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1 Introduction

In loan portfolios of a bank the main risk is the occurrence of defaults. A default in a

loan portfolio means a borrower fails to meet its contractual obligation to repay a debt

with the agreed terms. Loan portfolio defaults lead to huge losses for a bank, which

is called portfolio credit risk. Under the Basel II and Basel III Accords, banks are

allowed to establish their internal portfolio credit risk model to estimate their credit

risk factor. The purpose of estimating this credit risk factor is to calculate regulatory

capital for credit risk. This is called the internal ratings-based (IRB) approach of

Basel II and Basel III. Under IRB of Basel II and Basel III, banks use the Value-at-

Risk (VaR) to measure their portfolio credit risk and capital cushion. Thus, estimating

VaR is an important issue.

Many articles have proposed several methods to calculate VaR. As a general rule,

the Exposure at Default (EAD), Probability of Default (PD), and Loss Given Default

(LGD) of each asset are input values to calculate VaR, where LGD is defined as the

ratio between the actual loss and amount of loan in a default event. The earliest credit

risk studies usually assume LGD to be fixed/constant (Vasicek, 1987, 1991, 2002; Em-

mer and Tasche, 2005) or random but independent of the default rate (Pykhtin and Dev,

2002; Gordy, 2003, 2004). However, many empirical studies point out that there is a

strong correlation between LGD and the default rate. Thus, LGD should be random

and correlated with the default rate (Frye, 2000; Andersen and Sidenius 2004; Altman

et al. 2005; Bruche and González-Aguado, 2010; Van Damme, 2011; Farinelli and

Shkolnikov, 2012). For simplicity, the uncorrelated random LGD model represents

that LGD is random and uncorrelated with the default rate, and the correlated random

LGD model represents that LGD is random and correlated with the default rate.

Vasicek (1987, 1991, 2002) use the law of large numbers method to calculate VaR

under the asymptotic single risk factor (ASRF) assumption with constant LGD. The

ASRF approach assumes that the portfolio is infinitely fine grained and only one sys-
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tematic risk factor could affect the default risk of all assets in the portfolio. However,

the ASRF framework cannot capture the concentration risk that affects the accuracy

of the estimate for VaR. For more details about the ASRF approach, please refer to

Gordy (2003, 2004) and Overbeck and Wanger (2003). Wilde (2001) and Martin and

Wilde (2002) propose a Granularity Adjustment (GA) method to calculate VaR by us-

ing the Taylor expansion of the quantile and the results of Gouriéroux et al. (2000).

The impact of concentration risk on VaR can be approximated analytically through

the GA method.

Pykhtin and Dev (2002), Emmer and Tasche (2005), and Bellalah et al. (2015)

use the GA method to calculate VaR in the portfolio credit risk model with random

and uncorrelated LGD and constant LGD, respectively. Gordy (2003, 2004) also em-

ploys the GA method to calculate VaR in the CreditRisk+ model with random and

uncorrelated LGD. Gürtler et al. (2010) make an extension of the GA method to ob-

tain the closed form of VaR in the multi-factor model with constant LGD. Note that

these studies do not consider the random and correlated LGD for calculating VaR. Lin

(2010) utilize the GA method to calculate VaR in the portfolio credit risk model with

random and correlated LGD.

The main contribution of this paper is that we show that the GA method can suc-

cessfully calculate VaR in portfolio credit risk with stochastic and correlated LGD.

We also use a Monte Carlo simulation to study how the concentration risk affects

VaR. Note that, in general, there are two types of concentration risk. One is referred

to as single-name concentration, i.e., the portfolio with a large EAD on highly rated

obligors. The other one is referred to as sectoral concentration, i.e., EAD to oblig-

ors of the portfolio in the same sectors. For more studies on the concentration risk

of portfolio, please refer to Lütkebohmert (2009). In this study we focus on how the

single-name concentration affects VaR. Emmer and Tasche (2005) also make a similar

study with constant LGD.

This paper is organized as follows. Section 2 introduces the portfolio credit risk
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model and description of VaR. Section 3 describes the approximate closed form of

VaR with random and correlated LGD. Section 4 shows the Monte Carlo simulation

results. Section 5 summarizes the conclusions. Finally, Appendix presents all proofs

of the lemmas.

