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Assessing the Accuracy of Event Forecasts 

Ching-Chuan Tsong* 
Department of Economics, National Chi Nan University, Taiwan 

Event forecasts, often generated from estimated econometric models, comprise a binary time 

series. In empirical finance, the market timing test proposed by Henricksson and Merton 

(1981) is probably the most popular method to assess the accuracy of these forecasts. 

Unfortunately, event forecasts and/or realizations are serially correlated, violating the 

independent identical distributed (IID) assumption. Consequently, the market timing test has 

an inflated size that can lead to doubtful empirical results. We find that the heteroskedasticity- 

autocorrelation (HAC) robust t-test with fixed-b asymptotics in Kiefer and Vogelsang (2005) 

and with the empirical distribution obtained using the naive block bootstrap can overcome 

this problem. As compared to several extant testing methods, simulation results reveal that the 

empirical size of these two testing procedures is quite close to the nominal size in finite 

samples. An empirical study is performed to demonstrate the usefulness of the naive block 

bootstrap. 
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1 Introduction 

Used in decision-making, forecasting has always been an important topic in 
economics and finance. Government institutions make policy decisions via forecasts 
of certain economic variables, and firms depend on forecasting to guide their 
investment decisions. While real-valued point forecasts are popular in the academic 

                                                 
Received November 15, 2008, revised February 16, 2009, accepted June 2, 2009. 
*Correspondence to: Department of Economics, National Chi Nan University, Nantou 545, Taiwan. 

Tel: (88649) 291-0960 ext. 4662; Fax: (88649) 291-4435; E-mail: tcc126@ncnu.edu.tw. Tsong gratefully 
acknowledges the anonymous referee’s helpful comments and thanks Pau-Yu Lu for undertaking data 
collection. 



Ching-Chuan Tsong 220 

area, financial practitioners rely more on direction-of-change forecasts for their 
investments. For instance, if stock market returns will be higher than the yield of 
treasury bills, investors should reallocate their funds from the bond market to the 
stock market to gain more profits. Engel (1994) predicts the direction of change of 
18 exchange rates by using the Markov switching model. A challenge that 
practitioners face is whether or not the event forecasts are accurate. One answer to 
this issue is to develop an out-of-sample test for evaluating the event forecasts on 
hand. This financial literature was pioneered by Henricksson and Merton (1981) 
who proposed the market timing test (henceforth, the HM test). Since then, the HM 
test has been used in a wide variety of applications. 

Although the HM test was proposed for this purpose, its use may not be 
appropriate in time-series situations. Event forecasts－obtained from truncating 
certain predetermined value of point forecasts generated by estimated econometric 
models－may be serially correlated. Similarly, event realizations generated by an 
unknown process are possibly autocorrelated as well. The serial correlation of event 
forecasts and/or realizations violates the maintained IID assumption for the HM test. 
In this paper, we first show through a simulation that the IID assumption is crucial 
for the validity of the HM test. Without this assumption, this test has severe size 
distortions that can falsely reject the null hypothesis and lead to questionable 
empirical results. Therefore, a robust test that can account for autocorrelated event 
forecasts and realizations is extremely important to portfolio managers. However, to 
our knowledge, the issue has received－and continues to receive－little attention in 
the financial literature thus far. 

The conventional HAC robust t-test (e.g., Newey and West, 1987) in a 
regression framework accommodates serially correlated disturbances, and therefore, 
it should be a good starting point for getting a robust test. Under the assumption that 
as the sample size (n) grows, the number (M) of sample autocovariances becomes 
infinite and the fraction ( nM ) of sample autocovariances for the variance estimator 
tends to zero, the HAC estimator is consistent for asymptotic variance. Hence, the 
asymptotics of the HAC robust t-test can be derived as though the variance were 
known. While the asymptotics follows the standard normal distribution, the HAC 
robust t-test still has a tendency to over reject the null hypothesis in finite samples 
(e.g., Andrews, 1991). Therefore, the HAC robust t-test with the standard normal 
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distribution is only a partial solution to the over-sized issue. 
In practice, however, given a particular data set, a practitioner uses some 

positive fraction of autocovariances to estimate the asymptotic variance. This 
implies that nM  should be a positive number less than or equal to unity. Based on 
this fact, Kiefer and Vogelsang (2005) derived a brand-new asymptotic theory for 
the asymptotic variance estimator under the assumption of bnM = , where 

]1,0(∈b . While the HAC variance estimator is no longer consistent in this case, its 
asymptotic distribution is proportionate to the unknown asymptotic variance and 
depends on the kernel and b. 
In addition, the HAC robust t-test has pivotal asymptotics (henceforth, fixed-b 
asymptotics) that, however, depends on the kernel and b. This differs from the 
standard normal distribution wherein the effects of kernel and bandwidth are not 
involved. Derived under the assumption of bnM = , where ]1,0(∈b , which 
reflects the situations in empirical applications, the fixed-b asymptotics is a more 
accurate approximation to the sampling distribution of the HAC robust t-test than 
standard normal distribution. Therefore, with the critical value from the fixed-b 
asymptotics, over-rejections can be reduced remarkably. 

