
A Column Generation Approach to Solve Proportionate Flexible Flow Shop for
Common Due Date Scheduling

Der-Fang Shiau1,2, Shu-Chen Cheng3,Yueh-Min Huang1 ,Pi-Chung Hsu2

1Department of Engineering Science, National Cheng-Kung University, Tainan 701, Taiwan
2 Department of Information Management, Fortune Institute of Technology, Kaohsiung County, Taiwan

3 Department of Computer Science and Information Engineering, Southern Taiwan University of
Technology

Email:derfangs@center.fjtc.edu.tw, kittyc@mail.stut.edu.tw, huang@mail.ncku.edu.tw

Abstract-This paper addresses a proportionate
flexible flow shop for common due date scheduling
problem. A proportionate flexible flow shop problem is
generalization of the proportionate flow shop problem
with multiple identical machines at any stage. The
problem of minimizing total weighted deviations of job
completion time from a common due date on a single
machine is typical scheduling model in Just-In- Time
production environment. In this paper, we propose a
column generation approach which is based on some
properties from V-shaped schedule on a single
machine. This problem is actually a portioning
problem, and a dynamic programming algorithm is
proposed to find an early schedule and a tardy
schedule with minimum reduced cost. The combination
of column generation and linear programming
demonstrate the capability of solving large scale
problems. Computational result shows the
effectiveness and the capability of solving problems
with up to 40 jobs.

Keywords: Proportionate flow shop, proportionate
flexible flow shop, common due date, column
generation, linear programming

1. Introduction

The just-in-time concept in many industrial
manufacturing systems has become interest in
machine scheduling problems. In the last four decades,
many papers have been published in the scheduling
area. It is desired to have jobs completed at time as
close as possible to their respective due date. If a job is
completed earlier than its due date, it has to be held as
inventory and incurs an inventory cost. This is often
the case when the products are physically large, then
the buffer space in between two successive machines
may have a limited capacity, causing blocking. In
particular, common due date problems which are less
complicated than the problems with distinct due date.

A Flexible flow shop is increasingly common in
many manufacturing processes because of higher

productivity of all jobs at one or more stages. A more
general machine environment consists of a number of
stages in series with a number of machines in parallel
at each stage. A job has to be processed at each stage
on only one of the machines. This machine
environment is often referred to as a flexible flow shop,
multiprocessor flow shop or hybrid flow shop. There
are s stages in series S={1,2,…,s}; each stage i∈S
consists of m identical parallel machines M={1,2,…,m}
that have to process n jobs N={1,2,…,n}. One
machine cannot be assigned to two jobs at a time, and
each job can be processed by only one machine at
each stage and preemption is not allowed. Each job
j∈N consists of a chain of s operations Oji (j∈N;i∈S).
As a flexible flow shop, which implies the operation
Oji-1 is preceded by operation Oji, that is, the execution
of Oji cannot start before the execution of Oji-1 has been
finished. Operation Oji has to process on machine
k∈M at stage i∈S, and requires an uninterrupted
period of length pji. We further assume that the
operation Oji is processed by the kth machine at stage i,
the operation Oji+1 must be processed by the kth
machine at stage i+1, which implies that the algorithm
is based on the list scheduling principle by assigning
jobs to machines and job sequences for the first stage.

The problem of minimizing total weighted
deviations of job completion times from a common
due date is described as follows.

Let Cj (j∈N) denote the completion time of job j
that has to complete on machine k at stage s(s∈S) and
should ideally be completed exactly on its due date d,
which is common to the jobs on a single machine. We
assume that this common due date is unrestricted large,
that is, due dates that are large enough to not influence
the assignment of the jobs completing before it. We
define the earliness of the j-th job
 Ej=max{0,d-Cj}
And the tardiness of the j-th job
 Tj=max{0,Cj-d}
The objective is to focus on a schedule σ with
minimum total weighted earliness and tardiness,
obtaining

Int. Computer Symposium, Dec. 15-17, 2004, Taipei, Taiwan.