2 Portfolio Credit Risk Model and VaR

Consider a portfolio with m assets. We define the standardized asset value Xi of the

ith asset in the portfolio as:

Xi =
√

ρi Z +
√

1−ρi Ui, i = 1, · · · ,m, (1)

where 0 ≤ ρi ≤ 1, and Z,U1, · · · ,Um be i.i.d. N (0,1). By a simple computation, Xi

also follow N(0,1), and√ρiρ j denotes the correlation between Xi and X j (i 6= j). Let

Yi represent the default indicator function of the ith asset:

Yi = I(Xi ≤ ci), (2)

where ci is the default threshold and I(·) is an indicator function. Asset i is assumed

to be in default when its standardized asset value Xi falls below the threshold value ci.

We define the probability of default of asset i as PDi:

PDi ≡ P(Yi = 1)

= P(Xi < ci)

= Φ(ci),

where Φ(·) is the cumulative distribution function of N (0,1), and thus:

ci = Φ
−1(PDi),

where Φ−1(·) is the inverse function of Φ(·).
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In this paper LGD is random and correlated, as proposed by Andersen and Side-

nius (2004), i.e., LGDi of the ith asset is:

LGDi = 1−Φ(ui +σiηi), (3)

where −∞ < ui < ∞, σi > 0. The random variables ηi are assumed to be:

ηi =
√

λi Z +
√

1−λi εi, (4)

where 0 ≤ λi ≤ 1, and Z,ε1, · · · ,εm be i.i.d. N (0,1). Note that ηi also follows

N (0,1). When λi = 0, i = 1, · · · ,m, LGD is random and uncorrelated with the default

rate and called the uncorrelated stochastic LGD model. When λi > 0, i = 1, · · · ,m,

LGD is random and correlated with the default rate and called the correlated random

LGD model.

Lemma 1. Under the correlated random LGD model, we have:

E(LGDi) = Φ

 −ui√
1+σ2

i

 ,

Var(LGDi) = Φ2

 −ui√
1+σ2

i

,
−ui√
1+σ2

i

;
σ2

i

1+σ2
i


−Φ

 −ui√
1+σ2

i

2

,

Cov(LGDi,LGD j) = Φ2

 −ui√
1+σ2

i

,
−u j√
1+σ2

j

;
σiσ j

√
λiλ j√

(1+σ2
i )(1+σ2

j )


−Φ

 −ui√
1+σ2

i

Φ

 −u j√
1+σ2

j

 ,

Cov(LGDi,Yi) = Φ2

 −ui√
1+σ2

i

,Φ−1(PDi);
σi
√

λiρ√
1+σ2

i


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−Φ

 −ui√
1+σ2

i

×PDi,

Corr(LGDi,LGD j) =
Cov(LGDi,LGD j)√
Var(LGDi)Var(LGD j)

,

Corr(LGDi,Yi) =
Cov(LGDi,Yi)√
Var(LGDi)Var(Yi)

,

where Var(Yi) = PDi−PD2
i .

Consider a portfolio with m assets. We denote EAD and LGD of the ith asset as

EADi and LGDi, respectively. We discuss the VaR specifications as follows. VaR is

the value in which a loss on a portfolio will not exceed a given value over the given

time horizon with a level of probability. More precisely, we define the loss rate of a

portfolio as:

Lm =
m

∑
i=1

wi×LGDi×Yi, (5)

where

wi =
EADi

∑
m
i=1 EADi

denotes the weight of EAD of the ith asset. When Lm is a random variable and the

confidence level is: α (0 < α < 1), the α quantile of Lm is:

qα(Lm) = inf{`≥ 0 : P(Lm ≤ `)≥ α}.

Under the IRB approach of Basel II and Basel III, α is taken as 99.9%. We then

denote the α-quantile of Lm as VaR:

VaR = q99.9%(Lm).

3 Calculating Portfolio Credit VaR Using the GA Method
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Martin and Wilde (2002) use the Taylor expansion and results from Gouriéroux et al.

(2000) to obtain the portfolio credit VaR with the GA method in more general model

specifications. For convenience, we let:

g(z) = E(Lm|Z = z)

be the conditional expectation of Lm given Z = z.