Bootstrap is an alternative approximation to the sampling distribution of a test 
statistic. With an appropriate resampling procedure, bootstrap is an effective method 
to reduce the size distortions of a test statistic (e.g., Davison and Hall, 1993; Lahiri, 
1996; Andrew, 2002). Based on this concept, Gonçalves and Vogelsang (2006) 
proposed the naive block bootstrap, where the formulas used on the bootstrap 
sample and the original data to compute the test are identical. They showed that the 
naive block bootstrap has the same large-sample distribution as the fixed-b 
asymptotics. Most importantly, evidence from our simulation shows that as 
compared with the fixed-b asymptotics, the empirical distribution obtained from the 
naive block bootstrap is a more accurate approximation to the sampling distribution 
of the HAC robust t-test in finite samples. This implies that the naive block 
bootstrap can deliver a more accurate size than fixed-b asymptotics in small samples 
even when event forecasts and/or realizations are serially correlated. In this paper, 
we rely on the naive block bootstrap to deal with the over-rejections of the HAC 
robust t-test used to assess the accuracy of event forecasts. 

The remainder of the paper is organized as follows. Section 2 reviews some 
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extant tests and the HAC robust t-test for evaluating the accuracy of event forecasts. 
Section 3 reports the simulation results showing that the naive block bootstrap is a 
promising approach to overcome the over-sized problem. In Section 4, we provide 
an illustrative application. Section 5 summarizes the paper and offers some 
concluding remarks. 

2 Evaluating Event Forecasts 

Suppose that n
ttY 1}{ =  is a binary stochastic process denoting out-of-sample event 

forecasts from a certain econometric model, and n
ttX 1}{ =  is the corresponding 

stochastic process of event realizations. Under the maintained assumption that both 
n
ttY 1}{ =  and n

ttX 1}{ =  are individually IID processes, Henriksson and Merton (1981) 
test the null hypothesis of no timing ability, that is,  

1)11()00(:0 ===+== tttt XYPXYPH . (1) 

This is a test of contemporary independence between n
ttY 1}{ =  and n

ttX 1}{ = . Under 
the null hypothesis, they showed that the test statistic of }00{# == tt XY  has a 
hypergeometric distribution and can be written as 

n
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where 1N  and 2N  denote the number of 0=tX  and 1=tX , respectively, and 
m denotes the number of 0=tY . Testing the null hypothesis of Eq. (1) is 
straightforward with the critical value obtained from Eq. (2) in a small sample. For 
large samples, however, the computation of factorials can be quite tedious. 
Fortunately, for large samples, the hypergeometric distribution can be accurately 
approximated by the normal distribution with mean μ  and variance 2σ  
described as 

n
mN1=μ  and (3) 
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where 1n  is the number of 0=tY  given 0=tX , and other parameters are defined 
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as above. 
In the framework of Henriksson and Merton (1981), independence between tY  

and tX  is tested, regarding IID stochastic processes of n
ttY 1}{ =  and n

ttX 1}{ =  as the 
maintained assumption. Under this setting, the conventional chi-square test of 
independence as well as the t-test in the regression framework can be used to test the 
null hypothesis. Since tY  can be viewed as a binary dependent variable, the logit 
and probit models are also appropriate for this problem. 

Unfortunately, event forecasts, obtained from truncating a certain 
predetermined value of the point forecasts generated by estimated econometric 
models, may be serially correlated. Similarly, event realizations have a serial 
correlation as well. Therefore, the IID assumption is violated for all the 
abovementioned test procedures. As a result, these tests suffer from severe size 
distortions, falsely rejecting the null hypothesis too often.1 

To deal with the over-rejections, the testing procedure should accommodate the 
autocorrelation of event forecasts and realizations. Three testing procedures, 
including the HAC robust t-test with the standard normal distribution, the HAC 
robust t-test with fixed-b asymptotics, and the naive block bootstrap are described 
briefly below. Breen et al. (1989) pointed out that event forecasts evaluation can be 
proceeded with a t-test for 0=β  in the linear regression: 

ttt uXY ++= βα , nt ,,2,1 K= . (5) 

For ease of exposition, rewrite Eq. (5) as 

ttt uxy +′= γ , nt ,,2,1 K= , (6) 

where tt Yy = , ),1( ′= tt Xx  and ),( ′= βαγ . Under some regularity conditions, it 
is straightforward that 

( ) ( )11,0ˆ −− Ω⎯→⎯− QQNn dγγ , (7) 

where γ̂  is the least squares (LS) estimator for γ , ∑=

− ′= n

t tt xxnpQ
1

1lim  and Ω  
denotes the long-run variance of ttt uxv = . Testing hypotheses about γ  involves 
getting consistent estimators of 11 ˆˆˆ −− ΩQQ  for 11 −− ΩQQ , following which the 
asymptotics free from the nuisance parameters can be constructed by using Eq. (7). 
                                                 

1Simulation results in the next section will confirm this finding. 
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Clearly, Q can be consistently estimated by ∑=

− ′= n

t tt xxnQ
1

1ˆ . A consistent 
estimation of Ω , however, is more complicated, since tv  may be serially 
correlated with an unknown pattern. In the literature, a kernel-based consistent 
estimator for Ω  is the most popular. It can be defined as 

∑
−

−−=

Γ=Ω
1

)1(

ˆ)(ˆ
n

nj
jMjk , (8) 

with 
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1

 for 0≥j , jj −Γ′=Γ ˆˆ  for 0<j , (9) 

where ]1,1[:)( −→ℜxk  is an even kernel function satisfying 1)0( =k , )(xk  
continuous at 0=x  and ∞<∫

∞

∞−
dxxk )( ; ttt uxv ˆˆ =  and γ̂ˆ ttt xyu ′−= . Often, M 

denotes the bandwidth as 0)( =xk  for 1>x . With the conditions of ∞→M  
and 0→nM  as ∞→n , Ω̂  is consistent for Ω . Based on Eq. (7) and the 
argument discussed above, the HAC robust t-test for the evaluation of event 
forecasts and its asymptotic distribution can be written as 

)1,0(
ˆˆˆ
ˆ

11
N

RQQR

Rnt d
HAC ⎯→⎯

′Ω
=

−−

γ , (10) 

where )1,0(=R . This result implies that with a suitable choice of bandwidth, the 
standard normal distribution can be served as an approximation to the sampling 
distribution of the HAC robust t-test, regardless of which kernel is used. 

