison can empirically assess which 
pricing approach is more efficient. 

4.1 Empirical Data 

The empirical test of the FBR model is carried out using daily traded prices of 
the S&P 500 Composite Price Index and the S&P 500 futures on the Chicago 
Mercantile Exchange from January 2, 1991, to June 6, 2007. The data were chosen 
since the futures have great liquidity in the US and these sources are used 
pervasively in the existing literature (Lim and Guo, 2000). 
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There are 4,286 futures prices in the sample, and all the futures contracts in the 
sample are nearby contracts. They are quoted in index points and range from 312.65 
to 1,555.40. The risk-free rate is the secondary market rate of US 3-Month Treasury 
Bills provided by the Federal Reserve Bank of Saint Louis. These data are used to 
estimate the parameters and compute the model prices. 

4.2 Parameter Estimation 

To implement the futures pricing model, some unobservable parameters must 
be estimated using the observed traded futures prices in the sample data. For 
simplicity, the parameters are assumed to be constant. However, monthly 
estimations greatly increase the fit; therefore, we follow the spirit of many existing 
empirical models and use this method (Bakshi et al., 1997; Chang et al., 1998; Lim 
and Guo, 2000). For the FBR model, the parameters of the process Sσ , a , Zσ , 
and ),0( TZ  must be estimated from the realized data. However, Sσ  is the only 
parameter that needs to be estimated in the CF model. For Yan’s model, the 
parameters of the process Sσ , rθ , rκ , and rσ  (defined in Yan, 2002) must be 
estimated from the realized daily data. 

4.3 Test of Model Performance 

The performance of the FBR model is examined using an empirical test. We 
divided time-to-maturity into three groups and the SF  ratio into four groups. 
Including both the subtotals and the grand total, there are 20 groups. We show the 
mean error (ME), mean absolute error (MAE), and root mean square error (RMSE) 
statistics in terms of both index points and percentage in order to assess the 
efficiency of the three competing futures models. The index point error is defined as 
the difference between the model price and the actual price. The percentage error is 
the index point error divided by the actual price: 

actualmoindex FFe −=  (18) 

100%index
per

actual

e
e

F
= × , (19) 

where moF  is the model price of future contract, actualF  is the actual price of the 
futures contract, indexe  is the index point error, and pere  is the percentage error. 

The empirical test assesses the performance of the model prices compared to 
the actual prices using the parameters estimated from the realized data in the same 
month. The time-to-maturity and SF  ratio biases are examined to analyze the 
magnitude of misspecification. 

Table 1 presents descriptive statistics for the futures prices calculated for the 
FBR, CF, and Yan models, respectively. The prices computed by Yan’s model are 
larger than those of the FBR and CF models in most cases. For the grand total group, 
the Yan model has the highest average model price (922.89), while the CF model has 
the lowest average model price (918.50). 
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Table 1. Descriptive Statistics 

Time-to-Maturity 

( tT − ) 
21)( ≤− tT  21)(43 >−≥ tT  43)( >− tT  All Maturities 

SF  ratio FBR CF Yan FBR CF Yan FBR CF Yan FBR CF Yan 

< 0.9998             

Number 353 416 306 1075 

Mean 943.49 944.48 944.03 909.44 912.24 911.12 892.62 897.32 893.92 915.83 918.58 917.03 

SD 331.34 331.80 331.76 342.58 343.72 341.86 320.01 321.58 319.16 332.92 333.87 332.51 

[0.9998, 1.0040)             

Number 346 416 314 1076 

Mean 850.12 849.81 849.06 847.23 846.42 850.68 836.20 834.88 838.91 844.94 844.14 846.73 

SD 369.94 369.77 368.85 386.67 386.26 393.23 367.04 366.43 377.88 375.37 374.98 380.73 

[1.0040, 1.0088)             

Number 325 373 365 1063 

Mean 883.71 882.86 882.08 964.49 961.47 969.35 917.07 912.20 936.23 923.51 920.52 931.30 

SD 381.26 380.85 380.35 374.44 373.22 385.71 389.55 387.45 434.51 382.83 381.50 402.76 

> 1.0088             

Number 417 247 408 1072 

Mean 986.16 984.42 984.12 993.37 985.84 984.52 1013.78 1001.00 1017.39 998.33 991.06 996.87 