Condition 1. Given the realization of Z = z, g(z) is a continuous, differentiable, and

decreasing function.

Condition 2. Given the realization of Z = z, Var(Lm|Z = z) is a continuous and dif-

ferentiable function.

Bluhm et al. (2003) employ the law of large numbers method to obtain the follow-

ing results under the ASRF assumption, i.e.:

α = P(Lm ≤ qα(Lm))

≈ P(E(Lm|Z)≤ qα(Lm)).

If condition 1 holds, then:

qα(Lm) ≈ E(Lm|Z = zα)

= g(zα),

where zα is the (1−α) quantile of the standard normal distribution. For simplicity,

using g(zα) to estimate VaR is called the ASRF method. According to the results of

Martin and Wilde (2002), under the correlated random LGD model, the approximate

α quantile of Lm is:

qα(Lm)≈ g(zα)+GA, (6)

where

GA = − 1
2g′(z)

{
∂

∂ z
Var(Lm|Z = z)
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−Var(Lm|Z = z)
[

g′′(z)
g′(z)

+ z
]}∣∣∣∣∣

z=zα

. (7)

Lemma 2. Under the correlated random LGD model, g(z) is given by:

g(z) =
m

∑
i=1

wiΦ(ψi(z))Φ(ςi(z)),

where

ψi(z) =
−ui−σi

√
λiz√

1+σ2
i (1−λi)

, (8)

ςi(z) =
Φ−1(PDi)−

√
ρi z√

1−ρi
. (9)

Through straightforward calculus, we can obtain g′(z) and g′′(z) as the following.

Lemma 3. Under the correlated random LGD model, g′(z) and g′′(z) are given by:

g′(z) =
m

∑
i=1

wiψ̃iφ(ψi(z))Φ(ςi(z))+
m

∑
i=1

wiς̃iΦ(ψi(z))φ(ςi(z)),

g′′(z) = −
m

∑
i=1

wiψ̃
2
i ψi(z)φ(ψi(z))Φ(ςi(z))+2

m

∑
i=1

wiψ̃iς̃iφ(ψi(z))φ(ςi(z))

−
m

∑
i=1

wiς̃
2
i ςi(z)Φ(ψi(z))φ(ςi(z)),

where φ(·) is the probability density function of the standard normal distribution:

ψ̃i =
∂

∂ z
ψi(z) =

−σi
√

λi√
1+σ2

i (1−λi)
,

ς̃i =
∂

∂ z
ςi(z) =−

√
ρi

1−ρi
.

According to Lemma 3, we observe that g′(z)< 0. Thus, condition 1 holds.
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Lemma 4. Under the correlated random LGD model, Var(Lm|Z = z) and ∂

∂ zVar(Lm|Z =

z) are given by:

Var(Lm|Z = z) =
m

∑
i=1

w2
i Φ2(ψi(z),ψi(z);ρ

∗
i )Φ(ςi(z))

−
m

∑
i=1

w2
i Φ

2(ψi(z))Φ2(ςi(z)),

and

∂

∂ z
Var(Lm|Z = z)

= 2
m

∑
i=1

w2
i ψ̃iφ(ψi(z))Φ

 ψi(z)√
1+2σ2

i (1−λi)

Φ(ςi(z))

+
m

∑
i=1

w2
i ς̃iΦ2(ψi(z),ψi(z);ρ

∗
i )φ(ςi(z))

−2
m

∑
i=1

w2
i [ψ̃iφ(ψi(z))Φ(ςi(z))+ ς̃iΦ(ψi(z))φ(ςi(z))]

×Φ(ψi(z))Φ(ςi(z)),

where Φ2(·, ·;ρ∗i ) is the standard bivariate normal cumulative distribution with corre-

lation

ρ
∗
i =

σ2
i (1−λi)

1+σ2
i (1−λi)

. (10)

Lastly, we obtain the approximate closed form of qα(Lm) by using (6), (7), and Lem-

mas 3 and 4. For simplicity, using the approximate closed form of qα(Lm) to estimate

VaR is called the GA method.