While the conditions of ∞→M  and 0→nM  as ∞→n  are essential to 
derive the asymptotics of HACt , they cannot be satisfied in practice. In reality, a 
practitioner is given a particular data set, and the fraction of sample autocovariances 
used to compute Ω̂  is always a positive number smaller than unity. Based on this 
fact, Kiefer and Vogelsang (2005) derived a brand-new asymptotic theory known as 
fixed-b asymptotics, for the HAC robust t-test under the condition that the 
bandwidth is set as a fixed ratio of the sample size. Important differences deserve to 
be stressed. In this scenario, Ω̂  is no longer a consistent estimator for Ω , but 
converges to a random matrix that is proportional to Ω . The HAC robust t-test 
computed in the usual manner has an asymptotic distribution that depends on the 
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kernel and the bandwidth through b, but is free from any nuisance parameter. 
Therefore, the critical values can be tabulated and served as the purpose for 
hypothesis testing. Most importantly, the fixed-b asymptotics can deliver a more 
accurate approximation than the standard normal distribution, since the value of b is 
greater than zero and less than or equal to unity in practice. As a result, the HAC 
robust t-test computed in the usual manner can effectively reduce size distortions 
with fixed-b asymptotics, as compared to that with its standard normal counterpart. 
Kiefer and Vogelsang (2002) argued that with the choice of nM = , i.e., 1=b  and 
the Bartlett kernel, the HAC robust t-test would have a good size and reasonable 
power performance. Hence, we follow their suggestion in the simulation 
experiments and empirical study described below. 

The bootstrap is an alternative to asymptotic approximations. With an 
appropriate resample scheme, the bootstrap asymptotics can be a more accurate 
approximation to the sampling distribution of a test (e.g., Lahiri, 1996; Götze and 
Künsch, 1996; Park, 2003, among others). According to this idea, Gonçalves and 
Vogelsang (2006) proposed the naive bootstrap where the formula used to compute 
the test for the bootstrap sample is the same as that used for the original data. The 
naive bootstrap is briefly stated below. Let ),( ′′= ttt xyw  be the vector that collects 
dependent and independent variables defined in Eq. (6) for each observation. Further, 

),,,( 11 −++= biiii wwwB K  denotes the block of b consecutive observations starting 
from iw , for 1,,2,1 +−= bni K . All the iB  together form 1+−bn  overlapping 
blocks from the original sample tw . With these 1+−bn  overlapping blocks, the 
bootstrap sample ),( *** ′′= ttt xyw  can be generated by randomly resampling bn  
blocks with replacement and laying them end-to-end in the order in which they are 
sampled. Given this bootstrap sample, let *γ̂ , *Q̂ , and *Ω̂  denote the bootstrap 
counterparts for γ̂ , Q̂ , and Ω̂ , respectively, replacing tw  with *

tw . Then, the 
naive block bootstrap HAC robust t-test is defined as 

RQQR

rRnt
′Ω

−
=

−− 1**1*

**
*

ˆˆˆ
)ˆ( γ , (11) 

where γ̂* Rr =  and )1,0(=R . Repeat the sampling NB times, and the computed 
NB values of *t  can be regarded as an empirical distribution function of the HAC 
robust t-test. Subsequently, make an inference based on the bootstrap critical value 
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from the empirical distribution function. Gonçalves and Vogelsang (2006) also 
showed that the naive block bootstrap has the same limiting distribution as the 
fixed-b asymptotics. Moreover, their simulation results suggest that with the 
appropriate choice of block length, the naive block bootstrap can deliver a more 
accurate approximation than the fixed-b asymptotics. This is promising for the naive 
block bootstrap to deal with the over-rejections of extant tests used to evaluate the 
accuracy of event forecasts. 

3 Monte Carlo Evidence 

3.1 Experimental Design 

In this section, we investigate the finite-sample performance of various test statistics 
discussed in Section 2. These tests are categorized into two groups by their 
capability of capturing serial correlations. Conventional test statistics, including the 
HM test, the chi-square test of independence, the t-tests in linear regression and logit 
models, fall into the first group.2 The second group includes HAC robust t-test with 
three types of distributions as an approximation to its sampling distribution, such as 
the standard normal distribution, fixed-b asymptotics and the empirical distribution 
obtained from the naive block bootstrap. To generate binary series tX  and tY , let 
the data-generating process (DGP) be: 

⎩
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2Since the t-test in the probit model yields similar results as in the logit model, we omit it for brevity. 
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and initials 000 == yx uu . Obviously, if 0≠xρ , then x
tu  in Eq. (14) is an 

autocorrelated series, which leads tX  to a serially correlated series. Similarly, if 
0≠yρ , tY  is autocorrelated. On the other hand, xyρ  in Eq. (16) measures the 

contemporary correlation between x
tε  and y

tε . With the definitions in Eq. (12) and 
Eq. (13), the value of xyρ  also governs the contemporary correlation between tX  
and tY . We consider the sample sizes of 50=n , 100, 200, and 1000; the 
contemporary correlation parameters of 0=xyρ , 0.2, 0.5, and 0.8; and the 
autoregressive parameters of xρ  and yρ  each equaling 0, 0.5, 0.8, and 0.9. 