172

 F(σ)=∑ =
n
j 1 [αj Ej+βjTj]

Whereαj and βj are positive weights, denoted as
FFc ||∑ =

n
j 1 [αj Ej+βjTj] for the flexible flow shop

problem. We consider the special case of FFc
||∑ =

n
j 1 [αj Ej+βjTj], that is , the processing time of

job j on each of the s stages is equal to Pj
(i.e.,Pj1=Pj2=…=Pjs=Pj). In the literature, such a flow
shop is referred to as a proportionate permutation
flexible flow shop [1]. Minimizing the total weighted
earliness and tardiness in a proportionate flexible flow
shop is denoted by FFc |Pji=Pj|∑ =

n
j 1 [αj Ej+βjTj].

The problem of single machine scheduling with
earliness and tardiness (E/T) penalties has been first
introduced by Kanet [2]. The single machine case with
symmetric E/T penalties is NP-hard [3]. Since then,
several E/T scheduling problems have been presented
and a reference can be found in [4]. However, most of
the proposed models were focused on single machine
scheduling problem; Emmons [5] and Hall [6]
extended the E/T scheduling to parallel machines.

Minimizing the total weighted completion time in a
two stages flow shop is already NP-hard [7]. Wittrock
showed that the flexible flow shop scheduling problem
is a NP-hard one [8]. Błażewicz, J., Pesch, E., Sterna,
M., & Werner, F. [9] proposed a two-machine flow
shop problem with weighted late work criterion and
common due date. Shakhlevich [10] reported a O(n2)
time algorithm to solve a proportionate flow shop with
minimum weight completion time.

The flexible flow shop problem was first addressed
by Salvador [11]. Brah [12] developed a branch and
bound algorithm for the problem. However, these
algorithms can only solve problems with a small size.
Wang [13] and Xiao [14] also developed genetic
algorithm for flexible flow shop to minimize the
makespan. However, genetic algorithm is usually
time–consuming for large scale problems and not
suitable for fast scheduling.

The proportionate flexible flow shop for a common
due date scheduling problem is performed two
subproblems. The first one is to determine which jobs
will be scheduled on each individual machine to share
a common due date. The second one is to specify the
order in which the jobs should be processed on each
machine at any stage. Note that the processing order of
the jobs is the same on each machine at any stage.

In this paper, we develop a decomposition approach
applied to a Restricted Master Problem (RMP) with a
set covering formulation in which the linear
programming relaxation is solved efficiently by
column generation. Our algorithm is based on the
column generation approach independently proposed
by Van Den Akker [15] for parallel machine

scheduling problems. This approach has been
successfully applied to many large scale parallel
machine optimization problems. Chen and Powell [16]
demonstrated that the column generation can solve
very effectively with up to 100 jobs. To deal with the
proportionate flexible flow shop scheduling problem,
the framework of this approach is as follow. First, we
formulate the problem as a set covering type
formulation with an exponential number of variables
(columns), n covering constraints (n∈N) and two side
constraints, each of column which represents a partial
schedule on a single machine, then solve the linear
programming relaxation of this set covering
formulation by a standard column generation [17]. If
the solution of linear programming relaxation of the
formulation is to be integral, then the optimal solution
has been found for the problem FFc
|Pji=Pj| ∑ =

n
j 1 [αj Ej+βjTj], otherwise, we propose a

branch and bound algorithm to identify an optimal
solution.

2. Set Covering Type Formulation

In the following, we provide some optimality
properties and formulate the problem as set covering
type formulation.

2.1 Optimality Properties

Optimal solutions for the common due date
scheduling problems on each single machine which
are provided by the so called V-shaped schedules
[4][18]:
(i) There is no idle time between jobs
(ii) The early jobs are scheduled in the

non-decreasing order of the ratio αj/Pj , that is,
according to the Weighted Longest Processing
Time first (WLPT) rule.