SD 353.62 353.05 353.40 346.63 343.87 345.66 373.62 368.61 403.29 359.68 356.75 371.51 

All Ratios             

Number 1441 1452 1393 4286 

Mean 919.94 919.41 918.86 920.03 918.55 921.25 921.79 917.51 928.77 920.57 918.50 922.89 

SD 362.39 362.15 361.93 368.27 367.38 372.54 370.88 368.12 394.66 367.07 365.79 376.34 

The empirical results in index points and percentage terms are presented in 
Tables 2 and 3, respectively. The FBR model shows better goodness-of-fit with no 
significant evidence of biases related to the time-to-maturity or SF  ratio. In 
contrast, the CF and Yan models displayed worse goodness-of-fit with evidence of 
time-to-maturity and SF  ratio biases. 

Bias 

The overall empirical performances showed no significant biases for the FBR 
model, but Yan’s model showed significant biases and the CF model displayed a 
certain degree of bias. The mean error of the FBR model is smallest in terms of 
index points and the percentage of all futures in the sample. For the grand total 
group, the mean error is 0.1918 and −0.002% for the FBR model, −1.8806 and 
−0.2088% for the CF model, and 2.5072 and 0.0973% for the Yan model. The mean 
error of the FBR model in index points is 10 and 13 times smaller than those of the 
CF and Yan models, respectively. 

There is no significant time-to-maturity or SF  ratio bias for the FBR model. 
However, the CF and Yan models displayed significant biases in terms of both the 
time-to-maturity and SF  ratio. In both the SF  ratio and time-to-maturity, the 
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Yan model generally overestimated the futures price (shown by a positive mean 
error), but the CF model underestimated the futures price (shown by a negative 
mean error) in most groups. Moreover, there are two obvious patterns in Table 2: (1) 
the degree of mispricing for the CF model was positively proportional to the SF  
ratio, i.e., the futures prices were underpriced more severely when the SF  ratio 
was increasing and (2) Yan’s model overpriced the futures prices more severely 
when the time-to-maturity was farther away. The bias was evident according to the 
mean errors for both index points and percentage. 

Table 2. Empirical Test Results: Index Point Errors 

Time-to-Maturity 

( T t− ) 
21)( ≤− tT  21)(43 >−≥ tT  43)( >− tT  All Maturities 

SF  ratio FBR CF Yan FBR CF Yan FBR CF Yan FBR CF Yan 

< 0.9998     

Mean 4.8621 5.8481 5.3983 4.1934 6.9957 5.8774 2.5207 7.2199 3.8261 3.9369 6.6827 5.1362 

MAE 4.8714 5.8539 5.5180 4.3131 7.0521 6.4213 3.2495 7.3647 5.0008 4.1937 6.7476 5.7203 

RMSE 7.0712 8.6141 11.0714 6.0749 10.2295 17.1683 4.9084 10.6476 10.5576 6.1285 9.8556 13.6397 

[0.9998, 1.0040)     

ME -0.6319 -0.9453 -1.6932 1.1031 0.2946 4.5586 1.8830 0.5603 4.5949 0.7728 -0.0266 2.5589 

MAE 1.1528 1.3216 2.9320 1.7629 1.5770 10.4884 2.7332 2.4979 12.3846 1.8499 1.7636 8.6119 

RMSE 1.5193 1.7245 5.4431 2.6716 2.2709 38.3859 4.1958 3.5317 62.3804 2.9392 2.5671 41.4097 

[1.0040, 1.0088)     

