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Abstract conditional diagnosability of Cayley graphs generated by

transposition trees (which include the star graphs) under
The diagnosis of faulty processors plays an importahe comparison model, and show that it3is — 8 for

role in multiprocessor systems for reliable computing, amd> 4, except for the:-dimensional star graph, for which
the diagnosability of many well-known networks has beens 3n — 7.
explored. Zheng et al. showed that the diagnosability of 1
then-dimensional star grap$i, isn — 1. Lai et al. intro-
duced a restricted diagnosability of multiprocessor sys-With the continuous increase in the size of multipro-
tems called conditional diagnosability. They consider tlvessor systems, working in multiprocessor systems with
situation when no faulty set can contain all the neighbdeqults has become unavoidable. Therefore, the problem
of any vertex in the system. In this paper, we study tlo¢ fault diagnosis in multiprocessor systems has gained
increasing importance and has been widely studied, for
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faulty processors in a system is known as system-leUéle star graphs are bipartite, vertex transitive, and edge
diagnosis. Several different approaches have been detreksitive, and several classes of graphs can be embed-
oped to diagnose faulty processors, among which theled into them, e.g. grids [19], trees [3, 5, 13], and hy-
are two fundamental approaches on system-level diagpercubes [30]. Cycle embeddings and path embeddings
sis. One major approach is called the comparison mod®k studied in [15-19, 24, 32]. The diameter and fault
proposed by Malek and Maeng [28, 29]. In this modeadjameters of star graphs were computed in [1, 22, 34].
each processor performs a diagnosis by sending the s&@ume other interesting properties of star graphs are stud-
inputs to each pair of its distinct neighbors and then coied in [12, 14, 25-27].

pares their responses. The result of a comparison is eithqﬁeviewing some previous papers (see [10, 11, 21, 38]),

that the two responses agree or the two responses FH@' n-dimensional hypercube,,, the n-dimensional

agree. Based on the results of all the comparisons, WEssed cUbEQ,,, then-dimensional twisted cUbEQ

needs to decide the faulty or non-faulty (fault-free) saty - 4 then-dimensional mobius cub&rQ,,, all have di-

of the processors in the system. Another major approaﬁ@hosabilityn under the comparison model. Zheng
is the PMC model established by Preparata, Metze, aé}dal. [39] showed that the diagnosability of the
Chien [33]. In this model, it is assumed that a pProcessQiensional star graph

can test the faulty or fault-free status of another adjac%rﬁli'es of system-level diagnosability for multiprocessor

processor. Under the PMC model, only processors Wg{)stems, if all the neighbors of some processare faulty
a direct link are allowed to test each other. It is assum%ultaneously

isn — 1. In classical mea-

it is not possible to determine whether
that if a processor is fault-free, it always gives correct a'ﬁrocessow is fault-free or faulty. As a consequence, the

reliable testing results, and if a processor is faulty, th%ﬁhgnosability of a system is limited by its minimum de-
its testing results may be correct or incorrect. By analyéfee. Hence Lai et al. introduced a restricted diagnos-
ing the collection of all testing results, all of the fault)élbility of multiprocessor systems callednditional diag-
processors need to be identified. nosabilityin [20]. Lai et al. considered this measure by

An interconnection network connects the processorsr&qu'rlng that for each processorin a system, all the

parallel computers. Its architecture can be represenPé
{he same time. Under this condition, the conditional diag-

geessors that are directly connected tdo not fail at

as a graph in which the vertices correspond to proc
sors and the edges correspond to connections. Heﬂggability of then-dimensional hypercub®;, is 4n — 7

we use graphs and networks interchangeably. There lépgerthe PMC model [20].

many mutually conflicting requirements in designing the In this paper, we study the conditional diagnosability
topology for computer networks. Thecube is one of of the star graphy,, and a class of graphs that arise as
the most popular topologies [23, 35]. Thedimensional a generalization of the star graph. These graphs are Cay-
star networksS,, was proposed in [1] as “an attractivdey graphs generated by transposition trees. We consider
alternative to then-cube” topology for interconnectingthe comparison model and show that the conditional di-
processors in parallel computers. Since its introdusgnosability of these graphs3s — 8 for n > 4, except
tion, the networks,, has received considerable attentiorior the n-dimensional star graph, for which it 8. — 7.



