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Abstract. Power management is one of the most important issues in mobile communications. Much research
has been done in reducing wireless station's power consumptions. IEEE 802.11 addresses this issue by adopt-
ing a MAC layer active-doze Power Saving Mechanism. In an 802.11 ad hoc network, this Power Saving
Mechanism works as follows. Any wireless station with data to send must first announce its traffic and then
contends for the channel with other stations for data transmissions, all based on the DCF protocol. Stations
not involved in any data transmissions can go to the doze mode to conserve energy. In this paper, we first
show that this mechanism has the problem of power management inefficiency when used in a multiple rate ad
hoc network. We then propose a novel scheduling mechanism, STFS, to reduce the total power consumptions
of the wireless stations in the network. Simulation results show that the proposed scheduling mechanism does
have better performance than that of 802.11 PSM.

Keywords: Ad Hoc Network, DCF, 802.11 PSM, Beacon Interval, and ATIM Window

1 Introduction

Wireless LAN or WLAN is the fastest growing field in mobile communications. By now, the majority of note-
book computers and an increasing number of PDAs are equipped with wireless technology. Among the many
wireless technologies, the family of IEEE 802.11 protocols is the most widely used access method for WLAN.
In IEEE's proposed protocols for WLAN, there are two different ways to configure a network: ad hoc and infra-
structure. In the ad hoc configuration, wireless stations (STAs) are brought together to form a network "on the
fly". There is no structure to the network; there are no fixed points; and usually every STA is within the commu-
nication range of every other STA in the network. When configured in infrastructure mode, the WLAN consists
of at least one access point (AP) connected to the wired network and a number of wireless STAs. The AP pro-
vides a local relay function for the network. All STAs in the network communicate with the AP and no

longer communicate with each other directly.

In WLAN, battery power is an unavoidable issue that must be dealt with. In order to save power, 802.11 de-
fines a MAC-layer Power Saving Mechanism (802.11 PSM) that allows a wireless STA to go from the active
state to doze or power-saving state when the STA is not involved in any data transmissions [1]. In the infrastruc-
ture configuration of a WLAN, the AP will keep track of all STAs that are in power-saving state and buffer
frames addressed to these STAs. These frames are kept until the STAs request them to be sent or discarded if
they are not requested for a certain period of time. While in the case of ad hoc configuration, time is divided into
Beacon Intervals and each Beacon Interval contains an ATIM (Ad Hoc Traffic Indication Message) Window
followed by the Data Transmission Phase. The ATIM Window is used as the common awake period for all par-
ticipating STAs to announce their traffic through ATIM frame transmissions. After the ATIM Window finishes,
STAs that successfully send or receive ATIM frames must remain in the active state, and STAs can switch to
power-saving state if they are not involved in any traffic announcements till the beginning of next ATIM Win-
dow. Actual data transfers occur in the Data Transmission Phase, and the normal DCF (Distributed Coordination
Function) access procedure is used while sharing the transmission medium among the active STAs. Any STA
that completes the ATIM frame transmission in the ATIM Window but fails to send data packet in the Data
Transmission Phase will try to initiate another traffic announcement in the next ATIM Window. In addition to
the 802.11 PSM, a number of power saving methods [2,3] covering all protocol layers from Physical to the Ap-
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plication layer have also been proposed in the literature, and a system-level power-saving methodology for het-
erogencous wireless networks is in [4].

Because of signal fading, interference, shadowing, and path loss, etc., wireless channels have time varying
characteristics. As a result, different wireless STAs may perceive different channel qualities at the same time.

