
Application Behavior Analysis by Stateful Automata Mechanism

Nen-Fu Huang
1,2,* Yi-Hsuan Feng

1

1 Department of Computer Science

National Tsing Hua University

Hsin-Chu 300, Taiwan, ROC

2Institute of Communication Engineering

National Tsing Hua University

Hsin-Chu 300, Taiwan, ROC

{nfhuang, dr918302}@cs.nthu.edu.tw

Received 16 November 2007; Revised 30 November 2007; Accepted 9 December 2007

Abstract. A sufficient visibility into the behaviors of network applications from the Internet traffic is essen-

tial to the content security, traffic management, and measurement. This paper presents a methodology to per-

form a reliable traffic classification and distinguish activities of specific applications. Our approach uses the

flow-based state machine to model a given network application and its behaviors (even with the encryption)

and combines the signature matching, protocol analysis, and statistical test in order to make use of the

strength of the three approaches. We further discuss the system design and the implementation of our frame-

work, including the detection heuristics and system details. These systems are already deployed at the borders

of network environments of several enterprises and organizations. At last, we demonstrate the effectiveness of

the approach by applying it to identify various applications and malicious traffic. This study on application

behaviors shows that it is possible to allow the expected activities of programs but disallow others between

the endpoint users.

Keywords: application classification, stateful method

1 Introduction

The network administrators usually impose a set of rules carefully on their networks to enforce the security policy

(e.g., no delivering of files by FTP, P2P, or mail attachment) and protect the network resources from unnecessary

consumption (e.g., the limited bandwidth budget exhausted by gaming). Two prerequisite requirements in this

task are:

� An accurate identification on applications and behaviors, and the continued tracking of them

� Different reactions for different behaviors.

Since the modern routers and firewalls have the ability to look for the features in the TCP and UDP headers,

the port-based methods [1, 2] relying on the well-known service ports are the simplest approach for identification

of a particular application. However, the emerging problem comes from new applications either not using the

native port numbers or using other protocols, such as HTTP, as tunneling to go through the firewall without being

blocked. It is well known that the identification by such a port-based heuristic is found to be no longer accurate.

An example is the underestimation up to 70% of the popular Kazaa P2P traffic in [3].

The observations on port-based identification emphasize the imperativeness of a deeper inspection into pay-

load and into protocol-specific semantics to offer a more reliable detection. First, several works [3, 4, 5, 6] use

the application information in the payload content to define protocol-specific signatures and then check whether a

flow carries these byte-string patterns in payloads. In more details, a signature is a “fingerprint” describes

uniquely a set of features (or patterns) of an input data for the packet inspection. Each of these patterns has its

type (e.g., hex value and string) and value domain. The signature-based method is a common technique used in

IDS, such as Snort [7], and other industry security products. At the other end, protocol analyzers [8] check

whether a traffic stream follows application-level semantics to determine the type of traffic. With the specific

knowledge of an application, a protocol analyzer uses a set of detection heuristics for the data it receives and

plays as a dissector to extract the information when necessary. For example, the HTTP analyzer helps to ensure

* Correspondence author

Journal of Computers Vol.18, No.4, January 2008

4

the traffic through port 80 adheres the HTTP specification for detecting the tunneling of instant messaging and

P2P software.

By using the statistical analysis of traffic, the previous works [9, 10, 11] give a different point of view on the

traffic classification. These techniques use different parameters including the packet size distribution and the

interactive relationship to classify the traffic into board categories.