For all the tests except for the naive block bootstrap, the empirical sizes are 
computed when 0=xyρ ; otherwise, the size-adjusted powers are calculated. For the 
naive block bootstrap, however, we compute the bootstrap sizes and powers 
corresponding respectively to 0=xyρ  and otherwise. Before implementing the 
naive block bootstrap, the block length must first be determined. Although Politis 
and White (2004) proposed an automatic method to select the block length for the 
block bootstrap, our simulation results show that it is futile in dealing with the 
over-sized problem.3 Instead, we choose )int( 51nb = , where int(.)  denotes the 
integer part, since Hall and Jing (1996) pointed out that the optimal block length 
should be proportional to 51n  in this context. All the results are under a nominal 
size of 5%. We perform 5,000 Monte Carlo replications for the asymptotic tests. For 
the naive block bootstrap, on the other hand, the number of replications is 1,000 (= 
NB). Note that computing the HAC robust t-test involves choosing the kernel and 
bandwidth. As mentioned in Section 2, we choose the Bartlett kernel for the power 
concern. For the standard normal approximation, bandwidth M is set as 

))100(12int( 41n , while for fixed-b asymptotics, we choose nM = , as Kiefer and 
Vogelsang (2002) suggested. 

                                                 
3For the sake of concision, these results are omitted. They can be obtained from the author upon 

request. 
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3.2 Finite Sample Properties 

The simulation results are collected in Tables 1 and 2. The results for the empirical 
size of various tests are reported in Table 1. As expected, all the tests except for HACt  
in the case of 50=n  have an empirical size close to the nominal size when 

0== yx ρρ . When xρ  and yρ  increase, all the tests in the first group denoted by 
HM, 2x , logit-t and regression-t have severe size distortions even in large samples. 
For example, the size of HM on 1000=n  inflates to 0.402 from 0.047 as both xρ  
and yρ  increase to 0.9 from 0. On the other hand, the tests in the second group, 
including HACt , bt −fixed , and *t , have a reasonable size performance, except for HACt  
when xρ  and yρ  are large. This confirms the finding in Andrew (1991) that HACt  
has size distortions in finite samples when data are strongly serially correlated. 
Besides, the performance of *t  is better than that of the bt −fixed  and HACt  tests. 
Moreover, the results of bt −fixed  are considerably better than those of HACt . For 
instance, they are 0.080, 0.113, and 0.204 for *t , bt −fixed , and HACt , respectively, 
when 9.0== yx ρρ  and 100=n . These facts indicate that the consideration of 
serial correlation has a positive influence on size performance, as in the tests in the 
second group. Further, fixed-b asymptotics is a more accurate approximation to the 
sampling distribution of the HAC robust t-test than the standard normal distribution. 
Moreover, the naive block bootstrap with the chosen block length can offer a more 
accurate approximation than fixed-b asymptotics. 

The results for empirical power are shown in Table 2. The figures for *t  are 
bootstrap power; otherwise, they are size-adjusted power. Undoubtedly, all power 
increases occur with a larger sample size n. For any given values of xρ  and yρ , as 
expected, all the tests have a higher power with a larger value of xyρ . The power 
performance would be damaged by the autocorrelation of tX  and/or tY . For 
example, for the HM test, the power declines to 0.562 from 0.952 when yρ  is up to 
0.9 from 0.5, given 2.0=xyρ , 5.0=xρ , and 1000=n . Clearly, all the tests except 
for bt −fixed  and *t  have comparable power. As compared with HACt , the power is 
lower for bt −fixed  due to the longer bandwidth. However, the differences can be 
neglected when the value of xyρ  becomes large. Interestingly, for some cases (e.g., 

9.0== yx ρρ ), the *t  test shows a power gain over its counterpart of bt −fixed  to 
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some extent. An important point must be emphasized here. Generally speaking, the 
power of *t  is lower than the other tests, but it is feasible. In other words, the 
power reported for the tests except for *t  is infeasible because the size-adjusted 
critical values in finite samples are generally unknown in applications. However, the 
bootstrap power, in practice, is feasible for any given sample size. Therefore, due to 
the good size and feasible power properties, *t  is a suitable choice for empirical 
applications. 