Hence the conditional diagnosability of these graphstanceof two verticesu andv of GG, denoted byl (u, v),
about three times larger than their classical diagnosalslthe length of the shortest path@fbetween. andv.

ity. Section 2 provides preliminaries and previous results-l-he comparison diagnosis model [28,29] was proposed

for diagnosing a system. In Section 3 we study the congb Malek and Maeng. In this model, a self-diagnosable

tional diagnosability of Cayley graphs generated by transiistem is often represented by a multigraph(V, C),
position trees under the comparison model. Our ConCWhereV is the same vertex set definedinandC is a la-
sions are given in Section 4. beled edge set. [fu, v) is an edge labeled by, then the
.. . labeled ed , V) IS said to belong t@”, which implies
2 Preliminaries =dgeu, v) _ g P
that vertices; andv are being compared by vertex The

A multiprocessor system can be representedggaph  S2Me pair of vertices may be compared by different com-

G(V, E), where the set of vertice(G) represents pro- Parators, s\ can be a multigraph. Fu, v}, € C,
we user((u,v),) to denote the result of comparing ver-

liresu andv by w such that((u, v).,) = 0 if the outputs
4:]f u andv agree, and-((u,v),,) = 1 if the outputs dis-
agree. In this model, if((u, v),,) = 0 andw is fault-free,
then bothu andv are fault-free. Ifr((u,v),,) = 1, then
at least one of the three verticesv, w must be faulty.

cessors and the set of edde&~) represents communica
tion links between processors. Throughout this paper,
focus on undirected graphs without loops and follow [
for graph theoretical definitions and notations.

Let G be a graph. ThaeighborhoodV (v) of vertex
v in G is the set of all vertices that are adjacenttdrhe
cardinality| N (v)] is called thedegreeof v, denoted by
dege(v). AgraphH is asubgraphof G if V(H) € V(G) son is unreliable. The collection of all comparison results
andE(H) C E(G). LetS be a subset oF (G) U E(G). given by the function- : C' — {0, 1}, is called thesyn-
The subgraph of7 inducedby S, denoted byG[S], is dromeof the diagnosis. A subsdt C V is said to be
the graph with the vertex sétn V(G) and the edge Setcompatiblewith a syndromer if r can arise from the cir-
{(u,v) | (u,v) € E(G) andu,v € S}. For a set of ver-
tices (respectively, edges) we use the notatioty — S
to denote the graph obtained fragby removing all the

If the comparatow is faulty, then the result of compari-

cumstance that all vertices i are faulty and all vertices
in V — F are fault-free. A system is said to degnosable
if, for every syndromer, there is a uniqué” C V thatis

vertices (respectively, edges) /1 The components Ofcompatible withy.

G are its maximal connected subgraphs. A componentidn our comparison model, we have,v),, € C if
trivial if it has no edges; otherwise, it is nontrivial. Theand only if w and v are both adjacent ta, hence the
connectivityx(G) of G is the minimum number of ver- original graph determines the multigrapti(V, C'). No-
tices whose removal results in a disconnected or a triviee that in this model for every sdf C V there is
graph. A graphG is k-regularif deg.(u) = k for every always a syndrome that is compatible for bdthand
vertexu in G. A path P between vertices; andwv, is V — F. Thus in general there is no diagnosable system.
a sequence of adjacent verticés,, v, . . ., vk ), inwhich  Thus [36] introduced the concept ofaliagnosable sys-
the verticesy, vo, . .., v; are distinct. Thdengthof P, tem, in which the system is diagnosable as long as the
denoted byi(P), is the number of edges iR. Thedis- number of faulty vertices does not exceledThe max-



imum number of faulty vertices that the systeghcan (3) there are two distinct verticasandv in F», — Fy and

guarantee to identify is called treiagnosabilityof G, there is a vertexw in V(G) — (Fy U F») such that
written ast(G). A faulty comparator can lead to unreli-  (u,v),, € C.

