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Abstract: Sorting is one of the most critical applications 
on mainframe machines.  In this paper we analyze 
sorting algorithms on AIX and describe our approach of 
offloading sorting operations from mainframe systems.  
A library was developed on AIX to read records from 
mainframe DASD disks.  With this library we are able to 
analyze the performance of quick sort and radix sort 
implementations on AIX using mainframe datasets. Our 
results show that sorting operations can be improved 
significantly, while the library enables mainframe 
operation offload to UNIX systems. 

Introduction 
Sorting is a topic which has been studied and researched 
extensively [1].  Given a number of records and one or more 
fields as the key, the task is to arrange the records into 
ascending or descending order.  Floyd pioneered the notion of 
analyzing the number of transfers between primary and 
secondary storage in 1972 for matrix transposition [2].  A 
recent direction in the design of cache-efficient and disk-
efficient algorithms and data structures is the notion of cache 
obliviousness, introduced by Frigo et. al. in 1999 [3, 4]. 
Cache-oblivious algorithms perform well on a multilevel 
memory hierarchy without knowing parameter details of the 
hierarchy.  Vinther concludes that the quicksort algorithm [5] 
is also a cache-oblivious sorting algorithm [6]. As modern 
computers with larger memory capacities and more advanced 
prefetch features become available every year, there is no need 
to limit ourselves with external sorting approaches for 
yesterday’s workloads. 
 
It has been widely accepted that quicksort is one of the fastest 
comparison based sorting algorithms on typical datasets.  The 
time complexity for quicksort is O(N Log N) on average, 
where N is the number of records.  We would like to see how 
various implementations may diverge from this well-known 
fact and how we can keep the constant as small as possible.  
The only additional requirement is to make the sorting results 
“stable”.  The stability of a sorting algorithm is the ability to 
preserve the order of records with identical keys, regardless of 
sorting for ascending or descending order.  An un-stable 
sorting algorithm will not preserve the original order of the 
records, while a stable sorting algorithm does. 
 
The quicksort algorithm starts by picking a pivot that is used 
to compare with all other records in the input. Records are 
partitioned into two groups: those with smaller keys and 

others with larger keys. The algorithm goes on iteratively for 
the two groups until the sorting is done.  In order to make 
quicksort stable, an additional key is required for the compare 
operation.  We implemented the quicksort algorithm in two 
different ways, i.e. sorting pointers (SP) and sorting data (SD).  
Because the size of the key is typically much less than the size 
of the record, the idea is to use a pointer array in which each 
element is a pointer pointing to its corresponding record in the 
SP implementation.  The SP quicksort approach swaps 
pointers instead of records, thus potentially saves time 
compared with swapping records in the SD quicksort approach.  
In the 64-bit environment the pointer size is 8 bytes. 
 
For the SP quicksort we use the pointer value as the second 
key for stability, since input records are typically lined up in 
virtual memory space in ascending order.  For the SD 
quicksort we added a record number at the end of each record 
as the second key for stability, thus effectively making each 
record a little bigger.  Input records are randomly generated 
and the key is a 10-byte ASCII number string, also randomly 
generated at the beginning of each record.  
 
Both the SP and SD quicksort implementations were executed 
in an IBM POWER5 system with 1.9-GHz processors and 8-
Gbyte main memory.  The memory hierarchy in the system 
includes a two-way 64-KByte L1 instruction cache, a four-
way 32-KByte L1 data cache, a shared 10-way 1920-KByte 
L2 cache, and a 12-way 36-MByte private off-chip victim L3 
cache.  Figure 1 show the user time in micro-seconds divided 
by N Log N, which would be flat if user time was truly 
proportional to N Log N.  We ran both the SP and SD 
quicksort implementation for record sizes ranging from 20 
bytes to up to 640 bytes.  These are the original record sizes, 
i.e. they do not include the added second key for stability in 
the case of SD quicksort. 
 