Table 1: Empirical Size Performance of the Tests 

n HM test 2x  test Logit-t regresstion-t HACt  bt −fixed  *t  

0=xyρ  0=xρ  0=yρ  

50 0.050 0.056 0.047 0.062 0.123 0.056 0.042 

100 0.056 0.057 0.057 0.059 0.093 0.059 0.051 

200 0.048 0.050 0.052 0.051 0.066 0.047 0.047 

1000 0.047 0.047 0.066 0.048 0.054 0.050 0.050 

0=xyρ  5.0=xρ  5.0=yρ  

50 0.083 0.088 0.081 0.097 0.143 0.065 0.054 

100 0.089 0.091 0.092 0.097 0.103 0.064 0.045 

200 0.082 0.083 0.088 0.086 0.080 0.056 0.055 

1000 0.075 0.076 0.105 0.076 0.055 0.045 0.055 

0=xyρ  5.0=xρ  8.0=yρ  

50 0.121 0.127 0.110 0.143 0.149 0.065 0.062 

100 0.120 0.123 0.120 0.128 0.115 0.062 0.048 

200 0.122 0.124 0.123 0.126 0.084 0.056 0.045 

1000 0.124 0.125 0.145 0.125 0.059 0.053 0.062 

0=xyρ  5.0=xρ  9.0=yρ  

50 0.126 0.130 0.108 0.148 0.146 0.057 0.064 

100 0.145 0.145 0.143 0.151 0.115 0.059 0.058 

200 0.130 0.133 0.132 0.135 0.082 0.056 0.044 

1000 0.140 0.140 0.152 0.141 0.059 0.052 0.062 

0=xyρ  8.0=xρ  5.0=yρ  

50 0.110 0.119 0.099 0.134 0.165 0.082 0.060 

100 0.118 0.121 0.120 0.126 0.111 0.066 0.061 

200 0.116 0.117 0.118 0.122 0.082 0.057 0.071 

1000 0.116 0.117 0.149 0.117 0.046 0.046 0.045 
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Table 1: Empirical Size Performance of the Tests (continued) 

n HM test 2x  test Logit-t regresstion-t HACt  bt −fixed  *t  

0=xyρ  8.0=xρ  8.0=yρ  

50 0.198 0.204 0.174 0.224 0.206 0.099 0.072 

100 0.229 0.232 0.228 0.240 0.148 0.081 0.052 

200 0.227 0.227 0.230 0.231 0.105 0.065 0.065 

1000 0.237 0.238 0.251 0.239 0.072 0.053 0.055 

0=xyρ  8.0=xρ  9.0=yρ  

50 0.233 0.235 0.194 0.255 0.205 0.093 0.080 

100 0.282 0.285 0.276 0.293 0.159 0.082 0.055 

200 0.286 0.287 0.287 0.292 0.113 0.067 0.060 

1000 0.293 0.293 0.304 0.294 0.069 0.054 0.049 

0=xyρ  9.0=xρ  5.0=yρ  

50 0.121 0.126 0.104 0.144 0.213 0.125 0.101 

100 0.135 0.137 0.133 0.144 0.128 0.074 0.073 

200 0.145 0.146 0.150 0.152 0.091 0.064 0.066 

1000 0.142 0.142 0.167 0.144 0.058 0.050 0.056 

0=xyρ  9.0=xρ  8.0=yρ  

50 0.220 0.225 0.181 0.249 0.260 0.137 0.104 

100 0.273 0.276 0.266 0.285 0.171 0.097 0.070 

200 0.281 0.283 0.285 0.286 0.117 0.073 0.075 

1000 0.292 0.293 0.309 0.294 0.071 0.054 0.061 

0=xyρ  9.0=xρ  9.0=yρ  

50 0.271 0.275 0.208 0.299 0.275 0.137 0.123 

100 0.352 0.355 0.336 0.363 0.204 0.113 0.080 

200 0.363 0.364 0.364 0.371 0.146 0.079 0.078 

1000 0.402 0.403 0.409 0.403 0.086 0.054 0.064 
Notes: The DGP is described from Eq. (12) to Eq. (16). The HM test is the market timing test in 
Henricksson and Merton (1981). The 2x  test denotes the independence test. Logit-t and regression-t 
represent the conventional t-test in logit model and regression model, respectively. HACt , bt −fixed , and *t  
denote the HAC robust t-test with the standard normal distribution, fixed-b asymptotics, and empirical 
distribution from the naive block bootstrap, respectively. Refer to Section 2 for further details. The figures 
reported are the rejection frequencies at the 5% nominal significance level, based on 5,000 replications 
for the asymptotic tests, and 1,000 for *t  with 1,000 re-samples. The asymptotic critical value for the 
5% level is 1.96 for all two-sided tests except for bt −fixed . For bt −fixed , the asymptotic critical value is 4.771 
obtained from Table 1 in Kiefer and Vogelsang (2002). 
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Table 2: Empirical Power Performance of the Tests 

n HM test 2x  test Logit-t regresstion-t HACt  bt −fixed  *t  

2.0=xyρ  0=xρ  0=yρ  

50 0.148 0.143 0.144 0.149 0.128 0.119 0.117 

100 0.249 0.237 0.250 0.249 0.221 0.180 0.192 

200 0.461 0.454 0.461 0.461 0.434 0.353 0.314 

1000 0.987 0.985 0.974 0.987 0.984 0.857 0.869 

2.0=xyρ  5.0=xρ  5.0=yρ  

50 0.125 0.125 0.124 0.112 0.108 0.085 0.114 

100 0.197 0.191 0.189 0.198 0.171 0.148 0.165 

200 0.365 0.363 0.355 0.365 0.334 0.260 0.259 

1000 0.952 0.952 0.923 0.952 0.812 0.918 0.796 

2.0=xyρ  5.0=xρ  8.0=yρ  

50 0.087 0.085 0.091 0.086 0.086 0.080 0.097 

100 0.132 0.134 0.133 0.132 0.133 0.112 0.124 

200 0.235 0.234 0.239 0.235 0.212 0.186 0.173 

1000 0.801 0.804 0.740 0.801 0.780 0.581 0.601 

2.0=xyρ  5.0=xρ  9.0=yρ  

50 0.064 0.071 0.071 0.064 0.067 0.066 0.084 

100 0.098 0.098 0.095 0.098 0.089 0.081 0.101 

200 0.130 0.140 0.131 0.130 0.143 0.124 0.112 

1000 0.562 0.577 0.505 0.563 0.552 0.399 0.395 

2.0=xyρ  8.0=xρ  5.0=yρ  

50 0.095 0.095 0.093 0.095 0.089 0.087 0.091 

100 0.139 0.139 0.135 0.139 0.131 0.113 0.123 

200 0.217 0.219 0.218 0.217 0.218 0.172 0.185 

1000 0.817 0.817 0.767 0.802 0.798 0.608 0.579 
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Table 2: Empirical Power Performance of the Tests (continued) 