ME -3.9742 -4.8212 -5.5986 0.0127 -3.0014 4.8767 3.4283 -1.4464 22.5837 -0.0334 -3.0238 7.7540 

MAE 3.9785 4.8212 6.4433 1.9511 3.1188 18.7316 3.9709 2.6861 36.8324 3.2645 3.4907 21.1898 

RMSE 4.6216 5.4220 7.7546 2.5817 3.8111 51.0697 5.5282 3.5687 129.2357 4.4003 4.2962 81.6605 

> 1.0088     

ME -11.7764 -13.5129 -13.8194 -3.7145 -11.2441 -12.5641 3.9760 -8.7964 7.5850 -3.9236 -11.1951 -5.3837 

MAE 11.7764 13.5129 15.2687 4.1184 11.2441 18.5574 4.5691 8.8401 38.6671 7.2689 11.2117 24.9318 

RMSE 13.9841 15.7063 17.9047 5.4167 13.4773 29.0269 6.1691 11.4666 107.8131 9.8648 13.7060 68.8678 

All Ratios     

ME -3.2649 -3.7921 -4.3459 0.8888 -0.5951 2.1054 3.0410 -1.2431 10.0153 0.1918 -1.8806 2.5072 

MAE 5.7753 6.7491 7.9274 2.9426 5.1862 12.8133 3.7086 5.4739 24.8665 4.1440 5.8052 15.0880 

RMSE 8.6145 9.8442 11.9780 4.3956 8.1294 36.3307 5.3306 8.3405 93.1795 6.3821 8.8079 57.5959 

In addition, the relative magnitude of the MAE with respect to the absolute ME in 
index points was larger in most subcategories in the FBR model than in the CF and 
Yan models. For example, in the grand total group of Table 2, the CF model generated 
an MAE of 5.8055 and an ME of −1.8806, while the Yan model generated 15.088 and 
2.5072 and the FBR model generated 4.144 and 0.19183. Taking MAE/ME (Lim and 
Guo, 2000), we obtain 3 for the CF model, 6 for the Yan model, and 21 for the FBR 
model. This can also be interpreted as evidence of bias in the CF and Yan models. 
When most of the errors are of the same sign in each subgroup, the ME is close to the 
MAE in index points, and vice versa. The prices of the FBR model are closer around 
the actual prices, so the ME is much smaller than the MAE in index terms. 
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Table 3. Empirical Test Results: Percentage Errors 

Time-to-Maturity 

( T t− ) 
21)( ≤− tT  21)(43 >−≥ tT  43)( >− tT  All Maturities 

SF  ratio FBR CF Yan FBR CF Yan FBR CF Yan FBR CF Yan 

< 0.9998             

ME 0.4856 0.5853 0.5358 0.4303 0.7295 0.7244 0.2625 0.7865 0.4804 0.4007 0.6984 0.5930 

MAE 0.4865 0.5859 0.5536 0.4420 0.7351 0.8071 0.3342 0.8008 0.6549 0.4259 0.7048 0.6805 

RMSE 0.6623 0.8077 1.0215 0.5717 0.9955 2.1711 0.4458 1.0783 2.0828 0.5719 0.9637 1.8443 

[0.9998, 1.0040)      

ME -0.0900 -0.1252 -0.1738 0.0883 -0.0051 0.3606 0.1817 0.0235 0.3714 0.0582 -0.0354 0.1919 

MAE 0.1376 0.1607 0.3885 0.1719 0.1684 1.1356 0.2736 0.2647 1.4175 0.1906 0.1940 0.9776 

RMSE 0.1695 0.1969 0.7630 0.2220 0.2116 3.2752 0.3617 0.3241 5.2357 0.2578 0.2458 3.5120 

[1.0040, 1.0088)      

ME -0.4621 -0.5549 -0.6333 -0.0389 -0.3489 0.2094 0.3060 -0.2242 1.4742 -0.0498 -0.3691 0.3861 

MAE 0.4624 0.5549 0.7421 0.1959 0.3573 1.7413 0.3686 0.3137 3.1941 0.3367 0.4027 1.9347 

RMSE 0.4965 0.5788 0.8609 0.2384 0.4203 3.9936 0.4472 0.3914 9.7495 0.4050 0.4658 6.2017 

> 1.0088      

ME -1.1580 -1.3330 -1.3791 -0.3939 -1.1339 -1.3222 0.3214 -0.9302 0.1576 -0.4189 -1.1338 -0.7811 

MAE 1.1580 1.3330 1.5083 0.4241 1.1339 1.8234 0.4021 0.9332 3.3959 0.7012 1.1350 2.2994 

RMSE 1.2639 1.4346 1.6413 0.5399 1.2984 2.4424 0.4871 1.1692 8.1430 0.8825 1.3074 5.2592 

All Ratios      

ME -0.3420 -0.3976 -0.4524 0.0716 -0.0750 0.1397 0.2729 -0.1531 0.6217 -0.0020 -0.2088 0.0973 

MAE 0.5916 0.6930 0.8328 0.2984 0.5435 1.3141 0.3495 0.5911 2.2950 0.4136 0.6092 1.4711 

RMSE 0.7951 0.9166 1.1585 0.4147 0.7931 3.0880 0.4416 0.8483 7.1735 0.5781 0.8541 4.5174 

Goodness-of-Fit 

The overall MAE in index terms is 4.144 for the FBR model, 5.8055 for the CF 
model, and 15.088 for the Yan model. In percentage terms, the overall MAE is 
0.4136% for the FBR model, 0.6092% for the CF model, and 1.4711% for Yan’s 
model. This is consistent with the RMSE statistics. The FBR model is superior to the 
CF and Yan models in most categories. 