For identifying the application behaviors, the existing methods have the some limitations. First, each applica-

tion has two phases that need to be tracked: the connections associated with the application and the packets with

important information. However, previous works have focused on the detection performance (evaluated by the

false positives and false negatives) of connections and did not discuss the requirements of behavior detection. For

instance, an enterprise network administrator might constitute a policy to block the file exchange by IM software

for the security and bandwidth management but allow the message exchange between the company’s branches to

save the cost of phone calls. Therefore, to apply the different enforcement policies to different behaviors, a

deeper visibility into the specific application is necessary. Second, the application detection by port-based, signa-

ture-based, or statistical approach only provides a coarse-grained information of whether a given protocol is in

use or not. However, this black-or-white result is not enough and it is important for the behavior detection to

have the capability of analyzing every application instance continuously and analyzing the parent connections to

identify their children connections. For example, many protocols (e.g., H.323) establish connections and negoti-

ate service parameters on well-known TCP ports and then establish another ephemeral connection to transfer the

following data. Thus, we need to track the control connections on “well-known” ports that spawn “ephemeral”

data connections on arbitrary ports.

For the purpose of recognizing the different behaviors, we combine the techniques of the signature matching,

protocol analysis, and statistical test for making use of their strength in order to provide a complete framework.

We demonstrate the effectiveness of the approach by four popular examples: eDonkey, BitTorrent, MSN, and

Yahoo Messenger.

The remainder of the paper is organized as follows. In Section 2, based on our previous study, we have de-

fined the application classes and behavior classes. Next, Section 3 presents our approach and the formal defini-

tions, and also gives an FTP example to explain our framework. In Section 4, we discuss the system design and

implementation, including the detection heuristics and system details. Section 5 introduces the specific automata

of four popular IM and P2P protocols. Section 6 evaluates the detection performance of our approach and com-

paring it with other identification methods. We also give a report of the hottest application activities monitored at

a gateway node. Section 7 gives a conclusion and future works.

Table 1. The application classes and behavior classes identified in this study

Application class Behavior class Example protocol/application

Web browsing http get, http post, file download, cookie, Java

applet/ActiveX

WWW

Instant messaging login, chat, file transfer, audio/video communi-

cation, web IM, on-line game

MSN, Yahoo Messenger, Google

Talk, ICQ, AIM, Skype

P2P login, file query, peer list, file sharing Gnutella, BitTorrent, FastTrack,

eDonkey2000, WinNy

Bulk login, file download, file upload, list directory

content, active mode, passive mode

FTP, GetRight, FlashGet

Email authentication, file attachment POP3, SMTP, IMAP4

Others Malicious traffic (e.g., DNS flood)

2 Identifying Application Behaviors

To identify the application behaviors, we studied a suite of thirty applications. Based on this study, we identified

a set of application classes, their protocols, and their behavior classes. For each application class, we identified

the behavior classes commonly used to implement the primary functionalities in the class of application. How-

ever, some applications do not really implement these primary functionalities. For example, for instant messaging

(IM), Microsoft MSN Messenger, Yahoo Messenger, AIM, and ICQ all support the behavior classes of login,

chat, file transfer, and audio/video communication, but other IM software (e.g., Google talk) only supports partial

functionalities. Note that we consider these behavior classes as simply the unions in the corresponding applica-

tion classes, and not as the requirements.

Table 1 presents the application classes, behavior classes, and protocols that we identified. We classify the

protocols into their classes based on the user experience with the applications and user interfaces. For example,

Skype [14] allows users to send messages, make a conference call, and transfer files to other users in the net-

Huang and Feng: Application Behavior Analysis by Stateful Automata Mechanism

5

working. Though Skype relies on the P2P technology, we still classify it into the category of instant messaging.

We do not claim that the structure of classification presented in Table 1 is either unique or comprehensive, and

based on further experience and study, we expect this classification table can be extended and refined.

3 Proposed Approach

A given network application and its behaviors can be modeled using Flow-based Automaton (FA), which aug-

ments the traditional finite state machine with statistical properties. A transition is a state change triggered by a

particular input event, i.e., transitions map some state-event pairs to other states. A transition condition is evalu-

ated by the appropriate analysis method. In our design, the analysis methods include the techniques of signature

matching, protocol analyzer, and statistical test. An event-driven FA M starts from the initial state s0 and reads

the event as its input symbol. Whenever the machine M accepts the event, it changes to the next state and exe-

cutes the action component associated with the transition. In general, the FAs are non-deterministic.