n HM test 2x  test Logit-t regresstion-t HACt  bt −fixed  *t  

2.0=xyρ  8.0=xρ  8.0=yρ  

50 0.087 0.088 0.081 0.088 0.080 0.072 0.095 

100 0.120 0.120 0.115 0.120 0.107 0.101 0.121 

200 0.187 0.184 0.184 0.187 0.185 0.152 0.183 

1000 0.702 0.699 0.675 0.702 0.683 0.509 0.507 

2.0=xyρ  8.0=xρ  9.0=yρ  

50 0.071 0.074 0.070 0.072 0.072 0.064 0.092 

100 0.086 0.086 0.087 0.086 0.093 0.087 0.110 

200 0.136 0.136 0.136 0.136 0.141 0.118 0.128 

1000 0.515 0.539 0.483 0.515 0.528 0.377 0.364 

2.0=xyρ  9.0=xρ  5.0=yρ  

50 0.069 0.073 0.071 0.072 0.058 0.059 0.113 

100 0.106 0.107 0.104 0.107 0.098 0.090 0.104 

200 0.148 0.139 0.145 0.148 0.156 0.118 0.154 

1000 0.571 0.563 0.539 0.571 0.570 0.461 0.404 

2.0=xyρ  9.0=xρ  8.0=yρ  

50 0.074 0.070 0.071 0.077 0.064 0.066 0.128 

100 0.083 0.088 0.085 0.084 0.087 0.085 0.099 

200 0.140 0.135 0.136 0.140 0.150 0.128 0.168 

1000 0.531 0.533 0.512 0.531 0.517 0.436 0.383 

2.0=xyρ  9.0=xρ  9.0=yρ  

50 0.069 0.074 0.072 0.072 0.069 0.070 0.128 

100 0.082 0.086 0.084 0.082 0.083 0.077 0.114 

200 0.109 0.111 0.109 0.109 0.117 0.107 0.142 

1000 0.426 0.436 0.400 0.426 0.426 0.299 0.316 
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Table 2: Empirical Power Performance of the Tests (continued) 

n HM test 2x  test Logit-t regresstion-t HACt  bt −fixed  *t  

5.0=xyρ  0=xρ  0=yρ  

50 0.673 0.644 0.666 0.6755 0.566 0.485 0.451 

100 0.925 0.919 0.925 0.925 0.884 0.745 0.726 

200 0.998 0.998 0.998 0.998 0.994 0.946 0.945 

1000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 

5.0=xyρ  5.0=xρ  5.0=yρ  

50 0.550 0.538 0.546 0.551 0.479 0.438 0.397 

100 0.840 0.835 0.830 0.840 0.789 0.651 0.658 

200 0.988 0.988 0.987 0.988 0.982 0.884 0.890 

1000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 

5.0=xyρ  5.0=xρ  8.0=yρ  

50 0.331 0.327 0.339 0.312 0.279 0.250 0.280 

100 0.626 0.629 0.624 0.626 0.595 0.477 0.489 

200 0.903 0.903 0.902 0.903 0.884 0.727 0.718 

1000 1.000 1.000 1.000 1.000 0.991 1.000 0.999 

5.0=xyρ  5.0=xρ  9.0=yρ  

50 0.196 0.205 0.201 0.186 0.169 0.143 0.175 

100 0.397 0.397 0.390 0.397 0.354 0.292 0.341 

200 0.653 0.673 0.651 0.653 0.662 0.514 0.508 

1000 1.000 1.000 0.996 1.000 1.000 0.999 0.981 

5.0=xyρ  8.0=xρ  5.0=yρ  

50 0.374 0.368 0.366 0.374 0.327 0.306 0.251 

100 0.622 0.625 0.610 0.622 0.575 0.462 0.494 

200 0.901 0.903 0.899 0.901 0.888 0.724 0.718 

1000 1.000 1.000 1.000 1.000 1.000 0.999 0.999 



Ching-Chuan Tsong 234 

Table 2: Empirical Power Performance of the Tests (continued) 