(iii) The tardy jobs are scheduled in the
non-increasing order of the ratio βj/Pj, that is,
according to the Weighted Shortest Processing
Time first (WSPT) rule.

(iv) One of the jobs completes exactly on time d.
In a given schedule for the problem, the

corresponding single machine schedule on a given
machine consists of two parts: the early schedule,
consisting of the jobs completed before or on time d;
the tardy schedule, consisting of the jobs completed
after time d, and then combine them to form a single
machine schedule. Due to the four properties, the
value of common due date is irrelevant.

Property 1: In an optimal schedule for minimizing the
total earliness and tardiness, the early jobs are
scheduled according to LPT, and the late jobs are
scheduled according to SPT [19].

Int. Computer Symposium, Dec. 15-17, 2004, Taipei, Taiwan.

173

In a proportionate flexible flow shop with s stages,
it is clear that the late jobs are scheduled according to
SPT rule, each job when completed at one stage does
not have to wait for processing at next stage.
Immediately it can start its processing at the following
stage after completion at one stage. That is, the sum of
the completion time is equal to the sum of the starting
time at the first stage plus∑ =

n
j jsp1 .

2.2 Formulation

Let Ω be the set of all early partial schedules and

tardy partial schedules, including the empty tardy
schedule, and σ be any partial schedule (σ∈Ω). For
each job j (j∈N), let ajσ =1 if schedule σ∈Ω includes
job j and 0 otherwise. an+1,σ =1 only if σ is an early
schedule, and an+2,σ =1 only if σ is a tardy schedule.
Let Cj(σ) denote the completion time of job j on the
machine k at the last stage s in σ. Let C(σ) be the total
cost of schedule σ∈Ω. Note that the processing order
of the jobs is the same on each machine at any stage,
then

Cj(σ)=∑
=

j

i 1
piaiσ +(s-1) max{p1a1σ,…,pjajσ}

Hence, the cost C(σ) of an early schedule σ is
computed as

C(σ)=)(1 σα jn
j jE∑ = =

})],...{max)1(

([
11

11

σσ

σσα
jj

ij

apaps
apda j

i i
n
j j

−

+∑−∑ ==

It is clear that the cost of an early schedule is
minimized by WLPT order and LPT order , that is ,
the early jobs are scheduled in the non-decreasing
order of theαj/Pj ratio and in order of non-increasing
processing time (LPT).
For an optimal V-shaped schedule, the first job of a
tardy schedule starts exactly at the due date. The cost
C(σ) of a tardy schedule σ is computed as
 C(σ)=)(1 σβ jn

j jT∑ = =

},...{max)1(111

11

σσ

σσ

σβ

β

jjj

ij

apapas

apa
n
j j

j
i i

n
j j

∑−

+∑∑

=

==

The first term is exactly equal to the total weighted
completion time of a tardy partial schedule σ on a
single machine; this term is minimized by WSPT order.
The second term is minimized by SPT rule, that is, the
jobs are scheduled in order of non-decreasing
processing time

For any early or tardy partial schedule σ∈Ω, define
0-1 variables, yσ =1 if schedule σ∈Ω is selected and 0
otherwise. Then the master problem can be formulated
as the set covering problem.
 Min ∑

Ω∈σ
C(σ)yσ

subject to
 ∑

Ω∈σ
 ajσyσ=1, Nj∈∀ (1)

∑
Ω∈σ

 an+1, σ yσ≤m (2)

∑
Ω∈σ

 an+2, σ yσ≤m (3)

yσ∈{0,1}, Ω∈∀σ (4)
where constraint (1) means that each job is covered
exact once. Constraint (2) ensures that there are at
most m early partial schedules are selected. Constraint
(3) ensures that there are at most m tardy partial
schedules are selected. Note that each column in this
formulation represents an early partial schedule or a
tardy partial schedule and combine them to a single
machine schedule and the set Ω contains an
exponential number of schedules while the column
generation is proceeded.