We augment the flexibility of state machines with the statistical properties that can be used to detect the par-

ticular traffic. Our attribute set includes only the easily computed operations and are all bidirectional meaning.

The potential events are first identified by an analysis method (e.g., signature matching) and are verified by the

statistical parameters of the transition in terms of:

� The repetition frequency which a particular transition condition in the FA is fulfilled per given time

period

� The inter-arrival time between two events

� The current flow statistics which are continuously updated counters, e.g., the total packet number, to-

tal byte number and flow up-time.

In summary, each FA delineates a sequence of transitions between the packets of application flows to model the

behaviors. The transition condition can be verified by the signature-based method, protocol analysis, and statisti-

cal properties. Rather than just the content of a single packet, we track relationships between packets, flows, and

applications.

Fig. 1. The FA of FTP protocol

To understand how such FA specifications can be used for monitoring protocol and behavior, consider the

FTP FA in Fig. 1. We assume that a gateway router (with FTP FA) connects an internal network of organization

to the Internet and bi-directional traffic is under the surveillance.

Fig. 1 shows that the FTP FA relies on signatures to model the application behaviors and uses FTP protocol

analyzer to proactively detect the dynamic port used for the children data connections both in active mode and in

passive mode. First, note that we do not select the well-known port (21/tcp) of FTP service as features in order to

avoid the misclassification due to port detection, and rely on the direction attribute (e.g., from the client to the

server) and byte-string patterns. In addition, we classify a flow as the class of FTP when the FA accepting transi-

tion 2. The 4-byte-only string pattern of transition 1 raises rapidly the possibility of false positives. However, two

effective transitions in different packets of a flow give us the confidence of accuracy. It shows that we have more

flexibility in how we carry out the detection. Second, we delegate the FTP protocol analyzer activated by the

Journal of Computers Vol.18, No.4, January 2008

6

function pointers in transition 3 and 4 to extract the information of dynamic port of oncoming data connection,

and to register this data connection by a 4-tuple (i.e., source IP, source port, destination IP, destination port) to a

flow database. Thus, we can classify immediately the oncoming data sessions as FTP class when the first packet

received. Furthermore, for the security management, any FTP data connection without the registration in the flow

database can be blocked. Third, FTP FA enables us to assign different enforcement rules to different behaviors.

The transition 5 and 6 represent the behaviors of listing the directory content and downloading a file respectively.

This FTP FA allows the LIST command but modify the RETR command to “R_T_” on-the-fly to disallow the

download attempt, and this also makes a FTP server ignore this request only and still maintain the FTP control

session seamlessly. Finally, the transition 7 closes a FTP instance because of entry timeout or TCP FIN/RST

packet from the control session.

We conclude this section with the benefits of our approach as follows. Our approach:

� provides a higher accuracy from the flow’s point of view. Our approach provides a framework to

model active behaviors by a sequence of explicit state transitions from packets in application flows.

With the strength of statistical test, a higher accuracy comes from the looking for the exact match in

the byte strings in a flow, i.e., not only in a single packet, by the signature matching and protocol

analysis.

� simplifies the process of feature selection from the packet’s point of view. The quality of signature-

based traffic classification depends on the quality of signatures, especially on the discriminating byte-

string patterns. If these patterns are not selected carefully (e.g, long enough or explicit enough), the

possibility of false positives or false negatives rises. Thus, the signatures need to be crafted as tight as

possible. However, as shown in the above FTP example, in our approach the multi-state analysis al-

lows us to use multiple byte-strings as patterns for individual signatures which are located in the dif-

ferent packets, and makes the pattern selection easier while not decreasing the detection efficacy.

3.1 Flow-based Automaton Definition

Below, we describe the definitions for specifying FA that models the application classes and behavior classes.

Definition 1: An FA is denoted by a 3-tuple (S, Σ, δ), where

� S is a finite set of application states such that S = {s0, s1, s2…, sn-1, sf}. The s0 is the start/initial state,

and the sf is the final state,

� Σ is the alphabet of events or input symbols,

� δ is the transition function that maps S ×Σ to S.

