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Abstract. Peer-to-peer (P2P) systems have received a lot of attention due to the popularity of applications 

such as SETI, Napster, Gnutella, and Morpheus. The P2P systems present tremendous challenges in search-

ing data items among the numerous host nodes.  While search has been studied in a similar but different con-

text, i.e., parallel and distributed database systems, the large scale and dynamic membership change of P2P 

systems require the search issue to be re-examined. Existing search techniques in unstructured peer-to-peer 

overlay networks incur excessive network traffic.  In this paper, we investigate the issues of trading-off stor-

age space at peers to reduce network overhead in unstructured P2P overlay networks.  We propose to use sig-

natures for directing searches, and introduce three schemes, namely complete-neighborhood signature (CN), 

partial-neighborhood superimposed signature (PN-S), and partial-neighborhood appended signature (PN-A), 

to facilitate efficient searching of shared content in P2P networks. With little storage overhead, these signa-

tures improve the performance of content search and thus significantly reduce the volume of network traffic.  

Extensive analysis and simulations are conducted to evaluate the performance of our proposal with existing 

P2P content search methods, including Gnutella, random walk, and local index. Results show that PN-A 

gives the best performance at a small storage cost. 

Keywords: signature, index techniques, information search, peer-to-peer systems, performance evaluation 

1 Introduction 

The advance of facilities such as Napster [1] and Gnutella [2] has made the Internet a popular medium for the 

widespread exchange of resources and voluminous information between thousands of users. In contrast to tradi-

tional client-server computing models, host nodes in these Peer-to-Peer (P2P) systems can act as servers as well 

as clients. Despite avoiding performance bottlenecks and single points of failure, the P2P systems present tre-

mendous challenges in searching data items among these numerous host nodes. 

Search of information in parallel and distributed database systems has received a lot of research efforts from 

the database community (please see [3] for a comprehensive survey). While peer-to-peer systems are similar to 

shared-nothing parallel and distributed database systems, the challenges faced are fundamentally different. Paral-

lel and distributed database systems consist of dozens or hundreds of machines that are designated to provide 

certain database services, and thus are rather stable. In contrast, P2P systems may have nodes join or leave fre-

quently, and thus are highly dynamic. In addition, the size of a P2P system is in the range of thousands or even 

millions of nodes, which is much greater than the typical sizes of parallel and distributed database systems. Thus, 

P2P systems require the search techniques to tolerate membership changes (i.e., node join, leave, or failure), and 

to scale to a large number of nodes, in addition to locating data items efficiently. As a result, the search tech-

niques developed for parallel and distributed database systems can not be simply employed to peer-to-peer sys-

tems and the search issue needs to be re-examined. 

Existing P2P overlays can be classified as unstructured P2P overlays and structured P2P overlays.  The main 

differences between these two are whether data placement and network topology are controlled. In a unstructured 

P2P overlay, like Gnutella [2], peers form a random topology and store data items locally.  Primary search tech-

niques proposed for unstructured P2P overlays are flooding and random walk [4,5]. While the search costs in 

unstructured P2P overlays may not be low in terms of the total number of messages and/or the number of hops 

traversed per search, the advantages are in the low maintenance cost, making them relatively easy to handle 
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membership and data content changes. In addition, unstructured P2P overlays pose no restrictions on the types of 

queries that can be supported effectively.  In contrast, structured P2P overlays tightly control data placement and 

network topology to perform certain kind of search ordering which can facilitate searching for the requested data 

items. CAN [6], Chord [7], Pastry [8], Tapestry [9], and SSW [10] are examples of structured P2P overlays. 

Search over these overlays is efficient (search path length is O(logN) where N is the network size).  However, 

they incur high overheads for data placement and topology maintenance.  Most of existing systems deployed in 

practice are unstructured (for the simplicity and flexibility). In this study, we focus on improving search effi-

ciency of unstructured P2P overlays.  In the rest of this paper, we refer unstructured P2P overlays as P2P over-

lays for simplicity. 

A P2P network
1
 is established by logical connections among the participating nodes (called peers).  The peers 

provide digital information resources, such as music clips, images, documents and other forms of digital content, 

to be shared with other peers.  The P2P overlay network topology may change dynamically due to constant joins 

and leaves of the peers, namely peer join and peer leave
2
, in the network. In addition, the shared information 

changes dynamically since the peers may update the digital content that they offer, namely peer update. 

 
 

 

Fig. 1. A partial snapshot of a P2P network 

 

Fig. 1 shows a partial snapshot of a P2P network. In this figure, we use a vertex to represent a node (i.e., a peer) 

of the P2P overlay network and an edge to denote the connection between two peers. When a peer, A, has a di-

rect connection with another peer, B, we call these two peers neighbors. In the network, a peer may reach another 

peer via one or a sequence of connections, called paths. The path length can be obtained by counting hops of 

connections. The distance between two peers is the minimal path length between them. Each peer has a 

neighborhood, which includes all the peers reachable within a given distance. The neighborhood radius refers to 

the distance from a peer to the edge of its neighborhood. For example, as illustrated in Fig. 1, there are two paths 

of length 3 and 4, respectively, between Node 1 and Node 9. Thus, the distance between Node 1 and Node 9 is 3. 

Node 1 has a neighborhood of radius 2 that consists of Nodes 2, 3, 4, 8. 

Two main strategies have been explored for searching in unstructured P2P overlays: 

 

� Blind search: This strategy lets messages poll nodes, without having any idea of where the data may be 

held, till the required items are found. Gnutella and random walk use such a strategy. In Gnutella, a search 

message is forwarded by a peer to all its neighbors until the message reaches a certain preset distance. The 

down side of this strategy is the possible network overload due to a large number of generated search mes-

sages. To address the issue of excessive traffic caused by the flooding search, random walk chooses to 

forward a search message from a peer to one or more randomly selected neighbors. However, this ap-

proach incurs a long latency to satisfy a request. 

                                                           
1We use the terms, P2P overlays, P2P systems, P2P networks and P2P applications, where appropriate. However, they are 

mostly interchangeable in the context of this paper. 

 
2Peer failure can be treated similarly as peer leave as discussed in Section 2.4.2. Thus, we do not list it separately. 
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� Directed search: This strategy maintains additional information in the peer nodes (which blind search 

does not require) in order to reduce network traffic. Consequently, messages are directed specifically 

along paths that are expected to be more productive. The additional information is typically maintained as 

indexes over the data that are contained either within hierarchical clusters [11] or by nearby neighbors [12, 

13, 14]. In addition to the high storage cost incurred by storing the index itself and high maintenance over-

head incurred by index update, this indexing approach requires determining what attributes to index a pri-

ori, thus constraining the search that can be supported. 

 

While index based directed search seems attractive in terms of search message traffic, the drawbacks as de- 

scribed above motivate us to apply signature techniques to provide flexible search ability (i.e., supporting arbi-

trary queries) and better search message traffic behavior at a lower storage cost and maintenance overhead than 

index-based mechanisms. 

Signature methods have been used extensively for text retrieval, image database, multimedia database, and 

other conventional database systems. A signature is basically an abstraction of the information stored in a record 

or a file.  By examining the signature only, we can estimate whether the record contains the desired information. 

Due to its compactness, signature incurs low storage as well as low communication overheads when being ex-

changed among remote hosts. In addition, signature can support arbitrary queries. All these advantages of signa-

ture make it very suitable for filtering information stored at nodes of P2P systems.  This paper presents three 

novel ways of using signatures, namely complete neighborhood signature (CN), partial neighborhood superim-

posed signature (PN-S) and partial neighborhood appended signature (PN-A), to represent neighborhood data at 

network nodes for optimizing searches in P2P systems. 

The merits of these three neighborhood signature schemes are exploited by analysis and simulations.  Since the 

signature techniques trade some extra storage overhead for reducing network traffic
3
, we use total message vol-

ume to evaluate various P2P search techniques.  We derive an analytic model to estimate the search cost and the 

maintenance overhead of the proposed signature schemes and conduct an extensive performance evaluation 

through both analysis and simulation to compare their performance with some representative search techniques 

developed for unstructured P2P overlays, including Gnutella [2] and random walk [5] for blind search and local 

index [14] for directed search. We examine the performance of these techniques under different network topolo-

gies (i.e.,  uniform and power-law networks) and searching strategies (i.e.,  flooding and single-path),  and  test 

their sensitivity to various factors including neighborhood radius, storage constraints, key attribute size, number 

of data items at a node, data distribution, etc.  Our experiments show that the signature approaches (particularly 

PN-A) are much better than the other alternatives for the most reasonable storage space availability assumptions 

on host nodes. 

