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Abstract-This paper addresses a proportionate 
flexible flow shop for common due date scheduling 
problem. A proportionate flexible flow shop problem is 
generalization of the proportionate flow shop problem 
with multiple identical machines at any stage. The 
problem of minimizing total weighted deviations of job 
completion time from a common due date on a single 
machine is typical scheduling model in Just-In- Time 
production environment. In this paper, we propose a 
column generation approach which is based on some 
properties from V-shaped schedule on a single 
machine. This problem is actually a portioning 
problem, and a dynamic programming algorithm is 
proposed to find an early schedule and a tardy 
schedule with minimum reduced cost. The combination 
of column generation and linear programming 
demonstrate the capability of solving large scale 
problems.  Computational result shows the 
effectiveness and the capability of solving problems 
with up to 40 jobs. 
 
Keywords: Proportionate flow shop, proportionate 
flexible flow shop, common due date, column 
generation, linear programming  
 
1. Introduction  
 

The just-in-time concept in many industrial 
manufacturing systems has become interest in 
machine scheduling problems. In the last four decades, 
many papers have been published in the scheduling 
area. It is desired to have jobs completed at time as 
close as possible to their respective due date. If a job is 
completed earlier than its due date, it has to be held as 
inventory and incurs an inventory cost. This is often 
the case when the products are physically large, then 
the buffer space in between two successive machines 
may have a limited capacity, causing blocking. In 
particular, common due date problems which are less 
complicated than the problems with distinct due date.    

A Flexible flow shop is increasingly common in 
many manufacturing processes because of higher 

productivity of all jobs at one or more stages. A more 
general machine environment consists of a number of 
stages in series with a number of machines in parallel 
at each stage. A job has to be processed at each stage 
on only one of the machines. This machine 
environment is often referred to as a flexible flow shop, 
multiprocessor flow shop or hybrid flow shop. There 
are s stages in series S={1,2,…,s}; each stage i∈S 
consists of m identical parallel machines M={1,2,…,m} 
that have to process n jobs N={1,2,…,n}. One 
machine cannot be assigned to two jobs at a time, and 
each job can be processed by only one machine at 
each stage and preemption is not allowed. Each job 
j∈N consists of a chain of s operations Oji (j∈N;i∈S). 
As a flexible flow shop, which implies the operation 
Oji-1 is preceded by operation Oji, that is, the execution 
of Oji cannot start before the execution of Oji-1 has been 
finished. Operation Oji has to process on machine 
k∈M at stage i∈S, and requires an uninterrupted 
period of length pji. We further assume that the 
operation Oji is processed by the kth machine at stage i, 
the operation Oji+1 must be processed by the kth  
machine at stage i+1, which implies that the algorithm 
is based on the list scheduling principle by assigning 
jobs to machines and job sequences for the first stage. 

The problem of minimizing total weighted 
deviations of job completion times from a common 
due date is described as follows. 

Let Cj (j∈N) denote the completion time of job j 
that has to complete on machine k at stage s(s∈S) and 
should ideally be completed exactly on its due date d, 
which is common to the jobs on a single machine. We 
assume that this common due date is unrestricted large, 
that is, due dates that are large enough to not influence 
the assignment of the jobs completing before it. We 
define the earliness of the j-th job 
  Ej=max{0,d-Cj} 
And the tardiness of the j-th job 
  Tj=max{0,Cj-d} 
The objective is to focus on a schedule σ with 
minimum total weighted earliness and tardiness, 
obtaining 
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  F(σ)=∑ =
n
j 1 [αj Ej+βjTj] 

Whereαj and βj are positive weights, denoted as 
FFc ||∑ =

n
j 1 [αj Ej+βjTj] for the flexible flow shop 

problem. We consider the special case of FFc 
||∑ =

n
j 1 [αj Ej+βjTj], that is , the processing time of 

job j on each of the s stages is equal to Pj 
(i.e.,Pj1=Pj2=…=Pjs=Pj). In the literature, such a flow 
shop is referred to as a proportionate permutation 
flexible flow shop [1]. Minimizing the total weighted 
earliness and tardiness in a proportionate flexible flow 
shop is denoted by FFc |Pji=Pj|∑ =

n
j 1 [αj Ej+βjTj]. 