2.3 Column Generation Approach

In the column generation approach, the linear

programming relaxation is obtained that the constraint
(4) is relaxed to 0≤ yσ≤ 1. This is because the column
generation is a generalized linear programming for
which an optimal solution of the relaxed problem is
the lower bound of the integer optimal solution
problem.

As the number of partial schedules on a machine, it
is impossible to explicitly list all the columns when
solving RMP. Instead, we use the column generation
to generate necessary columns into RMP. To solve the
restricted master problem, we apply the standard
column generation in which the restricted master
problem is a linear programming problem and can be
solved efficiently. Each column represents an early
schedule or a tardy schedule on one machine and is
generated by solving a single machine subproblem.
This procedure starts with a limited number of
columns, that is, some initial set Ω of early and tardy
schedules are needed to compute the initial dual
variables. The initial solution has to be provided to the
RMP and generate columns with the most negative
reduced cost iteratively. To generate initial columns
are becoming important, poorly selected initial
columns lead the algorithm lost.

Single Machine Subproblems
The main idea behind column generation is that the

occurrence of variables (columns) with negative
reduced cost is not verified by enumerating all
variables, but rather by solving an optimization
problem. This optimization problem is called the
pricing problem and is defined as the problem of
finding the variable with minimum reduced cost to be
added the restricted master problem. If neither an early

Int. Computer Symposium, Dec. 15-17, 2004, Taipei, Taiwan.

174

schedule, nor a tardy schedule with negative reduced
cost exists, then the column generation procedure will
be terminated and the problem for FFc
|Pji=Pj|∑ =

n
j 1 [αjEj+βjTj] is solved.

Letπ j denote the dual variable value corresponding
to job j (j∈N) in constraint (1), andλ 1 and λ 2 denote
the dual variable value corresponding to constraint (2)
and (3). Then the reduced cost rσ of any column σ∈Ω
is given by:

 rσ = C(σ) -∑ =
n
j 1 ajσπ j -λ 1-λ 2

We solve the pricing problem by finding the early
schedule and tardy schedule with minimum reduced
cost among all early and tardy schedules. To that end,
we use two dynamic algorithms to find an early
schedule with minimum reduced cost and a tardy
schedule with minimum reduced cost.

In case of an early schedule, the vector an+1,σ =1
and an+2,σ =0, we essentially have to minimize C(σ)
- ∑=

n
j 1 ajσπj. Reindex the jobs in order of

non-increasingαj/Pj ratios, settling ties according to
non-decreasing processing time, then for the earliness
of any job j in the early schedule σ is computed as
 Ej=d - Cj=∑ −

=
1
1

j
i piaiσ

Which implies that
rσ = C(σ) -∑ =

n
j 1 ajσπ j -λ 1=

 ∑ =
n
j 1 αjajσ∑ −

=
1
1

j
i piaiσ -∑ =

n
j 1 ajσπ j -λ 1

In case of a tardy schedule, the vector an+1,σ =0 and
an+2,σ =1, then for the tardiness of any job j in the tardy
schedule σ is computed as

 Tj= Cj - d =∑
=

j

i 1
piaiσ +(s-1) max{p1a1σ,…,pjajσ}

Which implies that
rσ = C(σ) -∑ =

n
j 1 ajσπ j -λ 2=

−∑−

+∑∑

=

==

},...max{)1(111

11

σσ

σσ

σβ

β

jjj

ij

apapas

apa
n
j j

j
i i

n
j j

 ∑ =
n
j 1 ajσπ j -λ 2

The pricing problem is based on a dynamic
programming that exploits the property that on each
machine the jobs are sequenced in order of increasing
indices. The approach solves a series of subproblems
until it finds the solution of the problem. At each
iteration, it determines the optimal solution for a
subproblem. It finds a solution for the current
subproblem by utilizing the dual variable values
obtained earlier in the solution of the previous
subproblems.
Dynamic Algorithm 1