Definition 2: An input event e is represented by a 2-tuple (IDapp, IDbehavior), where

� IDapp is the identity of application/protocol,

� IDbehavior is the identity of behavior class in a particular application class.

Definition 3: We denote a transition δ by a 3-tuple (Q, Aeff, Feff), where

� Q is the set of transition conditions needed to be satisfied, such that Q = {q0, q1, q2…, qi-1},

� Aeff is the transition action,

� Feff is the function pointer used for invocating the external function (i.e., protocol analyzer).

Here, the analysis methods should confirm the fulfillment of the set Q. An event e occurs when a set Q is satisfied

and it may indicate the application and behavior class (if the identities exist) of a flow. Note that an event is not

necessarily identical to a mark of application or behavior identification, and it can be used for the intermediate

state in the transition path of an FA in order to enhance the accuracy of classification. For instance, the transition

1 in above FTP FA is not used to classify a flow, and only to enter the next intermediate state. The component

Aeff consists of the actions will be taken for an effective transition. Allowable actions include the next-state as-

signment in FA, the alarm notification, the function invocation by Feff, and the interference to the packet, and to

the flow/application which it belongs to.

4 System Design and Implementation

In this section, we introduce the structural block diagram of our approach and the detection heuristics in our

implementation. Fig. 2 presents the functional structure of the FA online classification. We assume the classifier

runs either at the border router or in the monitoring host that is able to process all packets of bidirectional traffic

in the link.

A flow tracking module extracts the 5-tuple (i.e., transport protocol, source IP, source port, destination IP,

destination port) of a received packet and gets a data structure of the flow this packet belongs to. This per-

connection data structure (called flowBuf) contains the information needed for the remainder of classification

Huang and Feng: Application Behavior Analysis by Stateful Automata Mechanism

7

processes, for example, the statistical attributes, the application class, behavior class, and the snapshot of the

interaction between the client and server. The policy is a FA collection which follows the language defined in

Section 3.1. A policy contains the finite states, transition conditions, events and the mapping table among previ-

ous elements. After the analysis of Signature Matching and Statistical Test module, the Transition Mapping

module is responsible to update the information of active FA instances and generate an event to the next

App&Behavior-class Identification module. In details, for each transition from the initial state of FA, the Transi-

tion Mapping module adds this active instance to the corresponding flowBuf structure and deletes it when a

state machine reaches to the final state.

The Flow Registration module updates the application class and behavior class of a flowBuf or generates a

new flowBuf entry for an oncoming connection. The post-detection engine executes the action component of

transition, assigns the system path (path 1 to 3 in Fig. 2) for the following packets of a flow, and also activates the

protocol analyzer if necessary. For example, an email analyzer of SMTP/POP3/IMAP protocols is used to strip

the MIME-type encoding to get the attachment information and to monitor the authentication process of a mail

exchange. Before the packet transmitted to the network link, the Flow Statistics module updates the statistical

flow attributes in flowBuf.

Fig. 2. Design of online application and behavior identification

Fig. 3. The example of rule clustering

A question of application classification is when to stop the inspection into a classified connection. Though the

previous works [3, 8, 12] indicate that it is sufficient for protocol detection by the few examination on the first

KBs at the beginning of a connection, we found that sometimes it is necessary to monitor an entire flow stream

for classifying behaviors. For instance, since an authenticated MSN client connects to a so-called SwitchBoard

server by a single TCP connection and all chat messages and file transfers pass through this connection, we have

to monitor a MSN connection to differentiate the behaviors until its close. Different from the assumption in [8],

when monitoring protocol behavior, we allow an active flow to be adjusted for its application class, protocol and

behavior class dynamically. For example, consider a user who uses the GetRight utility to download a file while

browsing a web page. At first, this flow is classified as WWW because of passing a URI of the file to the server,

but then classified as the file download behavior of GetRight software by the following packets. On the other

hand, if many classified flows can be forwarded immediately to the outgoing interface by the path 3 in Fig. 2 for

Journal of Computers Vol.18, No.4, January 2008

8

bypassing the remainder of classification processes, then overall classification performance can be improved.