The basic idea of the three neighborhood signature techniques have been discussed in our preliminary work 

[15].  In this paper, we provide a complete presentation of various operations using these neighborhood signa-

tures. In addition, we propose a lazy signature update method that improves the signature maintenance overheads. 

Moreover, we provide an analytic model and conduct an in-depth performance evaluation using both analytic and 

simulation experiments. The main contributions of this paper are three-fold: 

 

� Three novel neighborhood signature schemes for efficient search in P2P networks are proposed. The de-

tails for various operations, such as search, peer join, leave and update, are presented. 

� An analytic model to estimate the search cost and maintenance overhead of the neighborhood signature 

schemes is derived. 

� An extensive performance evaluation using both analysis and simulation to compare our proposal with 

other existing P2P searching approaches is conducted. To the best of our knowledge, this is the first study 

that takes both of search cost and maintenance overhead into in-depth consideration. 

 

There have been techniques suggested to store additional information on intermediate nodes, e.g., cache query 

results [16] or maintain history about prior operations [14], to reduce network traffic. While the effectiveness of 

such enhancements depends on query patterns and their locality, they are orthogonal to this work and can be used 

in conjunction with our signature schemes to further control network traffic. In addition, there are services aiming 

at indexing and ranking all the content available in a P2P network [17]. This service uses a technique called 

bloom filter, which is similar to the signature technique used in this paper, to efficiently summarize the indexed 

terms. However, its focus is on providing a search engine rather than reducing the network traffic. 

The rest of the paper is organized as follows.  In Section 2, we present details of the proposed neighborhood 

signature schemes.  In Section 3, we provide a qualitative comparison between our proposal and prior searching 

approaches.  In Section 4, we present an analytic model for various costs incurred by search and maintenance of 

                                                           
3Signature techniques reduce search latency as well. As we will discuss in Section 3, the improvement on search latency can 

be easily observed, and thus we focus on the improvement on network traffic in the paper. 
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our proposed schemes. Section 5 gives the experimental setup for the performance evaluation and detailed results 

from experiments under different search strategies.  Finally, Section 6 summarizes the contributions of this paper 

and outlines directions for future work. 

2   Neighborhood Signatures 

In this section, we first provide some background on the signature method and then extend it for search in P2P 

networks.  We propose three neighborhood signature schemes, CN, PN-S, and PN-A, to index the data content 

offered within the neighborhood of a peer, which help to direct a search to a subset of probabilistically produc-

tive neighbors.  We describe the formation of the signatures for each scheme and then provide details for search 

and signature maintenance under various scenarios (i.e., peer join, peer leave, and peer update). 

2.1   Background 

Signature techniques have been widely used in information retrieval. A signature of a digital document, called 

data signature, is basically a bit vector generated by first hashing the attribute values and/or content of the docu-

ment into bit strings and then performing a bitwise-OR operation to superimpose (denoted by E) them together. 

Fig. 2 depicts the signature generation and comparison processes of a digital file and some searches 

 

 

Fig. 2.  Illustration of signature generation and comparison 

 

As  illustrated  in  the  figure,  to  facilitate  search,  a  search  signature  is  generated  in  a  similar  way  as  a  

data signature based on the search criteria (e.g., keywords) specified by a user. This search signature is matched 

against data signatures by performing a bitwise-AND operation.  When the result is not a match (i.e., for some bit 

set in the search signature, the corresponding bit in the data signature is NOT set), the corresponding document 

can be ignored.  Otherwise (i.e., for every bit set in the search signature, the corresponding bit in the data signa-

ture is also set), there are two possible cases: 1) true match - The document is indeed what the search is looking 

for. 2) false positive - Even though the bits of the signatures may match, the document itself does not match the 

search criteria. This occurs due to certain combinations of bit strings generated from various attribute values, 

keywords, or document content. The storage devoted to the signature can influence the probability of false posi-

tives
4
. Obviously the documents with matching signatures still need to be checked against the search criteria to 

distinguish a true match from a false positive. 

2.2 Signature Schemes for P2P Systems 

Before proceeding to introduce the proposed signature schemes, we first assume that a local signature is created 

at each peer of a P2P network to index the local content available at the peer. By doing this, search over the local 

content of a peer is processed efficiently.  Furthermore, a peer may collect and maintain auxiliary information 

regarding digital content available within a specific network distance (i.e., its neighborhood).  Therefore, a peer 

                                                           
4The formula for estimating the probability of false positives is presented in Section 4. 
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can filter unsatisfiable search requests before forwarding them to a neighbor. Based on this idea, we propose 

three signature schemes classified as follows: 

 

� Complete  Neighborhood  (CN):  One  intuitive  approach  is  to  index  all  the  content  available  within  

the neighborhood of a peer.  Thus, a complete neighborhood (CN) signature is generated by superimposing 

all the local signatures located within the neighborhood of a peer. Fig. 3(a) shows an example of a com-

plete neighborhood signature for peer 1, which indexes all the content available at Peers 2, 3, 4, and 8, 

whose local signatures are represented by rectangles with different filling patterns in Fig. 1.  By holding a 

complete neighborhood signature, a peer can determine whether the search should be extended in its 

neighborhood or simply forwarded to some peers outside of its neighborhood. 

 

 
             (a) CN                                (b) PN-S                                             (c) PN-A 

 

Fig. 3. Illustration of neighborhood signature generation 

 

� Partial Neighborhood (PN): While the CN scheme has the advantage of jumping out of a neighborhood 

when the search signature and neighborhood signatures do not match, it has to forward the search to all of 

its neighbors when there is a match between the search signature and neighborhood signature.  Thus, in-

stead of indexing the complete neighborhood, a signature can be generated to index a partial neighborhood 

branching from one of the neighbors directly connected to a peer, which is called partial neighborhood 

signature. The goal is to increase the precision of search within the neighborhood of a peer. The search 

will only be extended to the neighbors whose associated partial neighborhood signatures have a match 

with the search signature. There are two alternatives for generating partial neighborhood signatures: 

 

� Superimpose (PN-S): In this approach, we use the traditional superimposing technique.  Thus, all of 

the local signatures located within a neighborhood branch are compressed into one signature, called 

partial  neighborhood  superimposed  (PN-S)  signature.  Fig. 3(b) shows that peer 1 has 2  PN-S signa-

tures, where PN-S2, the neighborhood signature for branch 2, indexes all the contents available at 

Peers 2 and 4, and PN-S3, the neighborhood signature for branch 3, indexes the contents available at 

Peers 3 and 8. 

� Append (PN-A): The superimposing technique has been shown to be effective in compressing a large 

amount of index information while supporting efficient information filtering function.  However, this 

compression comes at the cost of losing some information, i.e. when the PN-S signature at a node 

matches, it does not give a clue of which peers should be visited, resulting in searching all of these 

peers.  An alternative that we propose, called partial neighborhood appended (PN-A) Signature, is to 

append (concatenate) all of the local signatures within a branch of the neighborhood into a partial 

neighborhood signature
5
.  When a search signature matches with some sub-signatures within a PN-A 

signature, the search message will only be forwarded to these peers associated with the matched sub- 

signatures. Fig. 3(c) shows that peer 1 has 2 PN-A signatures, where PN-A2 indexes all the contents 

available at Peers 2 and 4, and PN-A3 indexes the contents available at Peers 3 and 8. 

                                                           
5An append-based CN signature can be generated by simply appending all of the partial neighborhood signatures, and is thus 

not proposed as a separate method. 

 



電腦學刊  第十七卷第四期（Journal of Computers, Vol.17, No.4, January 2007） 

 

 16 

 

� One could wonder why we bother considering PN-S, after having described the benefits of PN-A. The rea-

son is that the former can take much less space, and allows us to find out which is a better alternative for a 

given space overhead at each node:  (a) appending the individual signatures as in PN-A to fill up this space 

with each of the individual signatures being small (and not allowing better filtering), or (b) allowing a 

much larger signature for each peer and the information loss coming only from the superimposition.  

These trade-offs will be evaluated in later experiments. 

2.3 Search Algorithms 

The neighborhood signature schemes are generic mechanisms that can adapt to different search strategies and 

protocols.  A user may initiate a search of digital content from any peer in the network, and the search message is 

forwarded to all or a subset of its neighbors to extend the search. In order to prevent indefinite search message 

propagation in the P2P network, a stop condition needs to be specified in the query. The Gnutella flooding ap-

proach uses the maximum search depth while the random walk uses the minimum number of results as the criteria 

for limiting message propagation. In the following, we discuss the signature based search algorithms for the fol-

lowing two strategies: flooding/maximum-depth and single-path/minimum-result. For clarity of our presentation, 

we use r to denote the radius of a neighborhood. 