In order to obtain optimum throughput, STAs in the network need to use different transmission rates for dif-
ferent channel qualities [6]. But when 802.11 PSM is enabled in such a multiple rate ad hoc environment, we
observe a problem of power management inefficiency which can be exemplified in Fig. 1. In this example, we
assume there are 16 STAs in the network, 8 of which are transmitters (In this paper, a transmitter is an STA that
only transmit, not receive data packets.), and 8 of which are receivers. Each transmitter has only one packet to
send to its receiver and all data packets are equal in length. In those transmitters, 4 of them are fast STAs, and
the other 4 are slow STAs. Since fast (slow) STAs will use less (more) time in sending packets, the packets
transmitted by fast (slow) STAs are represented by narrow (wide) rectangles in Fig. 1. According to the opera-
tions of 802.11 PSM, these transmitters must first announce their traffic in the ATIM Window and then use DCF
to contend for the channel in the Data Transmission Phase. In the worst case, it may happen that all slow trans-
mitters win the channel contentions before any fast transmitter has a chance to send data packet. Therefore as
shown in the upper half of Fig. 1, the numbers of STAs that must stay in the active/power-saving state in the
first, second, and third Data Transmission Phases are 16/0, 12/4, and 8/8, respectively. That is, 4 of the 16 STAs
must stay in the active state for 2 Beacon Intervals, and 8 STAs must remain active for all of the 3 Beacon Inter-
vals. In order to save power, we will propose a scheduling mechanism called STFS (Shortest Time First Sched-
uling) in this paper so that the packets transmitted on the channel can be as shown in the lower half of Fig. 1.
This scheduling mechanism has the characteristic that it will schedule all fast transmissions or transmissions
using less time to proceed before any of the slow STAs is allowed to send packet in every Data Transmission
Phase. By scheduling in this way, more STAs can complete their data transmissions earlier and then go to
power-saving state to conserve energy. Now the numbers of active/power-saving STAs are only 16/0, 8/8, and
4/12 in Data Transmission Phases 1, 2, and 3, respectively, the total power consumptions of these STAs are thus
minimized.

In the above example, we assume each transmitter only has a specified number of data packets to send, there-
fore after a transmitter completes all its data transmissions, it will go to the doze mode; that is, the number of
active transmitters in each Beacon Interval may decrease over time. By scheduling fast transmissions to proceed
first, STFS can make this decrease more significant, so more power can be saved.

The rest of the paper is organized as follows. Section 2 describes the operations of the proposed scheduling
mechanism. The performance of the STFS is investigated in section 3 and conclusions are given in section 4.
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Fig. 1. The worst-case and best-case scenarios of power management in an 802.11 multiple rate ad hoc network..

2 The Shortest Time First Scheduling

In STFS, we assume: (1) The WLAN is configured in its ad hoc mode; (2) An ideal channel condition without
packet losses is considered; (3) The Beacon Intervals begin and end approximately at the same time at all STAs,
so the problem of time synchronization is not considered; (4) Each STA in the network can support K data rates,
r>r,> - >r, and has implemented an automatic rate selection protocol such as the RBAR in [5] which en-
ables a receiver to select the most appropriate rate for its sender to use in the Data Transmission Phase; (5) The
data packets transmitted by all STAs are equal in length so the time required to transmit a packet is determined
by its transmission rate; and (6) The promiscuous mode of the wireless interface is enabled so that the interface
can intercept and read each network packet that arrives in its entirety.

As we mentioned earlier, STFS will schedule all fast transmissions before any of the slow transmissions in
every Beacon Interval. A major problem with this scheduling mechanism is starvation; that is, some of the slow
STAs may have no chances to send packets when Data Transmission Phase can not accommodate all active
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transmissions. In order to achieve the goals of shortest time first and starvation prevention, we modify the packet
formats of 2 control frames as follows: (1) The ATIM frame is extended with a 1-byte aging field; and (2) The
ATIM-ACK is modified to include 2 additional 1-byte fields, aging and rate. The uses of these fields will be
described in the following paragraph.

In addition to the above modifications, each STA in the network needs to maintain a local counter, fc. This
counter has an initial value of 0. Whenever an STA has made a traffic announcement in an ATIM Window but
fails to initiate transmission in the following Data Transmission Phase, fc is incremented by 1, otherwise fc is
reset to 0. Before an ATIM frame is sent, the transmitter will copy the value of fc to the aging field of the frame.
After an ATIM frame is received, the rate selected by the receiver is sent back to it's transmitter through the rate
field of the ATIM-ACK. The contents of the field aging in ATIM-ACK are coming from the same field of the
received ATIM frame.