Thus, this question should be answered on a per-protocol basis. In summary, long term data-intensive flows,

including file up/download sessions of Bulk and P2P classes, follows the path 3 in Fig. 2, flows of

SMTP/POP3/IMAP protocols are forwarded to the path 2 and the rest enters the path 1.

The technique Rule Clustering on signature matching especially is used to yield a better runtime performance

by minimizing the redundant comparisons. In the pre-classification phase, the transition conditions belonging to

the signature matching are partitioned into smaller subsets, and the mechanism used to select rule subsets bases

on the transition level and protocol. First, all transitions originated from the initial states are collected into a root

group, namely all transition 1s of FAs. Next, the other signatures are grouped according to the applications. Fig.

3 shows the logical view of a rule clustering example. When the application of a flow is already determined, we

only perform the necessary signature matching in the root group (remember that a flow can be determined into a

different application dynamically) and the group for current behavior classes.

Apart from the SMTP, POP3, and IMAP protocols, we use the signature matching as the primary heuristic to

detect the potential applications and their behaviors. The signature patterns and the design of protocol analyzers

are derived from RFCs, the description of applications, and the network traces. To our knowledge, before the

major upgrade of software implementations, these protocols change nothing or just a little. This characteristic

makes the effort of FA modification low, and main challenge comes from the preliminary FA design. As de-

scribed before, the quality of patterns is important for building efficient FAs and not only the port range of trans-

port layer and strings in payload can be the discriminating features. Sometimes, a FA with a sequence of packet

sizes is very useful. For example, we observe that some behaviors of Skype and WinNy even with encrypted

communication have their unique models regarding the packet sizes and can be identified by this feature without

false positives. However, to identify the behaviors within these encrypted flows by string matching is impractical

or impossible. In addition, the per-flow average packet size is also used to refine the classification [9].

A transition can activate a protocol analyzer to decode a payload/TCP stream (e.g., email analyzer), to extract

the protocol information (e.g., ftp analyzer or BitTorrent analyzer), or to normalize a URL (http analyzer). In

addition, the experiment results of [12] show that the SMTP/POP3/IMAP protocols are detected exclusively by

their official ports, because an email must be exchanged with other sites and other hosts and the random nature of

the ports is useless for mail services. Thus, flows on ports 25/tcp, 110/tcp and 143/tcp are sent to the email ana-

lyzer directly by the path 2 in Fig. 2.

We implement our approach on an embedded system powered by an ARM9200/200MHz SoC, which com-

prises a string searching engine and the system memory is 128MB SDRAM. The operating system is Linux ker-

nel 2.4.29. The SoC contains a string searching engine by a tree-based Aho-Corasick algorithm. Total system

runtime memory size is less than 32MBs. To get the best performance, we do not utilize the netfilter

framework and develop three tasklets to receive the packets from network driver, perform the functionalities in

Fig. 2, and transmit the packets to driver directly. This system is already deployed as border routers (total over 20

sites) of organizations to comprehensively evaluate the classification accuracy (i.e., the quality of signatures and

protocol analyzers) and the mechanism of behavior control. Our implementation and policy (total over 30 appli-

cations) have been examined by over 1 year with numerous discussions and mail exchanges between these net-

work administrators.

5 Examples of Application-specific Automata

This section gives other FA examples of stateful applications, including MSN, Yahoo Messenger, eDonkey2000,

BitTorrent and a flooding detection. By following the pre-defined transactions, the communication and execution

path of these applications are predictable. We also use the protocol analyzers for different applications to extract

the peer list or execute the security management.