 
2.3.1 Flooding Search 
 

In this section, we describe how a peer utilizes neighborhood signatures to perform searches with maximum 

search depth as the stop condition. Since the search algorithms for the three proposed signature schemes are simi-

lar, we use Algorithm 1 to detail the flooding search at a peer based on CN signatures and point out the differ-

ences for the PN signatures afterwards. 

 

Algorithm 1 Flooding search based on complete neighborhood signatures 

Incoming Message: Search_Msg(TTL) 

Local Variables: Local_Sig, Neighborhood_Sig, Search_Sig 

System Parameters: r {the neighborhood radius} 

Procedure: 

1: compute Search_Sig based on Search_Msg. 

2: {check local content} 

3: if match(Search_Sig, Local_Sig) then 

4:     examine local content to verify whether this is a true match or not. 

5:     if true match then 

6:         return a pointer to the result back to the sender. 

7:     end if 

8: end if 

9: {check whether the maximum search depth is reached} 

10: if TTL = 0 then 

11:     stop 

12: end if 

13: {continue to search the neighborhood} 

14: if match(Search_Sig, Neighborhood_Sig) then 

15:     forward the message Search_Msg(TTL −1) to all the neighbors. 

16: else 

17:     if TTL > r then 

18:         forward the message Search_Msg(TTL −r − 1) to all the neighbors located r + 1 hops away. 

19:     end if 

20: end if 

 

Algorithm 1 is invoked when a search message is initiated or received at a peer node of a P2P network.  This 

search message comes with a time-to-live (TTL) counter which was preset to the maximum search depth that this 

message may be forwarded. The peer first computes a search signature to compare with its local signature. If 

there is a match, the content at this peer node is examined to determine whether this is a true match or a false 

positive. If this is a true match, a pointer to the result is returned back to the sender.  Next, the peer checks the 

TTL to see whether the maximum search depth has been reached (i.e.  TTL = 0), and if so, the search message is 

dropped. Otherwise, the search signature is compared with the neighborhood signature.  If there is a match, the 

search is extended to all of the neighbors by forwarding the message with TTL decreased by 1.   If the search 

signature does not match with the neighborhood signature, the peers located within r hops (the neighborhood) 
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need not be checked (as a result, the search message is dropped when TTL ≤ r). In this case, the search should be proc-

essed only at the peers r + 1 hops away
6
 . 

The  flooding  search  algorithms  for  the  two  partial  neighborhood  (PN)  signature  schemes  are  only  

slightly different from the one discussed above (refer to Lines 14-19).   Instead of maintaining only one 

neighborhood signature for the whole neighborhood, a partial neighborhood signature is generated for each of the 

neighbor branches in these two schemes. The PN-S scheme compresses all of the local signatures in a neighbor-

hood branch into one signature (by superimposing), while the PN-A scheme enlists (appends) all of the local 

signatures in a neighborhood branch into one signature.  When a search signature matches with a PN-S signature, 

the search message is forwarded to the associated neighbor.   Otherwise, the message is forward to the peers r + 

1 hops away, located right outside of the partial neighborhood corresponding to the compared neighborhood 

signature. The comparison of a search signature with a PN-A signature is performed by examining all of the in-

cluded local signatures.  For every matched local signature, a search message is directly forwarded to the corre-

sponding peer node. If the search signature does not match with a PN-A signature, similar to PN-S, the search 

message is forward to the peers r + 1 hops away, located right outside of the partial neighborhood corresponding 

to this neighborhood signature. 

 

2.3.2 Single-Path Search 

 

In this section, we describe how a peer utilizes neighborhood signatures to perform single-path search with the 

minimum number of results as the stop condition (for comparison with random walk). Similar to flooding, we use 

Algorithm 2 to detail the single-path search at a peer based on CN signatures and point out the differences for the 

PN signatures afterwards. 

The main difference between single-path search and flooding search is that if all of the neighborhood signa-

tures do not match with the search signature, one peer instead of all peers located r + 1 hops away is randomly 

selected to extend the search. A system parameter TNR, indicating total number of results found so far, has the 

similar role as TTL in flooding search.  Each time a result is found, the TNR is increased by 1.  The search is 

stopped when TNR reaches a pre-defined value. 

 For CN signature, if the neighborhood signature matches with the search signature, all peers in the neighbor-

hood are possible candidates for true matches. In order to determine whether the match is a true match or not and 

how many results are there in the neighborhood, the search should be extended in the neighborhood for checking 

(called neighborhood checking, refer to Lines 15-19). Different from CN, the neighborhood checking messages 

are only forwarded to the neighbors with matched neighborhood signatures in PN-S, or directly to the peers with 

matched local signatures in PN-A. 

 
Algorithm 2 Single-path search based on complete neighborhood signatures. 

Incoming Message: Search_Msg(TNR) 

Local Variables: Local_Sig, Neighborhood_Sig, Search_Sig 

System Parameters: r {the neighborhood radius}, R {the minimum number of result}, T {timeout} 

Procedure: 

1: compute Search_Sig based on Search Msg. 

2: {check local content} 

3: if match(Search_Sig, Local_Sig) then 

4:     examine local content to verify whether this is a true match or not. 

5:     if true match then 

6:         increase TNR by the number of results satisfied at this peer. 

7:         return a pointer to the result back to the sender. 

8:     end if 

9: end if 

10: {check whether enough results are found} 

11: if TNR ≥ R then 

12:     stop 

13: end if 

14: {continue to search the neighborhood} 

15: if match(Search_Sig, Neighborhood_Sig) then 

16:     forward a neighborhood-checking message Neighborhood_Check_Msg(TNR, r) to all the neighbors. 

17:     wait for a T period of time to receive replies and forward result pointers back to the sender. 

18:     increase TNR by the number of received result pointers. 

                                                           
6 Here we assume that a peer has the knowledge of its peers at r+1 hops away so that it may forward the search messages 

directly. This knowledge can be simply obtained through its 1-hop-away neighbors since the peers at r hops away from 

these 1-hop-away neighbors are exactly the peers at r + 1 hops away. 

 



電腦學刊  第十七卷第四期（Journal of Computers, Vol.17, No.4, January 2007） 

 

 18 

19: end if 

20: if TNR < R then 

21:     forward Search_Msg(TNR) to a randomly selected peer located r + 1 hops away. 

22: end if 

2.4 Signature Construction and Maintenance 

After describing how the search is performed with neighborhood signatures, we next move on to discuss the con-

struction and maintenance of these signatures.  Basically, neighborhood signatures are constructed at a peer node 

when the peer newly joins a network. The neighborhood signatures of a peer will need re-constructions or up-

dates when some peers join/leave its neighborhood or when some peers in its neighborhood (including itself) 

update their content.  In the following, we adopt two different strategies to conduct signature update.  One update 

strategy is Eager Update where a newly joined peer (a leaving peer, or a peer conducting content update) proac-

tively informs other peers located within its neighborhood to update the affected neighborhood signatures imme-

diately. The second update strategy is Lazy Update where the updates on the neighborhood signatures are post-

poned till necessary, i.e., a search is encountered. In the following, we first describe the actions to be taken at 

peer join, peer leave, and peer update for eager update strategy.  We then outline the difference between eager 

update and lazy update strategies. 

 

2.4.1 Eager Update on Signatures 

 

� Peer join:  A new peer informs its arrival by sending a join message including its local signature to the 

peers in the neighborhood.  When a node receives such a join message, it first adds (either superimposes 

or appends) the local signature included in the join message to the corresponding neighborhood signature, 

then sends back its own local signature to the new peer so that the new peer can construct its neighborhood 

signatures.  Besides this, some peers that were not in the same neighborhood earlier, may be brought into a 

neighborhood through the connections of the newly joined node (when the new node joins the network 

through multiple connections and the neighborhood radius is greater than one).  In this case, these peers 

also need to exchange signatures via the newly joined node to maintain the accuracy of their neighborhood 

signatures. 

� Peer leave:  When a peer leaves the network, it informs the neighbors by sending out a leave message. For 

PN-A, the leave message contains the node identifier of the leaving peer. The update on neighborhood 

signatures for PN-A only requires removing the signature of the leaving peer from the neighborhood signa-

tures.  For CN or PN-S, this step is more complicated.  Since there is no simple way to remove the local 

signature of the leaving peer from the CN and PN-S signatures which are generated by superimposing, the 

affected peers in the neighborhood have to re-construct their neighborhood signatures from scratch. In or-

der to construct a new CN neighborhood signature, the affected peer asks for local signatures from the 

peers in the neighborhood by sending to these peers a pseudo join message.  The pseudo join message 

functions similarly to a real join message in that the receivers of both messages send back their local signa-

tures, but differs in that when a peer receives a pseudo join message, it does not need to update its own 

neighborhood signature.  Slightly different from CN, for PN-S, the affected peers only need to ask for in-

dividual local signatures from the peers on the affected branch. 