4 Simulation Results

The Monte Carlo studies present how the concentration risk of a portfolio affects VaR.

For more studies on the concentration risk of a portfolio, please refer to Lütkebohmert
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(2009). According to the rule of Basel II and Basel III (BCBS, 2011), the value of ρi

is set to be:

ρi = 0.12
[

1− exp(−50×PDi)

1− exp(−50)

]
+0.24

[
1− 1− exp(−50×PDi)

1− exp(−50)

]
.

This paper takes the Monte Carlo simulation (MCS) method as a benchmark method

to calculate VaR. We give the steps of the MCS method as follows.

Step 1: Simulate m+1 random samples Z,U1, · · · ,Um from N (0,1) and obtain X1, · · · ,Xm

from (1).

Step 2: Take X1, · · · ,Xm into (2) to obtain the default indicator functions Y1, · · · ,Ym.

Step 3: Simulate random samples ε1, · · · ,εm from N (0,1) and obtain η1, · · ·, ηm from

(4). One can then obtain LGD1, · · · ,LGDm from (3).

Step 4: Obtain L1, · · · ,Lm from (5).

Step 5: Repeat Steps 1-4 106 times.

Step 6: Take the 106×α-largest of simulated Lm as the estimate for qα(Lm).

In the simulation studies, we focus on how the single-name concentration affects

VaR. Emmer and Tasche (2005) also conduct a similar study with constant LGD. Thus,

the choice of parameter settings in this paper is the same as that in the simulation of

Emmer and Tasche (2005). The set-up for number of assets, PD, and EAD are given

as follows.

1. m = 1000, α = 0.999.

2. PD1 = 0.002, PD2 = · · · = PDm = 0.025, i.e., the first asset has a smaller PD

than other assets.

3. Given the weight of EAD of first asset w1, assume:

w2 = · · ·= wm =
1−w1

m−1
,
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i.e., the weight of EAD of assets is the same except for the first asset. The range

of w1 is [0,0.2]. When w1 = 1/m, w2 = · · ·= wm = 1/m, it means that there is

no concentration risk in portfolio. When w1 > 1/m and w1 becomes large, the

concentration risk becomes large.

4. E(LGDi) = 0.6, i = 1, · · · ,m.

5. SD(LGDi) =
√
Var(LGDi) = 0,0.2,0.4, i = 1, · · · ,m.

6. Corr(LGDi,LGD j)= 0,0.3,0.6, i 6= j, i, j = 1, · · · ,m. WhenCorr(LGDi, LGD j)=

0, i 6= j, LGD is random and uncorrelated. When Corr(LGDi, LGD j)> 0, i 6= j,

LGD is random and correlated.

Note that a constant LGD is assumed in the simulation studies of Emmer and Tasche

(2005), namely - LGDi = 1, i = 1, · · · ,m.

Figure 1 shows VaRs estimated by MCS, GA, and ASRF methods in the constant

LGD model. Figure 2 illustrates VaRs estimated by MCS, GA, and ASRF methods in

the correlated random LGD model with SD(LGDi) = 0.2 and SD(LGDi) = 0.4. Note

that when SD(LGDi) = 0, LGD is constant. When SD(LGDi)> 0, LGD is random.

1

Figure 1: Estimated Portfolio VaRs by Using MCS, GA, and ASRF Methods under the Constant

LGD Model



168 Journal of Economics and Management

1

Figure 2: Estimated Portfolio VaRs by Using MCS, GA, and ASRF Methods under the Correlated

Random LGD Model

Several conclusions can be observed in Figures 1-2.

1. When the weight of EAD of first asset w1 is increasing from 1/m to 1, the trend

of VaR will first be smaller and then larger in both the constant and correlated

random LGD models. In fact, the same conclusion is also obtained in Emmer

and Tasche (2005).
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2. The performance of the estimated VaR using the GA method is better than the

ASRF method in both the constant and correlated random LGD models. How-

ever, as w > 0.1, the estimated VaRs have a larger error by using the GA and the

ASRF methods. As w1 becomes large, the error increases. In other words, when

the weight of EAD of the first asset is larger than 10%, the estimated VaR using

the GA method has a larger error and significantly underestimates the risk. In

fact, the same conclusion is also obtained in Emmer and Tasche (2005).