For the purpose of deciding packet transmission order in every Data Transmission phase, a scheduling array
of size g and a number of 2- (k + 1) indexes, S, €, S1, €1, ***> Sk, €k, als0 need to be maintained by each STA in the
network. The size of this array is such that it can accommodate at least k+1 non-overlapping queues, qq, J;, ***,
and Q; that is: |go[t|d;|+ - +|0< 0. The two ends, front and rear, of each g are pointed to by s; and e;, 0< i<k,
respectively. The configuration of these queues in the array is shown in Fig. 2. Whenever an STA receives an
ATIM-ACK, the STA will use the DA (The Destination Address field, which now contains the address of the
STA that transmitted the ATIM frame.), rate, and aging fields of the frame to update its scheduling array as
follows: (1) If aging > 0, the contents of DA will be put into qp; and (2) If aging = 0 and rate = r;, the contents of
DA will be put into q;, 1< i< k; that is, the addresses of all STAs with the local counter fc=0 and using the same
data rate will be put into the same queue in the scheduling array. The order of the station addresses in queue g,
1< i<k, is decided by the order of ATIM-ACK receptions, while the order in g is determined as follows: The
address in DA of ATIM-ACK, will have a smaller index value in g than that in DA of ATIM-ACK, if (1) aging
of ATIM-ACK, is larger than that of ATIM-ACK,; or (2) aging of ATIM-ACK is equal to that of ATIM-ACK,
and rate of ATIM-ACK|, is higher than that of ATIM-ACK,; or (3) Both aging and rate of ATIM-ACK; are
equal to those of ATIM-ACK, and ATIM-ACK, is received earlier than ATIM-ACK,. For example, suppose an
STA X receives 4 ATIM-ACKs with DA='A', aging=0, and rate=r, at time t, DA='B', aging=0, and rate=r, at
time t+1, DA='C', aging=1, and rate=r, at time t+2, and DA='D', aging=2, and rate=r, at time t+3. Then, in the
scheduling array of STA X, the address of STA A will have a smaller index value in @, than that of STA B, and
the address of STA D will have a smaller index value in ¢ than that of STA C. When ATIM Window finishes,
the array index values will be used by those STAs whose addresses are recorded in the scheduling array to setup
the backoff counters to be used in data transmissions. Therefore all STAs whose addresses are in g are permit-
ted to send packets first, followed by the transmitters in ¢, and so on. Since the STAs whose addresses are in g
will use a higher transmission rate than those whose addresses are in g, 1< i<j< k, the goal of shortest time first
is achieved. Any STAs that had completed traffic announcements but failed to transmit data in the previous
Beacon Interval(s) are recorded in g, so the starvation problem mentioned above is also solved. After a trans-
mitter completes its data transmission, it will reset its backoff counter value to e+1. This will give that transmit-
ter chances to send multiple packets in the same Data Transmission Phase. After the current Beacon Interval
terminates, the contents of the scheduling arrays maintained at all STAs are flushed to ensure the correct sched-
uling in the next Beacon Interval. A simple scheduling example of the STFS is shown in Fig. 3.
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Fig. 2. The configuration of k+1 queues in the scheduling array.
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In ATIM Window:

Stepl: A sends an ATIM frame with aging =0 to B.

Since the promiscuous mode of the wireless interface
has been enabled, this frame will also be received by C.

Step2: Based on the signal strength of the ATIM frame , B
then selects the most appropriate rate, e.g. r;, for A to use.

Step3: B sends the ATIM-ACK with DA = ‘A’, rate =r,, and
aging = 0 back to A. This ATIM-ACK will also be heard
by C.

Step4: A and C extract the contents from DA, aging, and rate
fields of the ATIM-ACK and use these information to
update their respective scheduling arrays.

After the updates, the arrays at A and C may be like the

following:
S0 [ (73
v vy v
Ll [a] o [ ]
0 5 6 25

Station A will set its backoff counter to 6 in the following
Data Transmission Phase.
In Data Transmission Phase:
Step5: After 6 idle time slots, A sends a data packet to B.
Step6: B responds with an ACK.
Step7: A resets its backoff counter to ¢, + 1 =25 + 1 = 26.

Fig. 3. A simple STFS scheduling example.