� Peer update:  When a peer updates its data content, the local signature is updated accordingly.  The pro-

cedure for updating the neighborhood signatures for CN and PN-S is the same as peer leave since new 

neighborhood signatures need to be constructed.  For PN-A, the difference between the updated signature 

and the old signature is recorded in a change record, which is included in the update message, so that the 

affected peers can update the relative sub-signatures in their neighborhood signatures accordingly. 

 

2.4.2 Lazy Update on Signatures 

 

In  lazy  update,  the  signature  update  is  postponed  till  a  search  is  encountered.   However, a  newly joined  

peer or a peer conducting content update needs to notify the other peers in the neighborhood because their af-

fected neighborhood signatures have become stale. With this notification, a peer in the neighborhood can invoke 

signature update only when a search is encountered.  This notification is not necessary for peer leave since using 

a stale neighborhood signature which includes information about data items stored in the leaving peer will not 

result in missing of any data items stored in the system. 

 

� Peer join:  To perform the notification as described above, a newly joined peer sends a simple message 

with its node identifier (instead of its local signature as in eager update) to the peers in its neighborhood. A 

peer in the neighborhood records the received node identifier in a To-Join-List.  If a peer with a non-empty 
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To-Join-List receives a search message later on, it invokes actions similar to peer join in eager update (as 

described above). During this process, the peers that have updated their neighborhood signatures affected 

by this peer join remove the relevant entry from their To-Join-Lists, accordingly. 

� Peer leave: When a peer leaves the network, actions on signature maintenance are not taken immediately. 

Later on, during search process, when a peer detects that a neighboring peer has left the network, it in-

vokes actions similar to peer leave in eager update (as described above). 

� Peer update: Similar to peer join, a peer updating its local content sends a message with its node identifier 

to the peers in its neighborhood, which then record the received node identifier in their To-Update-List. 

When one of these peers receives a search message, it invokes actions similar to peer update in easy up-

date (as described above).   During this process, the peers that have updated their neighborhood signatures 

remove the relevant entry from their To-Update-List, accordingly. 

3   Qualitative Comparison of Different Search Schemes 

Before a quantitative evaluation, we first provide a qualitative comparison of our proposal with existing represen-

tative P2P search techniques developed for unstructured P2P systems, such as Gnutella, random walk, and local 

index (see Table 1). 

Gnutella incurs high search message volume since each search message is flooded in the network. Random 

walk only forwards a search message from a peer to one or a few of its neighbors, thus the search message vol-

ume is reduced compared to Gnutella flooding approach. Local index and signature approaches incur low search 

message volume since the search is only forwarded to a subset of peers in a neighborhood being searched. In 

addition to the search message volume, both local index and signature approaches incur message exchanges for 

index/signature construction and maintenance during peer join/leave/update, which Gnutella and random walk do 

not incur. This message volume overhead incurred by peer join/leave/update is proportional to the in-

dex/signature size. Since the index size is much larger than signature size, the maintenance overhead for local 

index is usually larger than for signatures.  In addition, this overhead can be offset when search is much more 

frequent.  The trade-off between these is investigated quantitatively in the rest of this paper. 

 
 

Table 1. Comparison between Gnutella flooding, random walk, local index and signature approaches 

 Gnutella Random Walk Local Index Signature 

Search cost high moderate low low 

Maintenance cost none none moderate low-

moderate 

Search latency in flooding search low - low low 

Search latency in single-path search - high moderate moderate 

Storage requirement none none high low 

Search terms arbitrary arbitrary key attributes arbitrary 

 

In Gnutella, the search latency is proportional to the search radius, which are about 5 to 7 hops. Random 

walk’s search latency is inversely proportional to the number of replicas in the network as described in [5].  

When the number of replicas is low in the network, the search latency for random walk would be very high com-

pared to Gnutella. In flooding search, the search latency of local index and signature approaches is comparable to 

Gnutella. In single-path search, the search latency for local index and signature approaches is reduced approxi-

mately Sr times (Sr is the size of the indexed neighborhood with radius r) comparing to random walk.  Since the 

search latency can be easily observed as described above, we didn’t include plots for search latency in the per-

formance evaluation section. 

Both local index and signatures improve performance at the expense of extra storage. However, the storage re-

quirement of signature is much lower than local index. Moreover, the signature schemes can adapt to the avail-

able storage. In addition to incurring lower total message volume at a much smaller storage requirement, the 

signature approach is suitable for arbitrary attribute based search, keyword based text search, and content based 

search.  In this aspect, local index approach is not a good choice since it only supports searches against some 

selected key attributes. 
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4   Analysis of Signature Approaches 

In this section, we develop an analytical model for the search and maintenance cost of the proposed neighbor- 

hood signatures under uniform network topology. The analysis considers both of flooding and single-path search 

strategies. Table 2 lists the symbols used in this section for easy references. Since most terms in the table are self- 

explanatory, we only explain some of them in the following.  In P2P network, if a message traveling through an 

edge reaches a peer that has seen the same message before, this edge closes a cycle and we call this kind of edges 

redundant edges.  The ratio of redundant edges in the network is denoted as β .  Replication ratio, denoted as α , 

represents the number of replicas per data divided by the total number of peers in the network. Search/update 

ratio, denoted as ϕ , indicates the relative proportion of search operations to the other operations that require 

signature maintenance (i.e., peer join, peer leave and peer update). 

 
Table 2. Symbols used in the analysis. 

System parameters 

N: number of nodes in the network B: number of neighbors per node 

d: number of data items per node α : replication ratio 

β : ratio of redundant edges ϕ : ratio of search to peer join/leave/update 

Stop conditions 

T: maximum search depth R: minimum number of results 

Index/signature parameters 

r: neighborhood radius 
iP  : number of nodes at hop distance i 

iS : size of a neighborhood with radius i  

Signature parameters 

Fd : false positive probability  µ: signature match ratio 

Message parameters 

hM : size of message header  jM  : size of join message 

lM  : size of leave message uM  : size of update message 

sM  : size of search message rM  : size of response message header 

s: size of response record  

Accounting parameters 

searchV  : message volume incurred by search forwarding responseV  : message volume incurred by search response 

joinV  : message volume incurred by peer join leaveV  : message volume incurred by peer leave 

updateV  : message volume incurred by peer update totalV  : total message volume 

iQ  : number of search messages forwarded to nodes i hops away 

 

We present the formulae for message volume incurred by search, peer join, peer leave and content update, re-

spectively.   The  total  message  volume  is  simply  a  weighted  summation  of  the  message  volume  incurred  

by various operations. 

responsesearch

updateleavejoin

total VV
VVV

V ++
++

=
ϕ

  

where the notations of message volumes corresponding to various operations are self-explained (also see Table 2). 

Before we proceed to derive formulae for those message volumes, we first obtain the number of nodes at hop 

distance i (denoted as iP ), the size of a neighborhood with radius j (denoted as jS ), and signature match ratio 

(denoted as µ ), since these variables will be used extensively later on. 
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Let the number of neighboring peers of a peer node at one hop distance be b. Each of these neighboring peers 

has 1−b connections with 2-hop-away peers. Assuming β  portion of the connections is redundant, the number 

of nodes at 2-hop distance is ( )( )β−− 11bb . Thus, the number of nodes at hop distance i is derived as follows: 

( ) ( ) 11
11

−− −−= ii

i bbP β . 

The size of a neighborhood with radius j can be derived from iP   as follows: 

∑
=

=
j

i

ij PS
1

. 

Matched signatures include true matches as well as false positives, thus, µ  can be expressed as 

                                                     
sizeett

positivefalsematchtrue

_arg

__ +
=µ                                                  (1) 

where target_size, true_match and false_positive are the number of signatures to be examined, the number of true 

matches and the number of false positives, respectively.  According to [18], the mathematical definition of false 

positive probability, Fd , is 

                                                         
matchtruesizeett

positivefalse
Fd

__arg

_

−
= .                                                 (2) 

The signature  match  ratio,  µ ,  can  thus  be  expressed  as  ( )FdFd −+ 1 · true_match/target_size based on 

Equations (1) and (2). 

In complete neighborhood (CN) signature scheme, the value of true_match can be approximated as the product 

of the number of results in the search neighborhood and Sr , where Sr represents the size of a neighborhood with 

neighborhood radius r. Assuming the size of the search neighborhood is A, the value of true match approximately 

equals to rASα . Since each peer has one CN neighborhood signature, the value of target size in CN is the same 

as the size of the search neighborhood A.  Therefore, true_match/target_size approximately equals to rSα . Thus, 

the signature match ratio for CN is 

( )FdSFd rCN −+= 1αµ . 