n HM test 2x  test Logit-t regresstion-t HACt  bt −fixed  *t  

5.0=xyρ  8.0=xρ  8.0=yρ  

50 0.314 0.314 0.289 0.316 0.278 0.234 0.265 

100 0.525 0.526 0.518 0.525 0.476 0.406 0.431 

200 0.844 0.838 0.837 0.844 0.827 0.676 0.672 

1000 1.000 1.000 1.000 1.000 1.000 0.993 0.997 

5.0=xyρ  8.0=xρ  9.0=yρ  

50 0.232 0.229 0.205 0.224 0.198 0.152 0.186 

100 0.370 0.375 0.359 0.370 0.347 0.297 0.367 

200 0.665 0.666 0.660 0.665 0.646 0.497 0.542 

1000 1.000 1.000 0.999 1.000 1.000 1.000 0.980 

5.0=xyρ  9.0=xρ  5.0=yρ  

50 0.225 0.226 0.218 0.227 0.137 0.157 0.196 

100 0.395 0.397 0.389 0.395 0.364 0.305 0.327 

200 0.677 0.662 0.671 0.677 0.670 0.503 0.531 

1000 1.000 1.000 1.000 1.000 1.000 0.977 0.977 

5.0=xyρ  9.0=xρ  8.0=yρ  

50 0.243 0.227 0.214 0.244 0.188 0.151 0.259 

100 0.376 0.388 0.378 0.376 0.346 0.316 0.373 

200 0.686 0.681 0.678 0.686 0.674 0.515 0.564 

1000 1.000 1.000 0.999 1.000 0.999 0.999 0.978 

5.0=xyρ  9.0=xρ  9.0=yρ  

50 0.201 0.201 0.175 0.196 0.187 0.176 0.211 

100 0.310 0.319 0.302 0.310 0.290 0.250 0.342 

200 0.550 0.554 0.546 0.550 0.536 0.447 0.481 

1000 0.998 0.998 0.997 0.998 0.997 0.937 0.940 
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Table 2: Empirical Power Performance of the Tests (continued) 

n HM test 2x  test Logit-t regresstion-t HACt  bt −fixed  *t  

8.0=xyρ  0=xρ  0=yρ  

50 0.993 0.992 0.984 0.993 0.977 0.930 0.853 

100 1.000 1.000 1.000 1.000 1.000 0.993 0.989 

200 1.000 1.000 1.000 1.000 1.000 1.000 1.000 

1000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 

8.0=xyρ  5.0=xρ  5.0=yρ  

50 0.977 0.975 0.956 0.977 0.949 0.889 0.797 

100 1.000 1.000 1.000 1.000 0.999 0.984 0.968 

200 1.000 1.000 1.000 1.000 1.000 0.999 0.999 

1000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 

8.0=xyρ  5.0=xρ  8.0=yρ  

50 0.830 0.826 0.805 0.827 0.759 0.740 0.647 

100 0.989 0.989 0.987 0.989 0.979 0.901 0.899 

200 1.000 1.000 1.000 1.000 1.000 0.990 0.989 

1000 1.000 1.000 1.000 1.000 1.000 1.000 0.999 

8.0=xyρ  5.0=xρ  9.0=yρ  

50 0.527 0.537 0.506 0.512 0.437 0.405 0.414 

100 0.864 0.864 0.852 0.864 0.809 0.668 0.676 

200 0.992 0.994 0.990 0.992 0.991 0.914 0.911 

1000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 

8.0=xyρ  8.0=xρ  5.0=yρ  

50 0.848 0.846 0.807 0.848 0.800 0.735 0.637 

100 0.991 0.991 0.988 0.991 0.982 0.915 0.898 

200 1.000 1.000 1.000 1.000 1.000 0.993 0.987 

1000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 
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Table 2: Empirical Power Performance of the Tests (continued) 

n HM test 2x  test Logit-t regresstion-t HACt  bt −fixed  *t  

8.0=xyρ  8.0=xρ  8.0=yρ  

50 0.821 0.821 0.715 0.822 0.747 0.662 0.569 

100 0.979 0.979 0.971 0.979 0.962 0.884 0.875 

200 1.000 1.000 1.000 1.000 1.000 0.989 0.980 

1000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 

8.0=xyρ  8.0=xρ  9.0=yρ  

50 0.649 0.646 0.515 0.642 0.535 0.455 0.444 

100 0.891 0.894 0.863 0.891 0.836 0.720 0.740 

200 0.996 0.996 0.996 0.996 0.994 0.931 0.940 

1000 1.000 1.000 1.000 1.000 1.000 0.962 1.000 

8.0=xyρ  9.0=xρ  5.0=yρ  

50 0.578 0.581 0.540 0.583 0.391 0.413 0.450 

100 0.891 0.894 0.863 0.891 0.836 0.720 0.740 

200 0.996 0.996 0.996 0.996 0.994 0.931 0.940 

1000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 

8.0=xyρ  9.0=xρ  8.0=yρ  

50 0.666 0.649 0.548 0.671 0.574 0.547 0.525 

100 0.891 0.894 0.863 0.891 0.836 0.720 0.740 

200 0.996 0.996 0.996 0.996 0.994 0.931 0.940 

1000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 

8.0=xyρ  9.0=xρ  9.0=yρ  

50 0.605 0.603 0.438 0.600 0.546 0.492 0.437 

100 0.835 0.843 0.769 0.835 0.793 0.674 0.738 

200 0.986 0.987 0.983 0.986 0.978 0.914 0.920 

1000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 
Notes: The figures reported are the bootstrap powers for *t  and the size-adjusted powers for other tests. 
The DGP is described from Eq. (12) to Eq. (16). The HM test is the market timing test in Henricksson and 
Merton (1981). The 2x  test denotes the independence test. Logit-t and regression-t represent the 
conventional t-test in the logit model and regression model, respectively. HACt , bt −fixed , and *t  denote 
the HAC robust t-test with the standard normal distribution, fixed-b asymptotics, and empirical 
distribution from the naive block bootstrap, respectively. Refer to Section 2 for further details. The figures 
reported are the rejection frequencies at the 5% nominal significance level, based on 5,000 replications 
for the asymptotic tests, and 1,000 for *t  with 1,000 re-samples. 
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4 Empirical Illustrations 

In this section, we present a simple empirical example to illustrate that the 
conventional tests for evaluating event forecast accuracy may be misleading when 
event forecasts and their corresponding realizations are serially correlated. We stress 
at the outset that the specification for a forecasting model is not the goal of this 
empirical study. Instead, we focus on evaluating the accuracy of event forecasts 
using the tests discussed in Section 2. Hence, an AR(1) forecasting model is 
sufficient to serve this purpose. Suppose that an AR(1) model ttt rr εβα ++= −1  is 
used to forecast one-step-ahead market returns with a rolling scheme.4 Let event 
forecasts 1+tY  and realizations 1+tX  be defined as 