3 Performance of the STFS

We have developed a C++ based simulator to investigate the power consumption, channel usage, and throughput
performance of the STFS and, for the purposes of comparison, the 802.11 PSM. Since the ATIM Window size
will significantly affect the performance of 802.11 PSM [10,11], we will vary that size to be 30%, 40%, and
50% of the Beacon Interval in each set of the simulations to see its effect on the performance of STFS. In this
paper, we assume an STA will never be both a transmitter and a receiver at the same time. An 802.11b-based ad
hoc network is particularly considered in our simulations, so the STAs in the network can support k=4 different
data rates, with r;=11.0 Mbps, r,=5.5 Mbps, r;=2.0 Mbps, and r,=1.0 Mbps. The rate used to send all control
frames is 1 Mbps. In all simulations, we assume the numbers of transmitters that will use rate r;, 1< i< 4, for data
transmissions are equally distributed among all transmitters in the network. The size of the scheduling queue
maintained at each STA is set to g=63. The packet size at the MAC layer is fixed at 1024 bytes, and the lengths
of the Beacon, ATIM, and ATIM-ACK frames for 802.11 PSM are 50, 28, and 14 bytes, respectively. The Bea-
con Interval is set to be 100 ms. For the energy model, a wireless STA will consume 1.65 W, 1.4 W, 1.15 W,
and 0.045 W in the transmit, receive, idle, and the power-saving states, respectively [7,8]. As in [9], the energy
consumption for switching between awake and power-saving states is not considered in this paper. All simula-
tion results are averages over 30 runs.

In our simulations, we measure the total power consumptions of all STAs for the case in which one half of the
STAs are transmitters and each transmitter has 1000 data packets to send to its receiver. The results are shown in
Fig. 4(a)~(c). As we can see from the results, the total power consumed by all STAs in the network is less in
STES than in 802.11 PSM for all situations. The percentage improvement on total power consumptions, defined
as (TotalPowerConsumptiong, 1psm - TotalPowerConsumptiongrrs) / TotalPowerConsumptiongg, 11psm, 1S shown
in Fig. 5(d). We find a 20% to nearly 40% saving on energy is achieved by STFS. Finally, the results in Fig. 4(e)
show that the savings on power consumption are more significant when the number of STAs in the network gets
higher or the ATIM Window size becomes larger (When ATIM Window size gets larger, the Data Transmission
Phase will become shorter for Beacon Intervals with fixed length.). When these situations occur, more STAs
will remain active in the same Data Transmission Phase, so the less chance they all can complete data transmis-
sions. By scheduling fast transmissions first, STFS can send more packets in every Data Transmission Phase,
therefore more STAs can complete their transmissions earlier and then go to power saving mode to conserve
energy.

70



Chu and Tseng: A Power Efficient Scheduling Mechanism for an IEEE 802.11 Multiple Rate Ad Hoc Network

----X----802.11 PSM —O0——STFS

x10°W
50

40 -

30

20 -

10 -

0 7Qg:a'——'r"d?d I | |

Total Power Consumptions

8 16 24 32 40 48 56 64 72 80 88 96
Number of STAs

(a) ATIM Window size = 0.3 * Beacon Interval
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Fig. 4. Power consumption performance of STFS and 802.11 PSM with each transmitter having 1000 data packets to send.
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Fig. 4. Power consumption performance of STFS and 802.11 PSM with each transmitter having 1000 data packets to send.
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4 Conclusion

WLANS are usually designed for mobile applications. In mobile applications, battery power is one of the critical
issues that must be dealt with. Due to limited battery power, various energy efficient protocols have been pro-
posed to reduce wireless station's power consumptions in the literature. 802.11 addresses this power issue by
allowing wireless stations to go into power-saving state at appropriate times to save power. However, this Power
Saving Mechanism proposed by 802.11 has the problem of power management inefficiency when used in a
multiple rate ad hoc network.

In this paper, a novel scheduling mechanism, STFS, is proposed to solve the above problem. The main idea of
STFS is to schedule as many wireless stations to send packets as possible in every Beacon Interval so that they
can complete their data transmissions earlier and then go to power-saving state to conserve energy. Simulation
results show that the improvements made by STFS are significant and obvious in all situations.
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