The MAE and the RMSE are reported to measure each model’s goodness-of-fit. 
The MAE gives the sense of expected average error, while the RMSE punishes 
larger errors because they receive more weight when squared, so it is more 
appropriate for use with risk-averse investors. By both measures, the FBR shows 
better goodness-of-fit. 

The smaller bias and better goodness-of-fit in the empirical test for the FBR 
model shows that: (1) there is evidence of basis risk in S&P 500 futures and (2) the 
FBR model directly formulates the basis as an exogenous stochastic process, while 
the Yan model indirectly formulates the basis using factors investigated in the 
futures literature. The pricing approach in the FBR model is more efficient than that 
in Yan’s model. The theoretical assumptions about a futures price, which is affected 
by the underlying asset and the basis, is, therefore, supported by empirical results. 
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5. Conclusion 

This study formulates an alternative futures model that differs from the Cornell 
and French (1983a) and Yan (2002) models by assuming that the futures price is a 
function of underlying assets and basis risk, which follows a Brownian bridge process. 
This assumption does not require us to determine the appropriate number of state 
variables in a futures model. In addition, the basis is modeled directly as an exogenous 
stochastic process that has a zero value at the maturity of the futures contract. The 
basis follows a Brownian bridge that describes the convergence behavior of the spot 
price and the futures price quite well at the expiration of the futures contract. 

The FBR model is empirically tested using daily data on the S&P 500 
composite price index and S&P 500 futures. Compared with the Cornell and French 
(1983a) and Yan (2002) models, the empirical test provides evidence that supports 
the occurrence of basis risk in a futures model. In addition, the Yan (2002) model 
has an over-sufficiency of information to estimate the futures price. The FBR model 
outperformed the CF and Yan models by producing a smaller bias, eliminating the 

SF  ratio and time-to-maturity biases and demonstrating a better goodness-of-fit. 
In most categories, the mean errors in terms of both index points and percentages are 
much smaller for the FBR model than for the CF and Yan models. The futures 
model with basis risk gives an exact formula that provides greater accuracy and is 
useful for developing stock index futures. 

Appendix 

Proof of Proposition 1 

According to the Girsanov theorem in (7), the basis process ),( TtZ  defined in 
(10) can be written as: 

T

T

( , ) ( , ) ( , ) ( ) ( , )

( , ) ( , ) ( , ) ( , ) ( ).

Z

Z Z

Z t TdZ t T dt t T dW t b t T dt
T t
Z t T t T b t T dt t T dW t
T t

σ

σ σ

− ⎡ ⎤= + +⎣ ⎦−
−⎡ ⎤= + ⋅ +⎢ ⎥−⎣ ⎦

%

% %

 (A-1) 

To obtain the solution of ),( TtZ , we use the technique presented in Klebaner (1998, 
p. 121). Consider the general linear SDE: 

[ ] [ ]( , ) ( ) ( ) ( , ) ( ) ( ) ( , ) ( )dZ t T t t Z t T dt t t Z t T dW tα β γ ϕ= + + + , (A-2) 

where the functions α , β , γ , and ϕ  are given and adapted processes and are 
continuous functions of t . Then ),( TtZ  is found to be: 

0 0

( ) ( ) ( ) ( )( , ) ( ) (0, ) ( )
( ) ( )

t tu u u uZ t T X t Z T du dW u
X u X u

α ϕ γ γ⎡ ⎤−
= + +⎢ ⎥

⎣ ⎦
∫ ∫ , (A-3) 
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where )(tX  is the stochastic exponential SDE and: 

( ) ( ) ( ) ( ) ( ) ( )tdWtXtdttXttdX ϕβ += .  

From (A-1) and (A-2), we have ( ) ( , ) ( , )Zt t T b t Tα σ= ⋅% , ( ) 1t T tβ = − − , 
( ) ( , )Zt t Tγ σ= % , and 0)( =tϕ . Let 1)0( =X . From the previous condition, we use 

(A-3) to obtain (12). 
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