The problem of single machine scheduling with 
earliness and tardiness (E/T) penalties has been first 
introduced by Kanet [2]. The single machine case with 
symmetric E/T penalties is NP-hard [3]. Since then, 
several E/T scheduling problems have been presented 
and a reference can be found in [4]. However, most of 
the proposed models were focused on single machine 
scheduling problem; Emmons [5] and Hall [6] 
extended the E/T scheduling to parallel machines.   

Minimizing the total weighted completion time in a 
two stages flow shop is already NP-hard [7]. Wittrock 
showed that the flexible flow shop scheduling problem 
is a NP-hard one [8]. Błażewicz, J., Pesch, E., Sterna, 
M., & Werner, F. [9] proposed a two-machine flow 
shop problem with weighted late work criterion and 
common due date. Shakhlevich [10] reported a O(n2) 
time algorithm to solve a proportionate flow shop with 
minimum weight completion time.   

The flexible flow shop problem was first addressed 
by Salvador [11]. Brah [12] developed a branch and 
bound algorithm for the problem. However, these 
algorithms can only solve problems with a small size. 
Wang [13] and Xiao [14] also developed genetic 
algorithm for flexible flow shop to minimize the 
makespan. However, genetic algorithm is usually 
time–consuming for large scale problems and not 
suitable for fast scheduling. 

The proportionate flexible flow shop for a common 
due date scheduling problem is performed two 
subproblems. The first one is to determine which jobs 
will be scheduled on each individual machine to share 
a common due date. The second one is to specify the 
order in which the jobs should be processed on each 
machine at any stage. Note that the processing order of 
the jobs is the same on each machine at any stage. 

In this paper, we develop a decomposition approach 
applied to a Restricted Master Problem (RMP) with a 
set covering formulation in which the linear 
programming relaxation is solved efficiently by 
column generation. Our algorithm is based on the 
column generation approach independently proposed 
by Van Den Akker [15] for parallel machine 

scheduling problems. This approach has been 
successfully applied to many large scale parallel 
machine optimization problems. Chen and Powell [16] 
demonstrated that the column generation can solve 
very effectively with up to 100 jobs. To deal with the 
proportionate flexible flow shop scheduling problem, 
the framework of this approach is as follow. First, we 
formulate the problem as a set covering type 
formulation with an exponential number of variables 
(columns), n covering constraints (n∈N) and two side 
constraints, each of column which represents a partial 
schedule on a single machine, then solve the linear 
programming relaxation of this set covering 
formulation by a standard column generation [17]. If 
the solution of linear programming relaxation of the 
formulation is to be integral, then the optimal solution 
has been found for the problem FFc 
|Pji=Pj| ∑ =

n
j 1 [αj Ej+βjTj], otherwise, we propose a 

branch and bound algorithm to identify an optimal 
solution. 

 
2. Set Covering Type Formulation  

In the following, we provide some optimality 
properties and formulate the problem as set covering 
type formulation. 
  
2.1 Optimality Properties 
  

Optimal solutions for the common due date 
scheduling problems on each single machine which 
are provided by the so called V-shaped schedules 
[4][18]:  
(i) There is no idle time between jobs 
(ii) The early jobs are scheduled in the 

non-decreasing order of the ratio αj/Pj , that is, 
according to the Weighted Longest Processing 
Time first (WLPT) rule. 

(iii) The tardy jobs are scheduled in the 
non-increasing order of the ratio βj/Pj, that is, 
according to the Weighted Shortest Processing 
Time first (WSPT) rule. 

(iv) One of the jobs completes exactly on time d. 
In a given schedule for the problem, the 

corresponding single machine schedule on a given 
machine consists of two parts: the early schedule, 
consisting of the jobs completed before or on time d; 
the tardy schedule, consisting of the jobs completed 
after time d, and then combine them to form a single 
machine schedule. Due to the four properties, the 
value of common due date is irrelevant. 
 