 It can be seen in Figure 1 that the SP quicksort has an edge 
over the SD quicksort when the number of records is relatively 
small.  However, a cross-over point occurs somewhere < 
3162277 when the record size is, say 80 bytes.  That is, the SD 
implementation actually runs faster than the SP 
implementation for N >= 3162277 and record size = 80 bytes.  
The same can be seen for records with smaller sizes, as the 
cross-over points for record size = 20 and record size = 40 
occur when the numbers of records are both between 
10000000 and 3162277.  We increased the record size to 160 
bytes and found that the cross-over point also occurs at 
somewhere < 3162277. 
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Figure 1. User time divided by N Log N 

 
At this point we assume that the cross-over points are mainly 
caused by delays in the memory hierarchy for the SP sorting 
approach.  Performance analysis with cycle-per-instruction 
(CPI) stacks will be used to show where the cycles are spent in 
both implementations.  
 
One area we are interested in is to get data sets from System z 
volumes and work on them in other systems, such as the IBM 
POWER5 system.  A data set is a collection of logically 
related data and can be a source program, a library of macros, 
or a file of data records used by a processing program. In this 
study we developed library routines to read the most 
commonly used sequential data sets from Direct Access 
Storage Device (DASD) volumes.  The recording surface of a 
volume is divided into multiple concentric cylinders, each of 
which contains many tracks.  The number of tracks and their 
capacity vary with the device.  Information is recorded on all 
DASD volumes in a standard format called Count-Key-Data 
(CKD) format [7].   
 
The Volume Table of Contents (VTOC) on a DASD is used to 
manage the storage and placement of data sets [8].  A VTOC 
is a data set that describes the contents of the direct access 
volume on which it resides.  It is composed of 140-byte Data 
Set Control Blocks (DSCBs) that correspond either to a data 
set or to contiguous, unassigned tracks on the volume.  A data 
set is defined by one or more DSCBs in the VTOC of each 
volume on which it resides.  Contiguous tracks called extents 
are specified in the DSCBs to indicate where the records are 
stored in the volume. 
 
The amount of space required for a data set is specified when 
a data set is allocated. Records stored in the tracks could be 
fixed-length or variable-length, and could have a blocked or 
unblocked format.  Logical records in a data set can be 
bundled together as a block to save space, creating the so-
called blocked format.  The logical record length and block 
size of a data set are specified in its corresponding DSCB as 

data set parameters.  A variable-length record is preceded by a 
record length field in the track indicating the length of the 
record.  While we developed library routines to access fixed-
length or variable-length, blocked or unblocked sequential 
data sets from DASD volumes, we use blocked fixed-length 
data sets randomly generated from System z as input for the 
rest of the report. 

Quicksort Implementation 
A number of fixed-length (record size 80 bytes), blocked 
format data sets were created on DASD volumes with number 
of records ranging from 100 to 10000000.  Figure 2(a) shows 
user time in micro seconds divided by N log N, where N is the 
number of records.  Records were created randomly from 
System z and stored at DASD volume before getting sorted by 
the POWER5 system.  As seen in Figure 1, there is a cross-
over point in Figure 2(a) when the number of records is 
between 1000000 and 3162277.  Using high performance 
counters available in the POWER5 architecture we obtained 
the number of cycles per instruction (CPI) in Figure 2(b).  CPI 
for the SD quicksort implementation is relatively flat, ranging 
from 1.21 when the number of records is small to 1.13 when 
the number of records is 10000000.  On the other hand, CPI 
for the SP quicksort implementation rises quickly as the 
number of records increases.  
 
The quicksort algorithm is shown in pseudo-C code for its 
simplicity in List 1.  The initial lower and upper values are the 
lowest and the highest indexes in the array.  The array is 
partitioned into sub-partitions repeatedly based on a chosen 
pivot.  Pivots could be chosen randomly, however, a good 
choice should partition the records evenly into two sub- 
partitions.  Multiple (say 3 or 5) indexes could be generated 
and the one in the middle could be used as the pivot. 
 
void quicksort(array, lower, upper) {  
  if (upper > lower) { 
    select a pivot; 
    swap(array, pivot, upper); 
    m = lower; 
    for (i = lower; i < upper – 1; i++) { 

if (array[i] <= array[upper])                 
swap(array, m++, i); 

    } 
    if (array[upper] <= array[m]) 
      swap(array, m, upper); 
    else 
      m = upper; 
    quicksort(array, lower, m–1); 
    quicksort(array, m+1, upper); 
  } 
} 
List 1. Pseudo-C code for quicksort.  The SD and SP 
implementations use the record array and the pointer array 
respectively.  
 