able results, so a set of faulty vertices may produce differ- o

ent syndromes. Letr = {0 | o is compatible withF'}. 3 Transposmon tre%graphs

Two distinct subsetd’; and F;, of V' are said to ben-

distinguishableif and only if o, N o, # 0; other-

wise, F| and F, are said to balistinguishable There ) o
These graphs arise naturally as a common generalization

are several different ways to verify whether a system Is
of star graphs and bubble-sort graphs. Some papers study-

In this section we summarize the connectivity prop-
erties of Cayley graphs generated by transposition trees.

t-diagnosable under the comparison approach. syne-
metric differenceof the two setsS; and.S; is defined as
the setS; A Sy = (S1 — S2) U (S2 — S1). The following ] )

theorem given by Sengupta and Dahbura [36] is a nec£s§UCh that the identity of the group does not belong to
ﬂS’. The Cayley graphl’(S) is the directed graph whose
vertex set id", and there is an arc fromto v if and only

if there is ans € S such thatu = vs. The graphl'(S)

is connected if and only i is a generating set for.

A Cayley graph is always vertex transitive, so it is maxi-

ing these graphs include [2,6-8, 37].
Let I" be a finite group and' be a set of elements of

sary and sufficient condition for ensuring distinguishab
ity.

O @

mally arc-connected if it is connected; however, its vertex
connectivity may be low.

@ (©) In this paper, we choose the finite group tolbg the

. o o . mmetric group o 1,2, . .. , and the generating set
Figure 1: Description of distinguishability for Theorem Y group o1, 2, N ot _g g

S to be a set of transpositions. The vertices of the corre-
sponding Cayley graph are permutations, and sthagly

~_ has transpositions, there is an arc from veridn vertex
Theorem 1. [36] Let G be a graph. For any two distinct

su-bs.etsFl and@ ofV(G), (F, Fb) is a d|sjt|ngmsha-1k.JIe can regard these Cayley graphs as undirected graphs by
pair if and only if at least one of the following conditions . . . .
: <fied i replacing every pair of arcs between two vertices with an
s satisfied (see Figure): edge; let the resulting graph g, (S). A simple way to

depictS is via a graphG(S) with vertex sef( 1,2, ..., n},

v if and only if there is an arc fromv to w. Hence we

(1) there are two distinct vertices andw in V(G) —
(Fy UF,) and there is a vertex in F; AF, such that where there is an edge betweeand if and only if the
(u,v) € C transposition(ij) belongs toS. This graph is called the

transposition generating grapdf ', (S) or simplytrans-
(2) there are two distinct verticesandv in F; — F; and  position (generating) grapli it is clear from the context.
there is a vertexw in V(G) — (Fy U F,) such that In fact, the star grapls,, was introduced via the gener-
(u,v)y € C, 0r ating graphk(; ,,_1, where the center is 1 and the leaves



are2,3,...,n. Notice, that if we change the label of théhe bubble-sort graph whose transposition tree is a path.
center, we still get a graph isomorphic to the star grapigure 3 shows the bubble-sort graph fot 4.

Sy, hence with a slight abuse of terminology we will call
all these graphs star graphs. The star grafhsSs, and
S, are shown in Figure 2 for illustration.

3421
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Figure 3: The bubble-sort graph

LetI",(S) be a Cayley graph generated by a transpo-
sition treeS. To help us describe the structure of the
Cayley graphl’,,(S) whenG(S) is a tree, without loss
of generality we may assume that a leaf of the transposi-
tion tree isn. We use boldface letters to denote vertices in

I, (5). Henceuy, us, ..., u, is a sequence of vertices
Figure 2: The star graplts, Ss, andSy in T, (S)

. Itis known that the connectivity df,,(S) is
n — 1. ClearlyI',,(.S) is a bipartite graph with one partite

set containing the vertices corresponding to odd permuta-
Note that the Cayley gragh, (S) is |S|-regular, and it ining the vert ponding permu

is connected if and only if the generating gra@hs) is ] )
rggpondlng to even permutations. het wjus . . . u, be

connected. Since an interconnection network needs to

any vertex of the Cayley gra S). We say that; is
connected, we require the transposition graph to be Con-y verex yley graph, (5) 4 !