Property 1: In an optimal schedule for minimizing the 
total earliness and tardiness, the early jobs are 
scheduled according to LPT, and the late jobs are 
scheduled according to SPT [19]. 
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In a proportionate flexible flow shop with s stages, 
it is clear that the late jobs are scheduled according to 
SPT rule, each job when completed at one stage does 
not have to wait for processing at next stage. 
Immediately it can start its processing at the following 
stage after completion at one stage. That is, the sum of 
the completion time is equal to the sum of the starting 
time at the first stage plus∑ =

n
j jsp1 . 

 
2.2 Formulation 

 
Let Ω be the set of all early partial schedules and 

tardy partial schedules, including the empty tardy 
schedule, and σ be any partial schedule (σ∈Ω). For 
each job j (j∈N), let ajσ =1 if schedule σ∈Ω includes 
job j and 0 otherwise. an+1,σ =1 only if σ is an early 
schedule, and an+2,σ =1 only if σ is a tardy schedule. 
Let Cj(σ) denote the completion time of job j on the 
machine k at the last stage s in σ. Let C(σ) be the total 
cost of schedule σ∈Ω. Note that the processing order 
of the jobs is the same on each machine at any stage, 
then  

Cj(σ)=∑
=

j

i 1
piaiσ +(s-1) max{p1a1σ,…,pjajσ} 

Hence, the cost C(σ) of an early schedule σ is 
computed as  

C(σ)= )(1 σα jn
j jE∑ = =     

 
})],...{max)1(

([
11

11

σσ

σσα
jj

ij

apaps
apda j

i i
n
j j

−

+∑−∑ ==  

It is clear that the cost of an early schedule is 
minimized by WLPT order and LPT order , that is , 
the early jobs are scheduled in the non-decreasing 
order of theαj/Pj ratio and in order of non-increasing 
processing time (LPT). 
For an optimal V-shaped schedule, the first job of a 
tardy schedule starts exactly at the due date. The cost 
C(σ) of a tardy schedule σ is computed as                
 C(σ)= )(1 σβ jn

j jT∑ = = 

},...{max)1( 111

11

σσ

σσ

σβ

β

jjj

ij

apapas

apa
n
j j

j
i i

n
j j

∑−

+∑∑

=

==   

The first term is exactly equal to the total weighted 
completion time of a tardy partial schedule σ on a 
single machine; this term is minimized by WSPT order. 
The second term is minimized by SPT rule, that is, the 
jobs are scheduled in order of non-decreasing 
processing time 

For any early or tardy partial schedule σ∈Ω, define 
0-1 variables, yσ =1 if schedule σ∈Ω is selected and 0 
otherwise. Then the master problem can be formulated 
as the set covering problem.  
  Min ∑

Ω∈σ
C(σ)yσ 

subject to 
  ∑

Ω∈σ
 ajσyσ=1, Nj∈∀     (1) 

∑
Ω∈σ

 an+1, σ yσ≤m     (2) 

∑
Ω∈σ

 an+2, σ yσ≤m     (3) 

yσ∈{0,1},   Ω∈∀σ         (4)      
where constraint (1) means that each job is covered 
exact once. Constraint (2) ensures that there are at 
most m early partial schedules are selected. Constraint 
(3) ensures that there are at most m tardy partial 
schedules are selected. Note that each column in this 
formulation represents an early partial schedule or a 
tardy partial schedule and combine them to a single 
machine schedule and the set Ω contains an 
exponential number of schedules while the column 
generation is proceeded.   
 
2.3 Column Generation Approach 

 
In the column generation approach, the linear 

programming relaxation is obtained that the constraint 
(4) is relaxed to 0≤ yσ≤ 1. This is because the column 
generation is a generalized linear programming for 
which an optimal solution of the relaxed problem is 
the lower bound of the integer optimal solution 
problem. 