3. The estimated portfolio VaR under the correlated random LGD model is larger

than the estimated VaR under the constant LGD model. This means that, as

the true LGD is random, the estimated VaR by using the constant LGD model

underestimates the risk.

4. The simulation results also show the economic/management meaning of port-

folio allocations. Fund managers and investors can thus carefully allocate their

portfolio to decrease the concentration of assets. Due to the concentration of

assets, the portfolio will incur a high concentration risk and VaR.

5 Conclusions

The major work of this paper is to obtain the approximate closed form of VaR by

using the GA method proposed by Martin and Wilde (2002) under the correlated ran-

dom LGD model. The results improve the analysis presented in Emmer and Tasche

(2005). We observe that the VaR performance using the GA method is better than the

performance using the ASRF method from our simulation results. However, we note

that when the weight of EAD of one asset is large, the estimated VaR using the GA

method has a larger error and significantly underestimates the risk.
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Appendix

This section contains all proofs of lemmas. We first present the three lemmas herein.

Lemma A1 (Andersen and Sidenius (2004)). Given the constants a and b:∫
∞

−∞

Φ(ax+b)φ(x)dx = Φ

(
b√

1+a2

)
.

Lemma A2 (Andersen and Sidenius (2004)). Given the constants a1,a2,b1, and b2:∫
∞

−∞

Φ(a1x+b1)Φ(a2x+b2)φ(x)dx

= Φ2

 b1√
1+a2

1

,
b2√

1+a2
2

;
a1a2√

(1+a2
1)(1+a2

2)

 .

Lemma A3. Given the constants a1,a2,b1, and b2:∫
∞

−∞

Φ(a1x+b1)φ(a2x+b2)φ(x)dx

=
1√

1+a2
2

φ

 b2√
1+a2

2

Φ

 b1 +a2
2b1−a1a2b2√

(1+a2
2)(1+a2

1 +a2
2)

 .

Proof. By Lemma A1:∫
∞

−∞

Φ(a1x+b1)φ(a2x+b2)φ(x)dx

= φ

 b2√
1+a2

2

∫ ∞

−∞

Φ(a1x+b1)φ

√1+a2
2 x+

a2b2√
1+a2

2

dx

=
1√

1+a2
2

φ

 b2√
1+a2

2


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×
∫

∞

−∞

Φ

 a1√
1+a2

2

y+
b1 +a2

2b1−a1a2b2

1+a2
2

φ(y)dy

=
1√

1+a2
2

φ

 b2√
1+a2

2

Φ

 b1 +a2
2b1−a1a2b2√

(1+a2
2)(1+a2

1 +a2
2)

 .

Proof of Lemma 1.

By Lemma A1:

E(LGDi) =
∫

∞

−∞

[1−Φ(ui +σiηi)]φ(ηi)dηi

=
∫

∞

−∞

Φ(−ui−σiηi)φ(ηi)dηi

= Φ

 −ui√
1+σ2

i

 . (11)

By Lemma A1, Lemma A2, and (11):

Var(LGDi) = E
[
Φ

2(−ui−σiηi)
]
−E2(LGDi)

=
∫

∞

−∞

Φ
2(−ui−σiηi)φ(ηi)dηi−E2(LGDi)

= Φ2

 −ui√
1+σ2

i

,
−ui√
1+σ2

i

;
σ2

i

1+σ2
i

−Φ
2

 −ui√
1+σ2

i

 .

By Lemma A2 and (11):

Cov(LGDi,LGD j)

= E[E(LGDi×LGD j|Z)]−E(LGDi)×E(LGD j)

= E

[∫
∞

−∞

Φ

(
−ui−σi

(√
λi Z +

√
1−λi εi

))
φ(εi)dεi

×
∫

∞

−∞

Φ

(
−u j−σ j

(√
λ j Z +

√
1−λ j ε j

))
φ(ε j)dε j

]



172 Journal of Economics and Management

−E(LGDi)×E(LGD j)

=
∫

∞

−∞

Φ

 −ui−σi
√

λi z√
1+σ2

i (1−λi)

Φ

 −u j−σ j
√

λ j z√
1+σ2

j (1−λ j)

φ(z)dz

−E(LGDi)×E(LGD j)

= Φ2

 −ui√
1+σ2

i

,
−u j√
1+σ2

j

;
σiσ j

√
λiλ j√

(1+σ2
i )(1+σ2

j )


−Φ

 −ui√
1+σ2

i

Φ

 −u j√
1+σ2

j

 .