5.1 P2P: eDonkey and BitTorrent (BT)

eDonkey is a server-based file sharing protocol. The standard listening port of eDonkey file sharing is 4662 for

TCP, but a user can modify it manually. The data chunks transferred between the peers are compressed, and the

discriminating string pattern is very short in individual packets. Again, we use multiple transitions (the path from

transition 1 to transition 3) to model its data sharing to maintain the accuracy. The bottom automaton in Fig. 4

shows the characteristics that eDonkey peers share a file by delivering data chunks repeatedly in transition 5. The

top automaton in Fig. 4 presents the login process initiated from the client. In addition, we found that an eDonkey

server sends a simple ping-pong test for reachability even to a host which has no eDonkey software installed, and

it is easily considered as a misclassification.

Huang and Feng: Application Behavior Analysis by Stateful Automata Mechanism

9

We depict the BitTorrent FAs in Fig. 5 and they are much concise compared to eDonkey’s because of the sim-

plicity of BT protocol. Through the meta-info (torrent), a BT tracker will reply a peer list containing the listening

ports to the downloader. By the operations of decoding and extraction in BT analyzer, we register these flows

activated by peer list to the Flow Tracking module for the download phase.

Fig. 4. Bidirectional FAs for the authentication and data sharing phases of eDonkey

Fig. 5. The BitTorrent FAs for capturing the peer list

5.2 IM: MSN and Yahoo Messenger (YMSG)

MSN and YMSG are very popular systems of the presence and instant messaging, and RFC 2778 [15] provides a

general overview of what these systems do. Here, we only illustrate the behavior classes of login, chat and file

transfer, and omit the audio/video communication, and on-line game. Besides the behavior identification, we also

provide the keyword search in the instant messaging of MSN and YMSG services.

 Besides the official communication over TCP port 1863, a MSN client can uses the HTTP tunneling and

SOCKS proxy to bypass the firewall. Fig. 6 illustrates the two FAs over TCP port 1863 (the bottom) and two

FAs over HTTP (the top). A MSN client has to authenticate a Notification Server first, and then connect to a

Switch Board Server for instant messaging.

Journal of Computers Vol.18, No.4, January 2008

10

Fig. 6. Two sets of MSN FAs for the official communication and for HTTP tunneling

Fig. 7. The YMSG FA for login, chat and file up/download behavior classes

In. Fig. 6, there are 4 transitions to identify every individual activity of delivering chat message. Then, if the

keywords are set up, the MSN analyzer receives the full chat contents and searches the strings by regular expres-

sion. As described before, the chat messages and files share the same connection between the MSN client and

server, so that any behavior blocking will lead to the connection reset. After the first time of file delivering, the

client saves the buddy information and then sends the next file in the peer-to-peer mode by UDP directly if possi-

ble. For MSN, we use the transition 5 of bottom right automaton in Fig. 6 to classify these flows. The YSMG

system also has a similar peer-to-peer mechanism.

The Yahoo Messenger has a formal 20-byte protocol header and commands in communication can be recog-

nized easily. Unlike the MSN protocol to separate the authentication and instant messaging into two servers, an

YMSG client has a permanent messenger server to connect, so there is only one FA for YMSG. The message can

be delivered by the messenger server or to the participant directly (if the peer information is already kept in the

client and it is also reachable). In the action of file transfer, the YMSG server is not responsible for relaying the

data chunks, and only transfers the control message. An active sender gets the IP and port pair of the receiver

from an YMSG server, and a passive sender sends its IP and listening port to the receiver via a server. We use

the transitions 4 for invocating the YMSG analyzer to extract IP address and dynamic port to register the oncom-

ing data flow. Like the check in MSN, we are also capable of searching a set of keywords in YMSG messages by

the analyzer triggered by transition 5.

Huang and Feng: Application Behavior Analysis by Stateful Automata Mechanism

11

5.3 Anomaly Detection

The above examples show that the port ranges and strings can model the application and behavior classes. More-

over, our approach can be also applied to the detection of malicious traffic. By using the statistical parameter of

repetition frequency, our experiment shows a capability of detecting DDoS attacks which are hardly identified by

string matching method. For example, the rule below describes a transition condition of DNS UDP flooding.