As the number of partial schedules on a machine, it 
is impossible to explicitly list all the columns when 
solving RMP. Instead, we use the column generation 
to generate necessary columns into RMP. To solve the 
restricted master problem, we apply the standard 
column generation in which the restricted master 
problem is a linear programming problem and can be 
solved efficiently. Each column represents an early 
schedule or a tardy schedule on one machine and is 
generated by solving a single machine subproblem. 
This procedure starts with a limited number of 
columns, that is, some initial set Ω of early and tardy 
schedules are needed to compute the initial dual 
variables. The initial solution has to be provided to the 
RMP and generate columns with the most negative 
reduced cost iteratively. To generate initial columns 
are becoming important, poorly selected initial 
columns lead the algorithm lost.  

 
Single Machine Subproblems 
The main idea behind column generation is that the 

occurrence of variables (columns) with negative 
reduced cost is not verified by enumerating all 
variables, but rather by solving an optimization 
problem. This optimization problem is called the 
pricing problem and is defined as the problem of 
finding the variable with minimum reduced cost to be 
added the restricted master problem. If neither an early 

Int. Computer Symposium, Dec. 15-17, 2004, Taipei, Taiwan.

174



schedule, nor a tardy schedule with negative reduced 
cost exists, then the column generation procedure will 
be terminated and the problem for FFc 
|Pji=Pj|∑ =

n
j 1 [αjEj+βjTj] is solved.  

Letπ j denote the dual variable value corresponding 
to job j (j∈N) in constraint (1), andλ 1 and λ 2 denote 
the dual variable value corresponding to constraint (2) 
and (3). Then the reduced cost rσ of any column σ∈Ω 
is given by: 

 rσ = C(σ) -∑ =
n
j 1 ajσπ j -λ 1-λ 2 

We solve the pricing problem by finding the early 
schedule and tardy schedule with minimum reduced 
cost among all early and tardy schedules. To that end, 
we use two dynamic algorithms to find an early 
schedule with minimum reduced cost and a tardy 
schedule with minimum reduced cost.   

In case of an early schedule, the vector an+1,σ =1 
and an+2,σ =0, we essentially have to minimize C(σ) 
- ∑=

n
j 1 ajσπj. Reindex the jobs in order of 

non-increasingαj/Pj ratios, settling ties according to 
non-decreasing processing time, then for the earliness 
of any job j in the early schedule σ is computed as 
 Ej=d - Cj=∑ −

=
1
1

j
i piaiσ 

Which implies that 
rσ = C(σ) -∑ =

n
j 1 ajσπ j -λ 1= 

 ∑ =
n
j 1 αjajσ∑ −

=
1
1

j
i piaiσ -∑ =

n
j 1 ajσπ j -λ 1 

In case of a tardy schedule, the vector an+1,σ =0 and 
an+2,σ =1, then for the tardiness of any job j in the tardy 
schedule σ is computed as  

 Tj= Cj - d =∑
=

j

i 1
piaiσ +(s-1) max{p1a1σ,…,pjajσ} 

Which implies that 
rσ = C(σ) -∑ =

n
j 1 ajσπ j -λ 2= 

−∑−

+∑∑

=

==

},...max{)1( 111

11

σσ

σσ

σβ

β

jjj

ij

apapas

apa
n
j j

j
i i

n
j j

                         

  ∑ =
n
j 1 ajσπ j -λ 2 

The pricing problem is based on a dynamic 
programming that exploits the property that on each 
machine the jobs are sequenced in order of increasing 
indices. The approach solves a series of subproblems 
until it finds the solution of the problem. At each 
iteration, it determines the optimal solution for a 
subproblem. It finds a solution for the current 
subproblem by utilizing the dual variable values 
obtained earlier in the solution of the previous 
subproblems. 
Dynamic Algorithm 1 

To generate the early schedules with negative 
reduced cost, first reindex the jobs in order of 
non-increasingαj/Pj ratios, settling ties according to 

nondecreasing processing time. Let V(j, t) denote the 
minimum reduced cost in an early schedule in which 
the first job in the schedule starts at time d- t. 
Initial condition: 

V(j, t)=



∞

==−
otherwise,

0and0if, 1 tjλ
 

Recursive relation: 
For j=1,…,n, t=0,…,∑ =

j
i iP1  

V(j, t)=min{V(j-1, t), V(j-1, t-pj) +αj(t-pj) – π j}  (5) 
The optimal value is computed: 
 