For partial neighborhood superimposed (PN-S) signature scheme, each peer has b neighborhood signatures. 

Therefore, the value of target size in PN-S is b times of the size of the search neighborhood.  Thus, signature 

match ratio for PN-S is 

( )
b

FdS
Fd r

SPN

−
+=−

1α
µ . 

In partial neighborhood appended (PN-A) signature scheme, the search signature is compared with each sub- 

signature in a neighborhood signature. Therefore, the value of target size in PN-A is rS  times of the size of the 

search neighborhood.  The signature match ratio for PN-A is 

( )FdFdAPN −+=− 1αµ . 

Based on [18], Fd  can be obtained as 











−=

−

L

s

eFd

ω

1  

where w represents the number of 1’s set in a bit string, s represents the number of bit strings superimposed in a 

neighborhood signature, and L represents the length of a neighborhood signature. According to [19], the optimal 

false drop probability is achieved when 

s

L
nopt ⋅== 2lω . 

The optimal false drop probability is approximately 
optω

5.0  
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4.1 Search  

Next we derive the formulae for search message volume in both flooding and single-path search. The formulae 

for the three signature methods are derived, respectively. The differences and similarities among them are 

pointed out along the way. 

 

4.1.1 Flooding Search 

 

We  first  derive  the  number  of  search  messages  forwarded  to  nodes  that  are  i  hops  away  (denoted  as  

iQ ),  for each of the three signature methods.  The search message is either extended within a neighborhood of a 

matched neighborhood signature or forwarded to the (r + 1)-hop-away peer nodes located right outside an un-

matched neighborhood.  In the following, we derive the number of search messages forwarded due to matched 

signatures first, then the ones due to unmatched signatures. 

� Calculating iQ   for CN 

The number of search messages forwarded to nodes one hop away due to matched signatures is CNbµ . 

The derivation for the number of search messages forwarded to nodes that are more than 1 hop away is 

more complicated.  The number of matched neighborhood signatures at hop distance 1−i is 

( ) CNiQ µβ−− 11  , where ( )β−− 11iQ  is the number of visited nodes at hop distance 1−i .  For each 

matched neighborhood signature, the search message is forwarded to 1−b  nodes (excluding the sender) 

at next hop distance to determine whether the match is a true match or not. The number of unmatched 

neighborhood signatures at hop distance 1−− ri is ( )( )CNriQ µβ −−−− 111 , where ( )β−−− 11riQ  is 

the number of visited nodes at hop distance 1−− ri . For each unmatched neighborhood signature, 1+rP   

search messages are extended to nodes 1+r  hops away. Therefore, the complete formula for iQ   is 

  ( ) ( ) ( )( ){ 1

11111 111

=

>−−+−− +−−−
=

i

i

b

PQbQi
CN

rCNriCNi
Q

µ
µβµβ .                      (3) 

� Calculating iQ  for PN-S 

The number of matched neighborhood signatures at hop distance i (with i > 1) is 

( )( ) SPNi bQ −− −− µβ 111 , where ( )β−− 11iQ  is the number of visited nodes at hop distance 1−i  and 

1−b  is the number of neighbor- hood signatures to be compared per node (excluding the one associated 

with the neighbor from which this peer got the search message). For each matched neighborhood signature, 

one search message is forwarded to the associated neighbor at next hop distance.  Therefore the total 

number of search messages forwarded due to matched signatures is the same as the number of matched 

neighborhood signatures.  The number of unmatched neighborhood signature at hop distance 1−− ri  is 

( ) ( )SPNri bQ −−− −− µβ 111 . Since a search message only needs to be forwarded to ( )1+r -hop-away 

peers (i.e., those located right outside of the partial neighborhood corresponding to the unmatched 

neighborhood signature), the number of search messages forwarded to nodes 1+r  hops away for each 

unmatched neighborhood signature is 1+rP  . Therefore, iQ   for PN-S is 

( )( ) ( )( ){ 1

11111 111

=

>−−+−−
−

+−−−−−
=

i

i

b

PQbQi
SPN

rSPNriSPNi
Q µ

µβµβ     (4) 

� Calculating iQ   for PN-A 

The number of matched sub-signatures at hop distance i is APNiP −µ  and for each matched sub-signature, 

a search message is forwarded to the node associated to it.  The number of unmatched signatures at hop 

distance 1−− ri  is ( ) ( )APNrri SQ −−− −− µβ 111  where ( )β−−− 11riQ  is the number of visited node 

at hop distance 1−− ri  and rS   is the number of signatures to be examined per node. Therefore, iQ   

for PN-A is 
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Given iQ   for all three signature schemes, the search message volume can be expressed as 

∑
=

=
T

i

issearch QMV
1

. 

The message volume incurred for the response messages is: 

( )∑ ∑
= =









+−=

T

i

T

ij

jirresponse PsQMV
1

1 αβ . 

The first term sums up the message volume incurred by the response message header and the second term sums 

up the message volume incurred by the result records. Since the response messages from the downstream 

neighbors are aggregated into one response message during the traversal back to the requester, the number of 

results arrived at one node is the total number of results returned from its downstream neighbors plus its own 

results, which denotes the meaning of ∑ =

T

ij jPα . 

 

4.1.2 Single-Path Search 

 

Without signature files, the number of nodes that should process a search message in single-path search is 







N

R
,min

α
 (min denotes minimum).  Using signature files, the number of nodes that should be visited during the 

search process is 

rS

N
R







,min

α . Taking into consideration of the redundant edges, the number of search messages is 

( )β
α
−








1

,min

rS

N
R

.  In addition, in order to determine whether a signature match is a true match or not, the peer nodes 

within the neighborhood need to further process the search message (i.e., the neighborhood checking process as 

described in Section 2.3.2). For each matched signatures, the neighborhood checking process incurs 

∑ =

r

i sQM
1

 message volume where iQ  is calculated according to the respective formula (i.e., the formulae 

(3)-(5)) of the three signature schemes for iQ  in flooding search. There are total

rS

N
R






⋅ ,min
α

µ
matched 

signatures. Therefore, the formula for search message volume is  
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Similarly, the response message volume is approximately 
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The first term and second term denote the message volume incurred by response message header and the result 

records in the initial search process, respectively. The last term is the message volume incurred by response mes-

sages generated during neighborhood checking process. 
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4.2 Peer Join  

The join process for all three approaches is the same. When a node joins the networks, it first sends join mes-

sages to nodes in its neighborhood with radius r, incurring 
β−1

rS  messages. Upon receiving join messages, the 

peer nodes in the neighborhood send their own local signatures to the newly joined node, incurring additional Sr 

messages. As explained in Section 2, when r is greater than 1 and the new peer joins the network through multi-

ple connections, some peer nodes (within 1−r hops) that were far away from each other before the join are 

brought into the same neighborhood via the newly joined node.  In this case, additional traffic is required to up-

date the neighborhood signatures of other peer nodes within 1−r  hops. Thus, the join message volume can be 

approximated as follow: 


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1

1
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1
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1
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β

ββ

rj

rjrj

SM

SMSM
joinV

 

The formulae for join message volume of the three signature methods are the same as above. However, the sizes 

of join messages for CN, PN-S and PN-A are different. As can be observed from Figure3, in order for CN, PN-S 

and PN-A to have the same sized neighborhood signatures, the size of the sub-signatures that form PN-A 

neighborhood signatures is smaller than the size of sub-signatures for CN and PN-S, while the size of sub-

signatures for PN-S is smaller than the size of sub-signatures for CN. Therefore, given the same storage size for 

all three signature schemes, the size of join messages for PN-A is smaller than the size for PN-S, which is smaller 

than the size for CN. 

4.3 Peer Leave 

When a node leaves the network, it first sends a leave message to nodes in its neighborhood with radius r, incur-

ring
β−1

rS
 leave messages. For CN, a node receiving the leave message sends a pseudo join messages to its 

neighborhood, which incurs 
β−1

rS
 messages with size as hM . On receiving pseudo-join messages, peer nodes 

send back their local signature, incurring rS  messages with size as jM  . Therefore, the message volume in-

curred by each node to construct a new neighborhood signature in CN is 







+

− j
h

r M
M

S
β1

the message volume 

for peer leave in CN is: 
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Different from CN, when a peer leaves the network, only the peers on the affected branch need to construct a 

new neighborhood signature. Therefore, the message volume for peer leave in PN-S is: 

                                                 

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.                                                      (7) 

In PN-A, when a node leaves, the affected nodes only need to delete the signature of the leaving node from its 

neighborhood signatures. Therefore, the message volume for peer leave in PN-A is 

                                                               
β−

=−

1

lrAPN

leave

MS
V .                                                                (8) 

 

r = 1 or only one new connection 

r > 1 and multiple new connection 
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4.4 Peer Update 

The formulae for the update message volume of the three signature schemes are similar to the formulae (6)-(8) 

for the leave message volume except that the lM  is replaced by uM . 