To generate the early schedules with negative
reduced cost, first reindex the jobs in order of
non-increasingαj/Pj ratios, settling ties according to

nondecreasing processing time. Let V(j, t) denote the
minimum reduced cost in an early schedule in which
the first job in the schedule starts at time d- t.
Initial condition:

V(j, t)=



∞

==−
otherwise,

0and0if, 1 tjλ

Recursive relation:
For j=1,…,n, t=0,…,∑ =

j
i iP1

V(j, t)=min{V(j-1, t), V(j-1, t-pj) +αj(t-pj) – π j} (5)
The optimal value is computed:

Pt≤≤0
min V(n, t)

where P= ∑ =
n
j jP1 . Then the early schedule with

minimum reduced cost is solved by computing

Pt≤≤0
min V(n, t) . The dynamic programming algorithm is

based on the recursive relation that runs in O(nP) time
and space.
Dynamic Algorithm 2

To generate the tardy schedules with negative
reduced cost in a similar fashion. Reindex the jobs in
order of non-increasingβ j/Pj ratios, settling ties
according to non-decreasing processing time. Let V (j,
t) denote the minimum reduced cost in a tardy
schedule in which the last job completes at time t.

V (j, t)=



∞

==−
otherwise,

0and0if, 2 tjλ

Recursive relation:
For j=1,…,n, t=0,…,∑ =

j
i isP1

V (j, t)=min{V (j-1, t),V (j-1, t-spj) +βjt – π j } (6)
The optimal value is computed:

Pt≤≤0
min V (n, t)

where P= ∑ =
n
j jsp1 . Then the tardy schedule with

minimum reduced cost is solved by computing

Pt≤≤0
min V (n, t). Run both dynamic algorithms to

determine the early schedule with minimum negative
reduced cost and the tardy schedule with negative
reduced cost. If both V(n, t)≥ 0 and V (n, t)≥ 0, then
the column generation procedure will be terminated
and the problem has solved to optimality. If not, the
new columns (the early schedules or the tardy
schedules) are generated to be added into the restricted
master problem. It is not necessary to have one
column with the most negative reduced cost into the
restricted master problem, if more than one columns
with a negative reduced cost are available, then add
multiple such columns to the restricted master
problem. After the value of V(n, t) or V (n, t) has been
determined, the optimal sequence is obtained through

Int. Computer Symposium, Dec. 15-17, 2004, Taipei, Taiwan.

175

a simple backtracking procedure.

3. Branch and Bound Algorithm

A linear programming relaxation solved by column
generation is not necessarily integral, so the branch
and bound procedure now considers the LP relaxation
of one of the subproblem and solves it. If the optimal
solution is integral, in this case, each value of yσ is
either 1, or 0, then the branch of the tree does not have
to be explored. If the optimal solution is not integral,
then a fractional variable should be selected to branch
on. For solving our problem, traditional branching on
the y variable may create problems along a branch
where a variable has been set to zero or one does not
work in combination with column generation, that is,
the branching yσ = 0 means that this partial schedule is
excluded, as pricing problem may generate this partial
schedule (column) again when solving a single
machine subproblem. Our branching strategy is based
on the completion time of jobs appearing in a fraction
solution instead of branching on the y’s in the master
problem.

Let y* denote the optimal solution to the LP
relaxation of the set covering formulation and Ω* be
the set of all early and tardy partial schedules σ∈Ω for
which *

σy >0. If y* is integral, then y* forms an

optimal solution for FFc |Pji=Pj|∑ =
n
j 1 [αjEj+βjTj].,

if not, the fractional schedules are obtained. Based on
experiment observation, it occurred quite often for
each job the completion time is equal in each partial
schedule in Ω* in which it occurs. That is, if the
completion time of job j appears in one or more partial
schedule σ∈ Ω* at time t, then the schedule is
obtained by processing job j in the interval [t – pj, t].
The following theorem illustrates this fact.
Theorem 1. If Cj(σ) = Cj for each job j (j=1,…,n) and
for each σ with *