Pt≤≤0
min  V(n, t) 

where P= ∑ =
n
j jP1 . Then the early schedule with 

minimum reduced cost is solved by computing 

Pt≤≤0
min V(n, t) . The dynamic programming algorithm is 

based on the recursive relation that runs in O(nP) time 
and space. 
Dynamic Algorithm 2 

To generate the tardy schedules with negative 
reduced cost in a similar fashion. Reindex the jobs in 
order of non-increasingβ j/Pj ratios, settling ties 
according to non-decreasing processing time. Let V (j, 
t) denote the minimum reduced cost in a tardy 
schedule in which the last job completes at time t. 

V (j, t)=



∞

==−
otherwise,

0and0if, 2 tjλ
 

Recursive relation: 
For j=1,…,n, t=0,…,∑ =

j
i isP1  

V (j, t)=min{V (j-1, t),V (j-1, t-spj) +βjt – π j }  (6) 
The optimal value is computed: 
 

Pt≤≤0
min  V (n, t) 

where P= ∑ =
n
j jsp1 . Then the tardy schedule with 

minimum reduced cost is solved by computing 

Pt≤≤0
min V (n, t). Run both dynamic algorithms to 

determine the early schedule with minimum negative 
reduced cost and the tardy schedule with negative 
reduced cost. If both V(n, t)≥ 0 and V (n, t)≥ 0, then 
the column generation procedure will be terminated 
and the problem has solved to optimality. If not, the 
new columns (the early schedules or the tardy 
schedules) are generated to be added into the restricted 
master problem. It is not necessary to have one 
column with the most negative reduced cost into the 
restricted master problem, if more than one columns 
with a negative reduced cost are available, then add 
multiple such columns to the restricted master 
problem. After the value of V(n, t) or V (n, t) has been 
determined, the optimal sequence is obtained through 
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a simple backtracking procedure. 
 
3. Branch and Bound Algorithm 
 
A linear programming relaxation solved by column 
generation is not necessarily integral, so the branch 
and bound procedure now considers the LP relaxation 
of one of the subproblem and solves it. If the optimal 
solution is integral, in this case, each value of yσ is 
either 1, or 0, then the branch of the tree does not have 
to be explored. If the optimal solution is not integral, 
then a fractional variable should be selected to branch 
on. For solving our problem, traditional branching on 
the y variable may create problems along a branch 
where a variable has been set to zero or one does not 
work in combination with column generation, that is, 
the branching yσ = 0 means that this partial schedule is 
excluded, as pricing problem may generate this partial 
schedule (column) again when solving a single 
machine subproblem. Our branching strategy is based 
on the completion time of jobs appearing in a fraction 
solution instead of branching on the y’s in the master 
problem.  

Let y* denote the optimal solution to the LP 
relaxation of the set covering formulation and Ω* be 
the set of all early and tardy partial schedules σ∈Ω for 
which *

σy  >0. If y* is integral, then y* forms an 

optimal solution for FFc |Pji=Pj|∑ =
n
j 1 [αjEj+βjTj]., 

if not, the fractional schedules are obtained. Based on 
experiment observation, it occurred quite often for 
each job the completion time is equal in each partial 
schedule in Ω* in which it occurs. That is, if the 
completion time of job j appears in one or more partial 
schedule σ∈ Ω* at time t, then the schedule is 
obtained by processing job j in the interval [t – pj, t]. 
The following theorem illustrates this fact. 
Theorem 1. If Cj(σ) = Cj for each job j (j=1,…,n) and 
for each σ with *

σy  >0, then the schedule obtained by 
processing job j in the interval [Cj – pj, Cj] is feasible 
and has minimum cost. [15] 

If the optimal solution to the linear programming 
relaxation does not form to be integral and does not 
satisfy the conditions of Theorem 1, then a branch and 
bound algorithm is required to find an optimal solution. 
The algorithm based on splitting the set of possible 
completion times. The following property is shown 
that if the optimal solution is fractional and does not 
satisfy the condition of Theorem 1, then there is at 
least one job j which satisfies 