Dir:C_to_S; L4: udp, dst_port:53, Rep_freq: 500/sec; Action: block.

Table 2. The trace statistics of the data sets

Table 3. The detected volume of three methods

6 Evaluations

This section reports the experimental results. We evaluate the FA framework with a set of packet traces. First, we

compare the detection efficacy of port-based detection, signature matching and protocol analyzer. In this experi-

ment, we focus on FTP, eDonkey and BitTorrent for P2P, and MSN Messenger and YMSG for IM in our ana-

lyzed datasets. Second, we report the hottest application activities monitored at a gateway node.

The network traces were captured by the tool tcpdump from multiple links. The traces Dorm1 and Dorm2

were captured from the links at the core of two different universities, and the link speeds are all 100Mbps. The

trace Dorm2 was recorded in the situation that the network operator tried to stop the eDonkey and BitTorrent

traffic by blocking their well-known ports from the core router. The ServerFarm was collected from a Gigabit

Ethernet link between a mail server farm and mail relay servers. This trace is expected to have no IM and P2P

traffic and is used to verify the false positives of our methodology. Table 2 details the statistics of packet traces.

We next test the detection performance of three identification methods, including the port-based classification,

signature matching and our FA approach (i.e., including the string matching, statistical test and protocol analyzer).

The port-based method examines all flows where one of the TCP port numbers is equal to the set {20-21} for

FTP, {4661-4665} for eDonkey, {6881-6889} for BitTorrent, 1863 for MSN, and 5050 for YMSG. For signa-

ture matching, we followed the same string patterns defined in transition conditions of eDonkey and BitTorrent

FAs (but without the protocol analyzers), and for our approach, we use the FAs of FTP, eDonkey, BitTorrent,

MSN and YMSG introduced in this paper to perform this evaluation. Table 3 shows the detected volume of port-

based method for different protocols, and the ratios of signature matching and FA approach compared to the

corresponding port-based detection.

Journal of Computers Vol.18, No.4, January 2008

12

In Table 3, at first it clearly demonstrates a conceivable result that the port-based classification is totally not

sufficient to detect the use of dynamic FTP data connections in passive mode. On the other hand, because the

signatures we design for FTP aim to identify the FTP control session and its protocol commands, it is reasonable

that only an extremely low traffic volume is classified as FTP class only by signature matching both in trace

Dorm1 and Dorm2. For P2P, the port-based method completely fails to identify the huge majority of P2P traffic

in trace Dorm2 which comes from an environment trying to block P2P traffic by well-known ports. For YMSG

identification, we found that the file transfer on non-native ports results in the gap between the port-

based/signature method and FA detection. With the great support of YMSG analyzer, the FA method gets a much

better detection performance. In summary, in this experiment the port-based identification is reliable enough for

the traffic of BT and MSN protocols, but fails completely to recognize the dynamic data connections of FTP and

YMSG. This experiment indicates again that the portless and dynamic-data-flow-aware detections for FTP, IM

and P2P are imperative and also proves the detection performance of FA approach.

Next, we provide a report from the FA implementation at the gateway node of an organization that has 75 em-

ployees and more than 150 endpoint hosts. Table 4 shows the two hottest applications recorded by the system log

for 10 days from May 8 – 15, 2006. This statistics give us a preliminary view of what are the most active behav-

iors in an internal network. We plan to further analyze the behavior distribution over hours of the day, days of the

week and month in a large-scale network environment.

Table 4. The statistics of the two hottest applications in an organization

7 Conclusion

This paper presents a framework to perform a reliable traffic classification and distinguish activities of specific

applications. Our approach uses the flow-based state machine to model a given network application and its be-

haviors (even with the encryption) and combines the signature matching, protocol analysis and statistical test in

order to make use of the strength of three approaches. By keeping the stateful information of Internet traffic, our

approach provides a high degree of accuracy on a flow and simplifies the process of feature selection within a

packet. We also discuss the system design and the implementation of our framework, including the detection

heuristics and system details. The experiment result shows that with the great support of protocol analyzers, the

FA method gets a much better detection performance. Finally, by using the statistical parameters, our approach

can be also applied to the detection of malicious traffic.