σy >0, then the schedule obtained by
processing job j in the interval [Cj – pj, Cj] is feasible
and has minimum cost. [15]

If the optimal solution to the linear programming
relaxation does not form to be integral and does not
satisfy the conditions of Theorem 1, then a branch and
bound algorithm is required to find an optimal solution.
The algorithm based on splitting the set of possible
completion times. The following property is shown
that if the optimal solution is fractional and does not
satisfy the condition of Theorem 1, then there is at
least one job j which satisfies

 }0|)(min{)(**

*
>>∑

Ω∈
yCyC jj σσ

σ
σσ

When apply branch and bound tree, it is necessary to
know if there exists such a job j that does not satisfy
the condition of Theorem 1. If any, we need to identify

the job with the smallest index, then create two
descendant nodes, one for the constraint that
Cj ≤ min{ Cj(σ)| *

σy >0} and another for Cj ≥

min{Cj(σ)| *
σy >0} +1. The first constraint specifies a

deadline dj at which job j must be completed, the
second one specifies a release date rj = min{Cj(σ)| *

σy
>0} +1- pj before which job j cannot be started (In
case of the tardy schedules ,rj = min{Cj(σ)| *

σy >0}
+1- spj (s∈S)).

To find an optimal solution, we have to generate
columns after branching. This strategy can be easily
incorporated into Algorithm 1 and 2. Simply, we have
to replace equation (5) by

V(j, t)=








−
≤≤+

−−+−−−

otherwise),,1(
if

},)(),1(),,1(min{

tjV
dtpr

ptptjVtjV
jjj

jjjj πα

and replace equation (6) by

V (j, t)=










−

≤≤+
−+−−−

otherwise),,1(

if
},),1(),,1(min{

__

tjV

dtspr
tsptjVtjV

jjj

jjj πβ

4. Computational Experiments

In this section, we report the computation
experiments for randomly generated test problem. Our
algorithms involved are coded in C and tested on IBM
server X series 232 with PIII processor. Linear
programs involved in the column generation approach
are solved by LINGO 8.0 .

To generate a test problem, there are five
parameters to be determined: number of machines m at
each stage, number of jobs n , processing time pj for
each job j(j∈N) and earliness penalty weight αj for
each job j(j∈N), tardiness penalty weight βj for each
job j(j∈N)
The five parameters are generated as follows:

Number of machines M∈{2,4,6 }
Number of jobs n∈{20,30,40}
Processing time pj = [1, 30]
Earliness penalty weight(αj) = [1,100]
tardiness penalty weight(βj) = [1,100]

Table 1 lists the computational result for problem FFc
|Pji=Pj|∑ =

n
j 1 [αjEj+βjTj] with processing time of jobs

drawn from the intervals [1,30], for each given
combination of m and n, a total of 50 test problems are
generated randomly and the header of columns are:

n : Number of jobs
m : Number of machines at each stage
IP-LP Gap : The average gap in percentage

between LP relaxation value and the

Int. Computer Symposium, Dec. 15-17, 2004, Taipei, Taiwan.

176

integer solution
WB : The number of problems solved at

root node without any branching out
of 50 problems.

ANN : Average number of B&B nodes
explored for solving the problem.

CG : The average number of columns
generated for solving the problem.

Table 1: Results for problem with processing time
drawn form the distribution [1, 30]

n m IP-LP
Gap

WB ANN CG

20 2 0.05% 30 3.8 445
30 2 0.16% 12 12.2 1811
40 2 0.2% 8 22.3 4436
20 4 0.15% 35 4.2 255
30 4 0.25% 16 5.5 825
40 4 0.15% 7 12.5 1532
20 6 0.01% 48 1.3 153
30 6 0.12% 32 6.1 896
40 6 0.08% 15 9.5 987

5. Conclusion

We have proposed an effective column generation
approach for solving the class of proportionate flexible
flow shop problem with a large common due date.
Using this algorithm, we were able to solve problems
with up to 40 jobs to optimality by solving the linear
programming relaxation of a set covering formulation
of the problem. From the computational results show
that the integrality gap is extremely small, and also
few nodes need to be explored in branch and bound
tree, and many test problems are solved at the root
node without branching.