 }0|)(min{)( **

*
>>∑

Ω∈
yCyC jj σσ

σ
σσ  

When apply branch and bound tree, it is necessary to 
know if there exists such a job j that does not satisfy 
the condition of Theorem 1. If any, we need to identify 

the job with the smallest index, then create two 
descendant nodes, one for the constraint that 
Cj ≤ min{ Cj(σ)| *

σy  >0} and another for Cj ≥  

min{Cj(σ)| *
σy >0} +1. The first constraint specifies a 

deadline dj at which job j must be completed, the 
second one specifies a release date rj = min{Cj(σ)| *

σy  
>0} +1- pj before which job j cannot be started (In 
case of the tardy schedules ,rj = min{Cj(σ)| *

σy  >0} 
+1- spj (s∈S) ). 

To find an optimal solution, we have to generate 
columns after branching. This strategy can be easily 
incorporated into Algorithm 1 and 2. Simply, we have 
to replace equation (5) by 

V(j, t)=








−
≤≤+

−−+−−−

otherwise),,1(
if

},)(),1(),,1(min{

tjV
dtpr

ptptjVtjV
jjj

jjjj πα
 

and replace equation (6) by 

V (j, t)=










−

≤≤+
−+−−−

otherwise),,1(

if
},),1(),,1(min{

__

tjV

dtspr
tsptjVtjV

jjj

jjj πβ
 

 
4. Computational Experiments 
 

In this section, we report the computation 
experiments for randomly generated test problem. Our 
algorithms involved are coded in C and tested on IBM 
server X series 232 with PIII processor. Linear 
programs involved in the column generation approach 
are solved by LINGO 8.0 . 

To generate a test problem, there are five 
parameters to be determined: number of machines m at 
each stage, number of jobs n , processing time pj for 
each job j(j∈N) and earliness penalty weight αj for 
each job j(j∈N), tardiness penalty weight βj for each 
job j(j∈N)  
The five parameters are generated as follows: 

Number of machines M∈{2,4,6 } 
Number of jobs n∈{20,30,40} 
Processing time pj = [1, 30] 
Earliness penalty weight(αj) = [1,100] 
tardiness penalty weight(βj) = [1,100] 

Table 1 lists the computational result for problem FFc 
|Pji=Pj|∑ =

n
j 1 [αjEj+βjTj] with processing time of jobs 

drawn from the intervals [1,30], for each given 
combination of m and n, a total of 50 test problems are 
generated randomly and the header of columns are: 

n : Number of jobs 
m : Number of machines at each stage 
IP-LP Gap : The average gap in percentage 

between LP relaxation value and the 
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integer solution  
WB : The number of problems solved at 

root node without any branching out 
of 50 problems. 

ANN : Average number of B&B nodes 
explored for solving the problem. 

CG : The average number of columns 
generated for solving the problem. 

Table 1: Results for problem with processing time 
drawn form the distribution [1, 30] 

n m IP-LP 
Gap 

WB ANN CG 

20 2 0.05% 30 3.8 445 
30 2 0.16% 12 12.2 1811 
40 2 0.2% 8 22.3 4436 
20 4 0.15% 35 4.2 255 
30 4 0.25% 16 5.5 825 
40 4 0.15% 7 12.5 1532 
20 6 0.01% 48 1.3 153 
30 6 0.12% 32 6.1 896 
40 6 0.08% 15 9.5 987 

 
5. Conclusion 

We have proposed an effective column generation 
approach for solving the class of proportionate flexible 
flow shop problem with a large common due date. 
Using this algorithm, we were able to solve problems 
with up to 40 jobs to optimality by solving the linear 
programming relaxation of a set covering formulation 
of the problem. From the computational results show 
that the integrality gap is extremely small, and also 
few nodes need to be explored in branch and bound 
tree, and many test problems are solved at the root 
node without branching.  

An interesting topic for future research is the 
special case of proportionate flexible flow shop 
problem with the processing time Pji=pj/si,, where si is 
the speed of each machine at each stage and jobs have 
distinct due date. 
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