. _ thei-th coordinateof u, denoted byu);, for1 < i < n.
nected. Here we will only consider the fundamental case, ! v Ku)s =t=n

. ) Forl < i < n, let F,{f} denote the subgraph @f,(S
when G(S) is a tree, and call the corresponding trans- == grap (%)

" . " induced by those verticaswith (u),, = i.
position generating graphteansposition tree Thus the
Cayley graphs obtained by these transposition trees ar

that the Cayl h,,(S) has the followi ties:
(n—1)-regular and have! vertices. In addition to the star atthe Cayley grapii, () has the following properties

tions and the other partite set containing the vertices cor-

gincen is a leaf in the generating tree, it is easy to see

graph mentioned above, these Cayley graphs also inclu@@ I',,(S) consists of n vertex-disjoint subgraphs:



F;{Ll}, F;{f}, e ,F;{L"}; each isomorphic to another sets of the vertices on the path except the vertices of
Cayley graphl,,_1(S’) with S = S\ {#} where the path itself withT'| = 3n — 8.

is the transposition corresponding to the edge inci-
T P P g g (v) T',,(S) — T has four components, three of which are
dent to the leaf.

singletons, and" is the union of the neighbor sets of
(D] ri? has(n — 1)! vertices, and it ign — 2)-regular the singletons withT"| = 3n — 8.

for all 4. ) .
(vi) T',,(S) — T has two components, one of which i$-a

(1) For all i, each vertex i has a unique neighbor cycle,n = 4 and|T| = 4.

outsidel“,{f}, and these outside neighbors are all dif- ] ]
Note: Cases (iv), (v), and (vi) can only occur whER(.S)

ferent. There are exactly. — 2)! independent edges, ] )
is not a star graph, because each require a 4-cycle in the

betweerl't" andT'}?! for all i £ 7.
graph.

These properties are illustrated in Figures 2 and 3, as

4 The conditional diagnosability

e.g. S, and the bubble-sort graph contain four copies of
a smaller Cayley graph, the 6-cycle. Note that the 6-cyclej, ¢jassical measures of system-level diagnosability for

is the shortest cycle in star graphs, whereas in other Cayjjtiprocessor systems, if all the neighbors of some pro-

ley graphs we also have 4-cycles. cessow are faulty simultaneously, it is not possible to de-

Cayley graphs generated by transposition trees h@finine whether processoiis fault-free or faulty. So the
strong connectivity properties. Roughly speaking, delgfagnosability of a system is limited by its minimum ver-
ing a large number of vertices from it, they will still conyey gegree. In particular, as we mentioned before, the star

tain a large connected component as shown by the follodyaphsn has diagnosability. — 1 (see [39]). The same

ing theorem: result can be proven easily for Cayley graphs generated

Theorem 2. [8] Let I',,(S) be a Cayley graph obtainedby transposition trees as well, whose proof we omit:
from a transposition generating tre€ on {1,2,...,n} Theorem 3. LetT',(S)
withn > 4, and letT be a set of vertices @ such that

be a Cayley graph obtained from

a transposition generating tre® on {1,2,...,n} with
IT| < 3n — 8. ThenI',(5) — T satisfies one of the fol- | > 4. Thent(I'n(S)) = n — 1.

lowing conditions:
A Cayley grapH,,(S) has(n"jl) vertex subsets of size

n—1, among which there are onh/ vertex subsets which
(i) T, (S)— T hastwo components, one of whichiis contain all the neighbors of some vertex. Since the ra-
or Ko. tio n!/(n’fl) is very small for largen, in case of inde-

(i) T'(S) — T is connected.