An interesting topic for future research is the
special case of proportionate flexible flow shop
problem with the processing time Pji=pj/si,, where si is
the speed of each machine at each stage and jobs have
distinct due date.

References

 [1] P.S. Ow, “Focused scheduling in proportionate

flow shops, ” management Sci. 31, 852-869, 1985
 [2] J.J. Kanet, “Minimizing the average deviation of

job completion times about a common due date, ”
Naval Research Logistics Quarterly, 28, 643-651,
1981

 [3] M.R. Garey, R.E. Tarjan, G.T. Wilfong,
“One-processor scheduling with symmetric
earliness and tardiness penalties,” Mathematics of
Operation Research, 13, 330-348, 1988

 [4] K.H. Baker and G.D. Scudder, “Sequencing with
earliness and tardiness penalties: a review,”

Operation Research 30, 22-36, 1990
 [5] H. Emmons, “Scheduling to a common due date

on parallel uniform processors,” Naval Research
Logistics, 34, 803-810, 1987

 [6] N.G. Hall, “Single and Multiple-processor models
for minimizing completion time variance, ” Naval
Research Logistics Quarterly, 33, 49-54, 1986

 [7] Garey, Johnson and Sethi, “The complexity of
flow shop and job shop scheduling,” Mathematics
of Operations Research, 117-129, 1976

 [8] R.J. Wittrock, “An adaptable scheduling
algorithms for flexible flow lines,” Operations
Research, Vol.33, No.4, 445-453, 1988

 [9] J. Błażewicz, E. Pesch, M. Sterna and F. Werner,
“The two-machine flow shop problem with
weighted late work criterion and common due
date,” European Journal of Operational Research,
2004b

[10] N. Shakhlevich, H. Hoogeveen and M. Pinedo,
“Minimizing total weighted completion time in a
proportionate flow shop,” Journal of Scheduling,
J.Sched. 1, 157-168, 1998

[11] M.S. Salvador, “A solution to a special class of
flow shop scheduling problem, ” In Symposium of
the Theory of Scheduling and Applications,
Springer Verlag, Berlin., 83-91, 1973

[12] S.A. Brah and J.L. Hunsucker, “Branch and
Bound algorithm for a flow shop with multiple
processors,” Eur. J. Oper. Res., Vol. 51, 88-99,
1991

[13]W.D. Xiao, P.F. Hao ,S. Zhang and X.H Xu ,
“Hybrid flow shop scheduling using genetic
algorithms, ” IEEE Proceedings of the 3th World
Congress on Intelligent Control and Automation,
Vol.1, 537-541, 2000

[14] L. Wang and D.W. Li, “A scheduling algorithm
for flexible flow shop problem,” IEEE
Proceedings of the 4th World Congress on
Intelligent Control and Automation, Vol.4,
3106-3108, 2002

[15] J.M. ven den Akker, J.A. Hoogeveen and S.L. van
de Velde, “Parallel machine scheduling by column
generation,” Operations Research, 47, 862-872,
1999

[16] Z.L. Chen and W.B. Powell, “Solving parallel
machine scheduling problems by column
generation,” INFORMS Journal on Computing,
Vol. 11, No.1, 78-94, 1999

[17] Lasdon L.S., Optimization theory for large
systems, MacMillan, New York, 1970

[18] M.A. Quaddus , “A generalized model of optimal
due date assignment by linear programming,”
Journal of the operation Research Society 38,
353-359, 1987

[19] M. Pinedo, Scheduling: theory, algorithm, and
systems , Prentice Hall, 2002

Int. Computer Symposium, Dec. 15-17, 2004, Taipei, Taiwan.

177