By Lemma A2 and (11):

Cov(LGDi,Yi)

= E[E(LGDi×Yi|Z)]−E(LGDi)×E(Yi)

=
∫

∞

−∞

∫
∞

−∞

Φ

(
−ui−σi

(√
λi Z +

√
1−λi εi

))
φ(εi)

×Φ

(
Φ−1(PDi)−

√
ρiZ√

1−ρi

)
dεi dz−E(LGDi)×E(Yi)

=
∫

∞

−∞

Φ

 −ui−σi
√

λi z√
1+σ2

i (1−λi)

Φ

(
Φ−1(PDi)−

√
ρi Z√

1−ρi

)
φ(z)dz

−E(LGDi)×E(Yi)

= Φ2

 −ui√
1+σ2

i

,Φ−1(PDi);
σi
√

λiρ√
1+σ2

i

−Φ

 −ui√
1+σ2

i

×PDi.

Proof of Lemma 2.

Given Z = z, the conditional default probability of the ith asset is:

P(Yi = 1|Z = z) = P(Xi < Φ
−1(PDi)|Z = z)
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= P

(
Ui <

Φ−1(PDi)−
√

ρi Z√
1−ρi

∣∣∣∣Z = z
)

= Φ(ςi(z)),

where ςi(z) is defined in (9). By Lemma 3:

g(z) = E(Lm|Z = z)

= E

(
m

∑
i=1

wi×LGDi×Yi

∣∣∣∣∣Z = z

)

=
m

∑
i=1

wiE[Φ(−ui−σiηi)|Z = z]E(Yi|Z = z)

=
m

∑
i=1

wi

[∫
∞

−∞

Φ

(
−ui−σi

(√
λi z+

√
1−λi εi

))
φ(εi)dεi

]
×P(Yi = 1|Z = z)

=
m

∑
i=1

wiΦ(ψi(z))Φ(ςi(z)),

where ψi(z) and ςi(z) are defined in (8) and (9), respectively.

Proof of Lemma 4.

By Lemma A2:

Var(Lm|Z = z)

= Var

(
m

∑
i=1

wi×LGDi×Yi

∣∣∣∣∣Z = z

)

=
m

∑
i=1

w2
i E(LGD2

i ×Y 2
i |Z = z)−

m

∑
i=1

w2
i E

2(LGDi×Yi|Z = z)

=
m

∑
i=1

w2
i

[∫
∞

−∞

Φ
2
(
−ui−σi

(√
λi z+

√
1−λi εi

))
φ(εi)dεi

]
×Φ(ςi(z))

−
m

∑
i=1

w2
i

[∫
∞

−∞

Φ

(
−ui−σi

(√
λi z+

√
1−λi εi

))
φ(εi)dεi

]2
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×Φ
2(ςi(z))

=
m

∑
i=1

w2
i Φ2(ψi(z),ψi(z);ρ

∗)Φ(ςi(z))−
m

∑
i=1

w2
i Φ

2(ψi(z))Φ2(ςi(z)),

where ψi(z), ςi(z), and ρ∗ are defined in (8), (9), and (10), respectively. Moreover:

∂

∂ z
Φ2(ψi(z),ψi(z);ρ

∗)

=
∂

∂ z

∫
∞

−∞

Φ
2
(
−ui−σi

(√
λi z+

√
1−λi εi

))
φ(εi)dεi

= −2σi
√

λi

∫
∞

−∞

Φ

(
−ui−σi

√
λi z−σi

√
1−λi εi

)
×φ

(
−ui−σi

√
λi z−σi

√
1−λi εi

)
φ(εi)dεi

= 2ψ̃iφ(ψi(z))Φ

 ψi(z)√
1+2σ2

i (1−λi)

 .

By a straightforward computation, Lemma 4 can be proved.
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