We plan to combine the machine learning technique to our methodology for extracting the signature automati-

cally [13] to improve the manpower-intensive process of FA design. In addition, we are programming the en-

hancement for analyzers with interfaces for file-related behavior classes to virus detection and file extensions

checking. At last, in the near future, we will analyze the application behaviors of a large-scale network environ-

ment by an implementation with much better performance.

References

[1] S. Saroiu, K. P. Gummadi, R. J. Dunn, S. D. Gribble, and H. M. Levy, “An Analysis of Internet Content Delivery Sys-

tems,” Proceedings of OSDI’02, pp.315-328, 2002.

Huang and Feng: Application Behavior Analysis by Stateful Automata Mechanism

13

[2] S. Sen and J. Wang, “Analyzing Peer-to-Peer Traffic Across Large Networks,” Proceedings of ACM SIGCOMM, pp.219-

232, 2002.

[3] S. Sen, O. Spatscheck, and D. Wang, “Accurate, Scalable In-Network Identification of P2P Traffic Using Application

Signatures,” Proceedings of WWW, pp.512-521, 2004.

[4] T. Karagiannis, A. Broido, N. Brownlee, kc claffy, and M. Faloutsos, File-sharing in the Internet: A characterization of

P2P traffic in the backbone, Technical report, Available at http://www.cs.ucr.edu/~tkarag/, 2003

[5] K. P. Gummadi, R. J. Dunn, S. Saroiu, S. D. Gribble, H. M. Levy, and J. Zahorjan, “Measurement, Modeling, and Analy-

sis of a Peer-to-Peer File-Sharing Workload,” Proceedings of the 19th ACM Symposium on Operating Systems Princi-

ples (SOSP-19), pp.314-329, October 2003.

[6] C. Dewes, A. Wichmann and A. Feldmann, “An Analysis of Internet Chat Systems,” Proceedings of the Internet Meas-

urement Conference 2003 (IMC’03), pp.51-64, 2003.

[7] M. Roesch, “Snort – Lightweight Intrusion Detection for Networks,” Proceedings of LISA 99, pp.229-238, 1999.

[8] H. Dreger, A. Feldmann, M. Mai, V. Paxon, and R. Sommer, ”Dynamic Application-Layer Protocol Analysis for Net-

work Intrusion Detection,” Proceedings of USENIX Security, pp.257-272, 2006.

[9] T. Karagiannis, K. Papagiannaki, and M. Faloutsos, ”BLINC: multilevel traffic classification in the dark,” Proceedings of

ACM SIGCOMM, pp.229-240, 2005.

[10] A. Moore and D. Zuev, “Internet Traffic Classification Using Bayesian Analysis Techniques,” Proceedings of ACM

SIGMETRICS, pp.50-60, 2005.

[11] K. Xu, Z.-L. Zhang, and S. Bhattacharyya, “Profiling Internet Backbone Traffic: Behavior Models and Applications,”

Proceedings of ACM SIGCOMM, pp.169-180, 2005.

[12] A. Moore and K. Papagiannaki, “Toward the Accurate Identification of Network Applications,” Proceedings of the

Passive and Active Measurement Workshop, pp.41-54, 2005.

[13] P. Haffner, S. Sen, O. Spatscheck, and D. Wang, “ACAS: Automated Construction of Application Signatures,” Proceed-

ings of the 2005 ACM Workshop on Mining Network Data, pp.197-202, 2005.

[14] S. A. Baset, and H. Schulzrinne, “An Analysis of the Skype Peer-to-Peer Internel Telephony Protocol,” Proceedings of

IEEE Infocom, 2005.

[15] M. Day, J. Rosenberg, A Model for Presence and Instant Messaging, RFC 2778, February 2000

Journal of Computers Vol.18, No.4, January 2008

14