5 Performance Evaluation 

In this section, we present the performance evaluation conducted to compare our proposal with some representa-

tive approaches for searching unstructured P2P networks.  Total message volume is used as the primary perform-

ance metric in our simulation. We fist evaluate the performance of the proposed signature techniques analytically. 

In addition to analytical results, we also perform simulation based experiments. While the analytic results are 

obtained based on uniform network topology and uniform data distribution, the simulation experiments are con-

ducted under both of uniform and power-law network topologies with both of uniform and non-uniform data 

distributions. Through these experiments, we examine the performance of neighborhood signature schemes, 

Gnutella, random walk, and local index
7
 based on both of flooding and single-path searching strategies. The stop 

conditions for the flooding and single-path search are maximum search depth and minimum number of results, 

respectively. In the flooding experiments, we compare our signature mechanisms with Gnutella and local index, 

while in the single-path search we compare with random walk and local index. In addition, through these experi-

ments we tested the sensitivity of the evaluated P2P searching approaches to various factors including neighbor-

hood radius, storage constraints, size of key attribute, number of data items at a node, search/update ratio, rep-

lication ratio, number of neighbors per peer for uniform network topology, and power-law network coefficient 

for power-law network topology. In the following, we first describe the parameter setting for analytic experi-

ments and simulation experiments. We then present the detailed experiment results. 

5.1 Experiment Setup 

As mentioned above, the analytic experiments are based on uniform network topology and uniform data distribu-

tion, in the simulation, we consider power-law network topology and nonuniform data distribution in addition to 

uniform network topology and uniform data distribution. Since the setups for analytic experiments and simulation 

experiments with uniform network topology and uniform data distribution are the same, we present them together 

and point out the settings that are unique to the simulations with power-law network topology and nonuniform 

data distribution when necessary in the following. 

The simulations are initialized by generating signatures for 10000 pre-existing peers in the tested networks. A 

large number of operations consist of a randomized mix of search, peer join, peer leave, and peer update are 

injected into the P2P network in each experiment. The simulation experiments are run under both uniform and 

power-law network topologies. For the uniform network topology, the default average number of neighbors is set 

to 4, which is consistent with the average node degree in Gnutella [20]. We conduct experiments with average 

number of neighbors set to 8 as well. For the power-law network topology, based on measurement of Gnutella 

network [20], we set the power-law topology using a default coefficient of 1.4 if not specified otherwise. In one 

set of experiments, we also vary the power-law network coefficient to study the effect on the performance of 

various schemes. For both network topologies, we consider two different data distributions: uniform and nonuni-

form. Under the uniform data distribution, each node holds the same number of data items. We use the 80-20 rule 

to compose a nonuniform data distribution. That is, 80% of data items are distributed among 20% of the nodes, 

called popular peers, and the remaining 20% of data items are distributed among the remaining 80% nodes, 

called unpopular peers. Uniform data distribution is the default setting if not specified otherwise. 

Table 3 lists the parameters and their default values used in the analytic experiments as well as simulation ex-

periments. The justification for these choices is as follows: 

 

� System parameter settings: The average number of shared files per peer has been observed to be around 

340 in [14]. Therefore we set the default number of data items per peer to 400. Key attributes, which con-

tain the key value(s) of data items in various forms, e.g., binary music clip, keywords, integers, etc, are 

used for evaluation of search criteria. Since the size of data items itself is not a significant factor in differ-

                                                           
7The implementation of local index follows the description in [19]. 
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entiating the schemes under investigation, we use size of key attribute as an important parameter to charac-

terize data items. In most of our experiments, we use 4 bytes as a default for the size of key attribute (i.e., 

we assume a single value attribute unless specified). We also ran experiments by varying the number of 

data items per peer and increasing the size of key attribute (i.e., to represent a multi-key composite attribute 

or a complex attribute with binary data such as music clip) in order to observe their impacts on different 

search approaches. To simulate a generic data set in P2P systems, we use synthesized key attributes which 

are random integers (or composition of several random integers for the situations when the size of key at-

tributes is larger than 4). The ratio of redundant edges is set to 30% according to [21] in the analytic  

experiments8. The default replication ratio and default search/update ratio are set at 0.5% and 10, respec-

tively, while we also vary these two parameters in the experiments in order to study the effect on the per-

formance of various schemes. 

     

    Table 3. Default parameter settings for the experiments 

System parameters 

N = 10000 b = 4 

d = 400 k = 4 bytes 

α = 0.5% β = 30% 

φ  = 10  

Stop conditions 

tions T = 7 (uniform), 5 (power-law) R = 1 

Message parameters (bytes) 

hM   = 80 jM   = 80 + index/signature size 

SM   = 80 + length of search predicate rM   = 88 + s × number of results 

lM   = 84 (index/PN-A), 80 (CN/PN-S) uM   = 92 (index), 80 (CN/PN-S) 

84 + size of change record(PN-A) 

 

� Stop condition settings: The maximum search depth is set to 7 for uniform network topology. We ran 

some preliminary experiments and found out that in order to achieve the same search coverage in both uni-

form network topology and power-law network topology, the maximum search depth should be set to 5 in 

power law network. While we vary the replication ratio in one of the experiments to observe its impact on 

the single-path search, the minimum number of results is set to 1. 

� Message parameters settings: The message header includes both the Gnutella message header and the 

TCP/IP header, which is 80 bytes [2]. The size of a search message is the size of message header plus the 

size of the search predicate (in a network environment with system settings as above, we can simply assume 

that a search predicate only involves the key attribute, which has a size of 4 bytes by default). The search 

response message consists of the message header, the node identifier of the requesting peer, a counter indi-

cating the total number of returned result pointers (a 4-byte integer) and a list of the result pointers. In addi-

tion to search messages and response messages, some other messages are required for maintaining indices 

and signatures. The size of join messages is the size of message header (80 bytes) plus the size of local in-

dex/signatures. For local index and PN-A, the size of leave messages is 84 bytes with 4 bytes of peer iden-

tifier and 80 bytes of message header; for CN and PN-S, the size of leave messages is 80 bytes since it is an 

empty message as explained in Section 2.4. Similarly, the size of update messages for CN and PN-S is also 

80 bytes. For PN-A, the size of update message is the size of the message header plus the size of change 

record (also mentioned in Section 2.4). To estimate the size of change record in analytic experiments, we 

make a conservative assumption that all the positions (represented by 4-byte integers) of the bits set in both 

old and new signatures are recorded in the change record. Thus, the size of the change record is estimated 

as 8 optW , where optW  represents the optimal number of bits set in a signature file as explained in Section 

4. For local index, the size of update messages is 92 bytes with 80 bytes of message header, 4 bytes for 

node identifier of the peer performing update, 2 bytes for the identifier of the data item to be updated, 2 

bytes to indicate the position of the updated data attribute in the data item, and 4 bytes for the new key at-

tribute value. 

                                                           
8This parameter is dependent on the specific network topology, i.e., the network size and number of neighbors per node, in 

the simulation. Thus, it is not preset separately. 
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5.2 Result 

We conduct both analytic experiments and simulation experiments to examine the performance of proposed sig-

nature schemes. We found that the simulation results are consistent with the analytic results. In the following, we 

first briefly explain the analytic results and present one set of analytic results and simulation results side by side 

to demonstrate the consistency between them. Then for presentation clarity, we present detailed simulation results 

only. 

5.2.1 Comparison Between Analytic Results and Simulation Results 

We have the following observations based on the analytic model derived in previous section: 

 

� With neighborhood radius increasing, the maintenance overhead incurred by neighborhood signatures in-

creases while the search message volume either decreases or increases depending on the storage size. 

� With storage size increasing, the search message volume incurred by neighborhood signatures improves 

while the signature maintenance overhead increases. 

� The maintenance overhead incurred by PN-A is much smaller compared to the overheads incurred by PN-S 

and CN, which makes PN-A the best among the three proposed neighborhood signatures. 

 

All of these observations are verified by simulation experiments as we will present later. 

We find that our simulation results are consistent with the analytic results, which verifies the correctness of our 

simulation. In the following, we present one set of the analytic results and simulation results under both uniform 

and power-law network topologies when the storage size is set to 6.4KB and the neighborhood radius is varied 

from 1 to 5 in Fig. 4. We focus on the similarity between these results here while leaving the interpretation of 

these figures to next section. From this figure, we can see that the simulation results are very close to the analytic 

results. In addition, the simulation results under uniform network topology and power-law network topology are 

similar to each other. 