) pendent failures the probability of a faulty set containing
(i) T, (S)— T has three components, two of which arg

) Il the neighbors of any vertex is very low. For this rea-
singletons.

son, Lai et al. introduced a new restricted diagnosability
(iv) T,(S) — T has two components, one of which isf multiprocessor systems called conditional diagnosabil
a path of lengtt8, andT is the union of the neighbority in [20]. They considered the situation that no faulty



set can contain all the neighbors of any vertex in a sye-see that any two vertices in,(S) can have at most
tem. We need some terms to define the conditional tivo common neighbors. Thus when the péaih, uz, us)
agnosability formally. A faulty sef” C V(G) is called is part of a 4-cycle, we gdtty| = |Fz| = 3n — 7. In

a conditional faulty seif Ng(v) ¢ F for every vertex both cases we haiéy — F»| = |F, — Fy| = 1, there-

v € V(G). A system described by the grapi{V, E') is fore whenI',,(S) is a star graph, it is not conditionally
said to beconditionally¢-diagnosablef F; and F» are (3n — 6)-diagnosable, otherwideg, (S) is not condition-
distinguishable for each pair of distinct conditional fgul ally (3n — 7)-diagnosable. Hence we have the following
setsF; and F, of V(G) with |Fy| < t and|Fy| < ¢. result:

The maximum value of such thatG is conditionallyt-
Proposition 4. For n > 4, t.(T',,(S)) < 3n — 7 when

I',,(S) is a star graph, otherwise.(T',,(S)) < 3n — 8.

diagnosable is called treonditional diagnosabilitpf G,
denoted by.(G). Itis trivial thatt.(G) > t(G).

Now we give an example in the Cayley grabh(S)  The following two lemmas will be needed to show our

to get a bound on the conditional diagnosability. Asisyit on the conditional diagnosability B, (S) for n >
shown in Figure 4, we take a path of length two i

Lemmab. Forn > 4, let F; and I, be any two distinct
conditional faulty subsets & (T",,(S)) with | Fy | < 3n—T7
and|Fy| < 3n—7if T,,(S) is a star graph, andF}| <
3n — 8 and |F»| < 3n — 8 otherwise. Denote byl the
maximum component df,,(S) — (Fi N Fz). Then for
every vertexa in FyAFy, uisin H.

Proof. Without loss of generality, we assume thatis

in Fy — F5. SinceF; is a conditional faulty set, there is
vertexv in (V(T',,(S)) — F») — {u} such that(u, v) €
I'n(S). Let (u;,uz,us) be a path with length two. E(T',(S)). Suppose that is not a vertex off. Thenv
We setd = Np, (s)(u1) U Np, (sy(uz) U N, (5)(u3), isnotinV(H), sou andv are part of a small component
Fi = A—{uy,uz} andF, = A — {uy,us}. ltis inT,(S)— (F1 N Fy). SinceF, andF; are distinct, we
straightforward to check thaf, and F; are two condi- have|F; N Fy| < 3n — 8 whenT',,(.S) is a star graph and
tional faulty sets, and®; and F, are indistinguishable |F; N F»| < 3n — 9 otherwise. Thus in Theorem 2 cases

Figure 4: An indistinguishable conditional p&ir;, F»)

by Theorem 1. Wherl,(S) is a star graph, it has(iv)—(vi) can’t occur, hencéu, v} forms a componer’
no cycles with length less than 6, hence the verticesahl',,(S) — (F1 N F3), i.e.u is the unique neighbor of
Nr,(sy(a1), Nr, (s)(uz), andNr, (s)(us3) are all differ- in I',,(S) — (F1 N Fy). This is a contradiction since)
ent, thus|F1| = |F;| = 3n — 6. On the other hand, if is a conditional faulty set, but all the neighborswfre
T',,(S) is not a star graph, it contains 4-cycles, so sorfeulty inT",,(S) — Fi. O
of those neighbors may be the same. However, it is easy