⎪⎩
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=+ otherwise0
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1
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1

t
t

r
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where α̂  and β̂  denote LS estimates for α  and β , respectively. 
We collect monthly observations for five different indices over 1982:01－

2007:02, including the All Ordinaries Index, Taiwan Weighted Index, Straits Times 
Index, Nikkei 225 Index, and TSX Composite Index. All the data are retrieved from 
Info Winner data bank. Let the price data be }{ tp . Then, the returns series is 
generated by 1lnln}{ −−= ttt PPr . The total sample of 301 return observations is split 
into two parts: the first 51 observations are used for estimating the parameters in AR(1) 
model, and then, the remaining 250 )( n=  are used to evaluate a post-sample 
one-step-ahead prediction. We choose 250=n  to avoid the low power of the tests. 

The preliminary analysis for event forecasts and realizations is reported in 
Table 3. Obviously, the sample correlation coefficients indicate that tY  and tX  
are serially correlated for each index. The maintained IID assumption for the 
                                                 

4The rolling scheme, which discards the oldest observation when adding the latest one to estimate 
the parameters in the forecasting model, are more sensible than the fixed and recursive schemes, and is 
employed in our empirical study. 
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conventional tests may be violated. This can lead these tests to falsely reject the null 
hypothesis of no timing ability. In addition, except for the TSX Composite Index, 
the contemporary correlation between tY  and tX  is so weak that the null 
hypothesis may not be rejected. 

Table 3: Sample Correlation Coefficients 

Index ),( 1−tt YY  ),( 1−tt XX  ),( tt XY  

All Ordinaries 0.596 0.909 0.070 

Taiwan Weighted 0.566 0.848 0.053 

Straits Times 0.625 0.816 0.020 

Nikkei 225 0.496 0.781 0.033 

TSX Composite 0.599 0.864 0.611 

The testing results are collated in Table 4. First, consider the All Ordinaries 
Index and Straits Times Index, the contemporary correlations of which are 0.07 and 
0.02, respectively. Given the 5% significance level, the null is rejected by all the 
tests in the first group. On the contrary, all the tests that possess robust size in the 
second group do not reject the null. Similar results can be found except for the 
logit-t with a p-value of 0.305 in Nikkei 225 and with a p-value of 0.097 in Taiwan 
Weighted. The violation of the maintained IID assumption may be contributing to 
this contradiction. Although the null is rejected by all the tests for TSX Composite, 
the result must be interpreted with care. The rejection of the tests in the first group is 
more likely caused by their severe over-rejections. The testing result of *t , on the 
other hand, can reflect the strong contemporary correlation between event forecasts 
and their corresponding realizations due to its robust size and reasonable power. 

5 Conclusions 

The conventional tests for assessing the accuracy of event forecasts, such as the HM 
test or regression t-test, rely on the maintained IID assumption on event forecasts 
and realizations. In practice, however, event forecasts obtained by truncating the 
point forecasts generated by estimated econometric models, may be serially 
correlated. Similarly, event realizations also have serial correlations. According to 
our simulation evidence, the violation of the maintained assumption contributes to 
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severe size distortions of these tests. 

Table 4: Tests for the Accuracy of Event Forecasts 

Index HM test 2x  test Logit-t regresstion-t HACt  bt −fixed  *t  

All Ordinaries 4.539 99.155 2.681 15.314 1.385 4.152 4.152 

 (0.000) (0.000) (0.007) (0.000) (0.166) [4.771] (0.091) 

Taiwan Weighted 11.598 113.574 1.659 12.165 0.789 1.952 1.952 

 (0.000) (0.000) (0.097) (0.000) (0.430) [4.771] (0.324) 

Straits Times 9.961 105.056 2.177 12.578 0.291 0.760 0.760 

 (0.000) (0.000) (0.030) (0.000) (0.771) [4.771] (0.675) 

Nikkei 225 16.743 118.336 1.027 9.408 0.561 1.180 1.180 

 (0.000) (0.000) (0.305) (0.000) (0.575) [4.771] (0.528) 

TSX Composite 7.968 103.792 3.162 15.982 2.219 5.857 5.857 

 (0.000) (0.000) (0.000) (0.000) (0.026) [4.771] (0.023) 
Notes: All the data are retrieved from Info Winner data bank. Monthly data is available over the period 
1982:1－2007:2. All the tests are defined in Section 2. The values of the tests are reported in the first row 
for each index, and the p-values are in the parentheses. The value in [.] is the asymptotic critical value 
obtained from Table 1 in Kiefer and Vogelsang (2002) for the two-sided bt −fixed  test at the 5% nominal 
significance level. The replications for the naive block bootstrap is 1,000 (= NB). 

On the other hand, the fixed-b asymptotics for the HAC robust t-test offers a 
more accurate approximation than the standard normal distribution. Furthermore, the 
naive block bootstrap with an appropriately proper chosen block length can further 
improve the approximation to the sampling distribution of the HAC robust t-test. 
Our simulation evidence confirms these results. Therefore, the naive block bootstrap 
is strongly recommended for empirical applications. We also offer a simple 
empirical example to illustrate these tests. The testing results using naive block 
bootstrap are completely different from those with its conventional counterparts. The 
over-rejections of conventional tests can account for these empirical contradictions. 
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