 

 

Fig. 4. Comparison of analytic results and simulation results under uniform and power law Network topologies. The y axis is 

on logarithmic scale for readability 

 

In the following, the simulation results for flooding and single-path search are presented, respectively. For each 

of these two search strategies, we have conducted various simulation experiments under uniform and power law 

network topologies in combination of both uniform data distribution and nonuniform data distribution. The gen-

eral trend observed from the results obtained under uniform topology is very similar to the one observed under 

power-law topology. Thus, we only present the results under power-law topology for presentation clarity. 

5.2.2 Flooding Search 

In the following, we first vary the neighborhood radius and storage size to compare the performance of the pro-

posed signature schemes (Gnutella as a baseline) and to determine the best settings of those two parameters for 

those schemes. Then, we show the impacts of other parameters on the performance of Gnutella, local index, and 

our signature schemes. In the experiments, unless explicitly specified, the total message volume includes all mes-

sage volume incurred by peer join, peer leave, peer update and search. We first present the results under uniform 

data distribution and then compare with the results under nonuniform data distribution. 
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Neighborhood Radius: In order to determine the best neighborhood radius for signature schemes under our 

experiment settings, we vary neighborhood radius from 1 to 5 and show the total message volume of CN, PN-S 

and PN-A with storage size 6.4KB in Fig. 5. We display the message volume for peer join, peer leave, peer up-

date and search operations individually in Fig. 5 so that we can observe the effects of neighborhood radius on the 

search cost and signature maintenance cost. The y-axis is on a logarithmic scale for readability. The search mes-

sage volumes incurred with neighborhood radius as 1 in signature schemes CN, PN-S, PN-A are 93%, 37%and 

37% of the Gnutella traffic. When the neighborhood radius increases to 2, the search message volumes incurred 

by PN-S and PN-A decrease to 18% and 14%. This is due to the desirable (intended) filtering effect achieved by 

neighborhood signatures. When the neighborhood radius is increased further, more neighborhood information is 

forced to be compressed within the same storage space (either by superimposing more signatures in CN and PN-S, 

or appending more signatures with smaller size in PN-A), which increases the false positive probability. The end 

results is that the search message volume increases, though we still find that the search messages volume is not 

higher than Gnutella even at radius of 5. Of the three signature schemes, the partial signatures are providing bet-

ter focused searches at smaller neighborhood radius values. 
 

 

 

Fig. 5. Flooding: effect of neighborhood radius on signature schemes. The y axis is on logarithmic scale for readability 

 
At the same time, when the radius is increased, the overheads of peer leave and peer update become much 

more significant, and even overwhelm the search messages for the superimposing strategies (CN and PN-S). As 

was mentioned earlier, these schemes require signatures to be generated from scratch during peer leave/update. 

Between these two approaches, the message volume for CN is larger than for PN-S, because only peers along one 

branch in PN-S are involved for generating new signatures while all neighbors are involved for CN. In contrast to 

CN and PN-S, the affected signatures can be updated easily in PN-A. Therefore, its leave and update message 

volume is substantially lower compared to CN and PN-S. 

 

Storage Size: Fig. 6 shows the total message volume as we allow various storage capabilities at each peer for 

the signatures. From this figure, we can see that when storage size increases, the total message volume decreases 

first, then increases again. The initial decrease is due to the better filtering effect of signatures with larger size. 

However, when the storage size keeps increasing, the maintenance overhead incurred by peer join/leave/update is 

overwhelming, resulting in increased total message volume. The minimum total message volume incurred by CN, 

PN-S and PN-A is 94%, 20% and 6% of Gnutella traffic when storage size is 1.6KB, 6.4KB, and 25.6KB, re-

spectively. 

The values shown in Fig. 6 use a neighborhood radius that gives the lowest message volume for the given stor-

age size (and these radius values, referred to as optimal radius, for each storage size are given in Table 4). For 

CN, the optimal radius is 1 for all considered storage sizes as shown in Table 4. The reason is that when the sig-

nature size is small, join/leave/update cost is small and query cost dominates the total message volume as shown 

in Fig. 6(a). A small neighborhood radius forces less information superimposed together and results in low false 

positive probability, thereby incurring lower total message volume. When the storage size increases, the cost of 

join/leave/update dominates the total cost and a smaller neighborhood radius results in lower join/leave/update 

message volume, providing the best results again. The latter effect (overhead of join/leave/update) is less signifi-

cant for PN-S and PN-A, making a larger neighborhood radius more preferable in these two schemes when stor-

age size is large, as shown in Table 4. 
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Fig. 6. Flooding: effect of storage size on signature schemes 
 

 

Table 4. Flooding: optimal neighborhood radius for different storage sizes 

Storage size(KB) 0.1 0.4 1.6 6.4 25.6 83.2 256 

CN 1 1 1 1 1 1 1 

PN-S 1 1 1 2 2 1 1 

PN-A 1 1 1 2 3 4 4 
 

 

Message Volume and Storage Tradeoff: Fig. 7 compares the performance of the three signature schemes 

with the local index, along with the Gnutella shown as a solid horizontal line, by increasing storage size. From 

this figure, we can observe that with storage size as small as 400 bytes, the partial neighborhood signature 

schemes (PN-S and PN-A) reduce message traffic by over 35% compared to the Gnutella flooding approach. 

With a higher storage capability, PN-S and PN-A produce even further savings. On the other hand, the local 

index approach starts outperforming Gnutella only with storage not less than 6.4KB. With a storage size of 

6.4KB, the message volume of PN-A is only 40% of local index’s traffic. As the storage space gets larger, in-

dex/signature construction and updates become more expensive (due to join/leave/update operations), causing 

their message volume to increase again. Even when the storage size keeps increasing, the performance of PN-A is 

similar to local index. These results demonstrate that the signature approaches (particularly PN-A) can have bet-

ter performance than the local index with a much smaller storage space requirement. 

 

 

Fig. 7. Flooding: total message volume comparison among Gnutella flooding, local index, CN, PNS and PNA 
 

 

Size of Key Attribute: Fig. 8 shows the total message volume with different sizes of key attribute. The y-axis 

is on a logarithmic scale for readability. In this simulation, we use increased attribute sizes to represent the situa-

tions where the (logical) key attribute consists of multiple keys or contains binary data (e.g., music clip). The 

values shown here uses a given storage size (i.e., 6.4KB) and a fixed number of data items per node (i.e., 400). 

Thus, by increasing the size of key attribute at a data item from 4 bytes to 1.6KB, the storage/total-attribute-size 
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ratios at a peer for the chosen points in the figure are decreased from 400%, 100%, 50%, 10%, 5%, down to 1%9. 

It can be observed from the figure that the signature approaches outperform Gnutella and local index significantly 

as the attribute size becomes large (i.e., the storage/total-attribute-size ratio becomes small). For instance, when 

the attribute size for each data item is 1.6KB (i.e., storage/total-attribute-size ratio is 1%), the total message vol-

ume for PN-A is merely 18% compared to Gnutella and local index. The total message volume for Gnutella in-

creases as the size of key attribute increases, because the search message contains the key attribute value(s). Lo-

cal index performs well when the storage/total-attribute-size ratio is large. However, as the attribute  

size increases, the given storage size is not sufficient to index all data items10. Therefore, local index’s perform-

ance is the same as Gnutella approach for larger attribute size. 
 

 
 

Fig. 8. Flooding: effect of key attribute size on Gnutella flooding, local index and signature approaches. The y axis is on 

logarithmic scale for readability 
 

 

Number of Data Items: Fig. 9 shows the total message volume as we allow the number of data items per peer 

to increase from 100 to 160000. With a fixed storage of 6.4KB at each peer, the storage/total-attribute-size ratios 

for the chosen data points in Fig. 9 are 1600%, 400%, 100%, 50%, 10%, 5%, 1%, respectively. As shown in the 

figure, local index outperforms PN-A only when each peer has merely 100 data items (i.e., the storage/total at-

tribute-size ratio is 1600%). On the other hand, the partial neighborhood signatures perform extremely well as the 

number of data items per peer increases rapidly. However, when the number of data items is overwhelmed, (e.g., 

16000), extra storage size should be allocated for signatures to reduce their false positive probability and the total 

message volume. Different from the previous figure, the total message volume for Gnutella remains as a constant 

since the attribute size for each data item is fixed. 

 
Fig. 9. Flooding: effect of number of data items per peer on Gnutella flooding, local index and signature approaches 

                                                           
9The storage/total-attribute-size ratio can be interpreted as the storage overhead normalized according to the total size of the 

key attributes of data items stored per peer. 