Lemma 6. LetG be a graph withj(G) > 2, and letF} If v has no neighbor it} U F3, then we can find a path
and F, be any two distinct conditional faulty subsets aff length at least 2 withirf{ to a vertexp in Fy A F,. We
V(G) with F» C Fy. Then(F, F») is a distinguishable may assume thap is the first vertex ofFy AF; on this
conditional pair under the comparison diagnosis modelpath, and leiq andw be the two vertices on this path

immediately beforep (we may havev = q), soq and
Proof. Let v be any vertex off; — F,. SinceF; is

a conditional faulty subset df (G), there is a vertex of
V(G) — Fy such tha{u,v) € E(G) and there is a vertex
w of V(G)—F; suchthatv, w) € E(G). SinceF; C Fy,
neitherv norw is in F». By Theorem 1( F, F») is a dis-
tinguishable pair.

w are not inF; U F,. Then the edge§y, w) and(w, p)
show that(F}, F») is a distinguishable conditional pair.
Now assume that has a neighbor id; A F». Then since
the degree of is at least 3, and& has no neighbor i,
there are three possibilities:

(1) v has two neighbors i}, — F5,
Now we can prove our main results:
(2) v has two neighbors ity — F, or
Theorem 7. For n > 4, let I} and F; be two dis-

tinct conditional faulty subsets &f(T,,(S)). Assume that (3) v has atleast one neighbor outsitigU F».

|1 < 3n —T7and|Fy| < 3n — 7 whenI',(S) is a star In each case Theorem 1 implies thi , ) is a distin-

graph, and| | < 3n — 8 and | 3| < 3n — 8 otherwise. guishable conditional pair df,,(S) under the comparison
Then(Fy, F») is a distinguishable conditional pair underdiagnosis model, finishing the proof O

the comparison diagnosis model.
To summarize, with Proposition 4 and Theorem 7, we

Proof. By Lemma 6,(F, F5) is a distinguishable pair if have the following resut.

Fy, C Fyor Fy C Fy. Thuswe assume thef; — Fy| > 1
and|Fy — Fi| > 1. Let A = Fy N F». Then we have Theorem 8. Forn > 4,¢.(T',(S)) = 3n—7whenl',,(S)
|A] < 3n — 8 whenT,,(S) is a star graph, anfd| < is astar graph, and.(T",,(S)) = 3n — 8 otherwise.
3n — 9 otherwise. LetH be the maximum component of
I,.(S) — A. By Lemma 5, every vertex ifr; AF is in
H.

We claim thatH has a vertex outsideF; U F, that has
no neighbor inA. Since every vertex has degree- 1, 5 Conclusions

Remark: Theorem 3 can be proved similarly, indeed
much simpler, using that its connectivityns— 1, proved
in [6].

vertices inA can have at mos$td|(n — 1) neighbors inA.

There are at mot(3n — 7) — | A| vertices inF; UF,,and  In the real world, processors fail independently and
at most two vertices df,,(S) — A may not belong tdf by with different probabilities. The probability that any
Theorem 2. Sincd| < 3n—8, we haven!—|A|(n—2)— faulty set contains all the neighbors of some processor
2Bn—=T)—2>n!l—(3n—-8)(n—2)—2(3n—7)—2>4 is very small [31], so we are interested in the study of
whenn > 4. Thus there must be vertices &f outside conditional diagnosability. A new diagnosis measure pro-
F} U F, having no neighbor im; let v be such a vertex. posed by Lai et al. [20] requires that each processor of



a system is incident with at least one fault-free proces-

Journal of Foundations of Computer Science, to ap-

sor. In this paper, we considered Cayley graphs generated pear.
by transposition trees, which are a generalization of the

n-dimensional star graphi,,, and showed that the condi-

[7]

tional diagnosability of",,(S) is 3n — 8 under the com-

parison model except when it is the star graph, for which

the conditional diagnosability i3n — 7. This number is

about three times as large as the classical diagnosability.
It would be interesting to find other conditional measures

for network reliability under which diagnosability of such

networks are even higher.
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