 
10The minimum storage overhead for local index is 6.4KB, 25.6KB, 51.2KB, 256KB, 512KB and 2560KB, respectively, for 

each of the points in Fig. 8. 
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Observed from the above two figures, it is obvious that the partial neighborhood signatures are much more 

storage efficient and flexible than local index. With very little storage overhead, the partial neighborhood signa-

tures can facilitate focused search effectively while local index has some minimal storage requirement. 

 

Search/Update Ratio: Fig. 10 shows the optimal total message volume of CN, PN-S and PN-A under differ-

ent search/update ratios using two different update strategies (i.e., eager update and lazy update) as discussed in 

Section 2.4. The y axis is on logarithmic scale for readability. We can see from Fig. 10 (a) that when the eager 

update strategy is adopted, the total message volume decreases with increasing search/update ratio. This is due to 

the reduced signature maintenance overhead incurred by decreasing number of peer join/leave/update operations. 

The similar trend is observed when lazy update strategy is adopted as shown in Fig. 10(b). However, when the 

search/update ratio is smaller than 1 (i.e., there are more peer join/leave/update operations than search opera-

tions), the total message volume using lazy update strategy is much smaller than the one using eager update strat-

egy, which demonstrates the benefits of lazy update in reducing the signature maintenance overheads when the 

peer join/leave/update operations are overwhelming. 

 

 

Fig. 10. Flooding: effect of search/update ratio on signature schemes. The y axis is on logarithmic scale for readability 

 

Network Topology: Fig. 11(a) and Fig. 11(b) show the total message volumes of different approaches with 

storage size 6.4KB when the number of neighbors per peer is 4 and 8, respectively. From these two figures, we 

can see that the total message volume increases when the number of neighbors per peer increases from 4 to 8. In 

addition, with the number of neighbors per peer as 4, the optimal values for neighborhood radius in CN, PN-S 

and PN-A are 1, 2, and 2, while the optimal neighborhood radius for all neighborhood signatures becomes 1 with 

the number of neighbors per peer as 8. This is because with larger number of neighbors per peer, more informa-

tion is compressed into the signatures with the same storage space, resulting in higher false positive probability, 

thus worse filtering effect. 

 

Fig. 11. Flooding: effect of number of neighbors per peer under uniform network topology on Gnutella flooding, local index 

and signature approaches 
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Fig. 12. Flooding: effect of power law network coefficient under power law network topology on Gnutella flooding, local 

index and signature approaches 

 
Fig. 12 shows the effect of power-law network coefficient on the total message volume. From this figure, we can 

see that the total message volume decreases with the power-law network coefficient. The reason is that as power-

law network coefficient increases, a few nodes have large number of neighbors, while majority of the nodes have 

a very small number of neighbors. Therefore, false positive probability of neighborhood signatures for majority 

of the nodes decreases, incurring reduced total message volume. 

 

Data Distribution: Fig. 13 compares the performance of Gnutella flooding, local index and three signature 

schemes under uniform and nonuniform data distributions (as specified in Section 5.1). In this comparison, stor-

age size for local index and signatures are set to be 6.4KB. For both Gnutella flooding and local index approach, 

there is no performance difference under these two different data distributions. For the signature schemas, the 

total message volume under nonuniform data distribution increases a little bit. This can be explained by the in-

creased false positive probability of the neighborhood signatures which are contributed by popular peers. One 

important observation from Fig. 13 is that the performance of PN-A is better than local index under both uniform 

and nonuniform data distributions. 

 

 

Fig. 13. Flooding: effect of data distributions on Gnutella flooding, local index and signature approaches 

5.2.3 Single-Path Search 

In addition to the seven parameters (neighborhood radius, storage size, key attribute size, number of data items, 

search/update ratio, number of neighbors per peer, and power-law network coefficient) investigated in flooding 

search, we include one more parameter, replication ratio, in single-path search since the performance of search 

with minimum number of results as search stop condition can rely heavily on the number of replicas in the system. 

We compare the performance of the proposed signature schemes with random walk and local index. The general 

trend observed from the results is similar to that observed for flooding. For presentation clarity, we only present 

the comparison among random walk, local index and signature schemas when storage size and replication ratio 

increase, respectively. 
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Message Volume and Storage Tradeoff: Fig. 14 shows the total message volume comparison among random 

walk, local index, CN, PN-S and PN-A. Once again, we find that the signature schemes (PN-A in particular) are 

able to incur lower message traffic in retrieving the required number of data items at a much lower storage cost 

than local index. 

 

 

Fig. 14. Single path: total message volume comparison among random walk, local index, CN, PNS and PNA. The y axis is 

on logarithmic scale for readability 

 

 

Replication Ratio: Fig. 15 compares random walk, local index and PN-A for different degrees of replication 

of data items in the network. The y-axis is on a logarithmic scale for readability. In these experiments, both local 

index and PN-A are run with a storage size of 6.4KB (local index only starts to provide reasonable performance 

with storage size 6.4KB). At high degrees of replication, as expected, random walk can perform rather well, since 

there is a higher likelihood of finding the requested data items even when randomly traversing the network (with-

out incurring any join/leave/update overheads). However, at lower degrees of replication it does much worse than 

the signature or local index approaches which can direct searches in a more productive manner. Of these two 

approaches, we find that PN-A is more effective at reducing traffic even at very small degrees of replication. PN-

A incurs an order of magnitude lower message traffic with respect to random walk under a replication ratio of 

0.1% and only 17% of random walk traffic under a replication ratio of 0.5%. Compared to local index, PN-A 

incurs 29% of local index traffic under a replication ratio 0.1% and 43% of local index traffic under a replication 

ratio 0.5%. 

 

 

Fig. 15. Single path: effect of replication ratio on random walk, local index and signature approaches. The y axis is on loga-

rithmic scale for readability 

 

6 Concluding Remarks and Future Work 

Peer-to-Peer (P2P) applications such as Napster and Gnutella have made the Internet a popular medium for re-

source and information exchange between thousands of participating users. A primary consideration in the design 

of such applications is the high network traffic that they generate when searching for resources/information. One 

can argue that with infinite storage capacity it is possible to maintain complete auxiliary information for all the 
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resources of a P2P network at a peer node, leading to extremely efficient searches. However, this not only incurs 

high storage overheads, but also additional costs for updating the auxiliary information when nodes join/leave the 

system or when data content is updated at a peer node, which can happen quite frequently in a dynamic P2P sys-

tem. This trade-off between storage space vs. network traffic opens up a rich research space to explore. Previous 

research has looked into one possible mechanism, local index, in this space. In this paper, we propose three new 

mechanisms based on signature files within this space that can provide a better focused search at a lower storage 

overhead than local index. We have shown that, with a very small storage cost, signatures are quite effective at 

reducing search costs compared to local index. In addition, the message overheads of join/leave/update opera-

tions are adequately compensated by the savings in search messages. Of the three schemes, CN, PN-S and PN-A, 

that we propose, PN-A gives the best performance. 

The schemes have been extensively evaluated through analytical experiments and simulation experiments both 

with the intention of fine-tuning the parameters that they use (neighborhood radius, storage size) and comparing 

with the previous proposals using both flooding and single-path search strategies under different network topolo-

gies (uniform and power-law), different sizes of key attribute, different number of data items at a peer, different 

data distribution patterns, different degrees of data replication, and different proportions of operations 

(search/update). We uniformly find PN-A gives good savings in message volume over Gnutella, random walk 

and local index approaches at a small storage cost. In addition to the performance and storage savings with signa-

tures, there are a couple of other advantages that they exhibit compared to index-based approaches: (a) Signature 

approaches can search across multiple attributes by appropriately encoding all the attributes when composing a 

signature, instead of being restricted to one or a small number of attributes which needs to be predetermined as in 

index approach. This facilitates keyword and content based search. (b) It takes a certain minimum amount 

(threshold) of storage to store an index. With storage size less than this threshold, index approach can not be used 

and we have to resort to broadcasts/flooding. On the other hand, signatures do not impose any such restrictions 

and can work with any amount of space allotted to them (though when the space gets too small the ability to fo-

cus the search diminishes). All these observations lead us to believe that PN-A is an extremely popular mecha-

nism for implementing resource and information lookup operations in P2P networks. 

Our ongoing work is looking into reducing false positive effects in signatures by exploiting real data patterns. 

While we have demonstrated in [13] that semantic clustering can improve performance significantly in structured 

P2P overlays, we are also investigating semantic clustering via signature approaches in unstructured overlays. 

Finally, we are investigating P2P applications overlaid on wireless networks. 
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