Although the quick sort algorithm is well known for its 
outstanding average performance, its worst complexity could 
be O(n2) if the choices of pivots leaned to either side.  We use 
random pivots in both the SD and SP implementations, so the 
poor performance of the SP implementation when N increases 



in Figure 2 must come from somewhere else.  The SD 
implementation uses an array of records, and the SP 
implementation uses a pointer array with pointers pointing to 
individual records in the record array.  Thus, each comparison 
in the SD implementation with the pivot involves sequential 
access to the records in the record array, while each 
comparison in the SP implementation causes the indirect 
access of a record, which, in turn, may cause delay in the 
memory hierarchy.  We will examine where the cycles were 
spent later in this section. 
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Figure 2(a). User time divided by N Log N, 80-byte DASD 

data sets 
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Figure 2(b).  Cycles per instruction, fixed-length (80-byte) 

DASD data sets 

Radix Sort 
To provide comparison and increase our choices of sorting 
techniques we implemented the radix sort, also known as the 
distribution sort [9].  Radix sort is a sorting algorithm that 
sorts numbers by processing individual digits.  Because 
numbers can represent strings of characters and specially 
formatted floating point numbers, radix sort is not limited to 
integers. 

A least significant digit (LSD) radix sort has time complexity 
in O(N·K), where N is the number of records and K is the 
average key length.  It serves as an alternative to other high-
performance comparison-based sorting algorithms that require 
O(N Log N) execution time.  In radix sort each record is 
placed into one level of buckets corresponding to the value of 
the rightmost k bits of each key, where k < K.  Each bucket 
preserves the original order of the records, thus making it a 
stable sorting algorithm.  We implemented a non-recursive 
radix sort with double-linked lists for buckets, and re-arranged 
the records in place after iteration.  The process repeats itself 
with the next neighboring k bits until there are no more bits to 
process. 
 
void radixsort(array, k) { 
  for each k bits in key { 
    for (i = 0; i < array.size(); i++) { 
      determine bucket number b using the k bits; 
      buckets[b].add(array[i]); 
    } 
    i = 0; 
    for (b = 0; b < 2k; b++) { 
      for (j = 0; j < buckets[b].size(); j++)  
        swap(array, i++, buckets[b][j]);  
      buckets[b].clear(); 
    } 
  } 
} 
List 2. Radix sort algorithm.   
 
A simplified radix sort algorithm is shown in List 2, where the 
partial key masked by the k bits in each record determines the 
bucket number for each record.  We use a record pointer array 
and doubled-linked lists to implement buckets.  At the end of 
each scan we re-arrange the pointer array in place, based on 
the order of records in the buckets.  Similar to the SP 
quicksort implementation keys are indirectly accessed through 
pointers in the radix sort implementation, thus it may cause 
delay in the memory hierarchy.  
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Figure 3. User time (micro seconds) with various k’s in radix 

sort divided by N Log N 
Figure 3 shows the user time in micro seconds divided by N 
Log N in radix sort for the values of k, where 2k is the number 
of buckets used in the algorithm.  Note that the key is a 10-



byte EBCDIC number string.  It can be seen that using a large 
k does not always help, as the number of buckets increases 
and many buckets could be empty.  For example, there are 16 
million buckets in the case of k = 24, however, we have only 
1000 possible partial keys for a 3-byte EBCDIC number string.  
The number of empty buckets is determined by the key values, 
which could vary dramatically from one data set to another.  
In general, to reduce the number of empty buckets one could 
choose the largest k so that 2k = N, which may also decrease 
the user time. 

CPI Stack: Where the Cycles Were Spent 
Profiling is a common approach to collect timing and resource 
utilization for a workload.  The POWER5 processor provides 
on-chip performance monitor units (PMUs) to record 
performance events through six performance monitor counters 
(PMCs).  As a result, with an appropriate set of performance 
monitor application programming interfaces (PMAPIs) 
designed to provide access to those PMCs, we can profile 
many performance-sensitive events related to the core or the 
memory subsystem. 
 
We use a CPI breakdown model similar to the one used in [10, 
11] that breaks the CPI into a base component when the 
processor is completing work (group completed), and a stall 
component when the processor is not completing instructions 
(total cycles – group completed).  The stall component is 
divided into cycles when the pipeline was empty (GCT empty) 
and cycles when the pipeline was not empty but completion is 
stalled (stall – GCT empty).  The GCT empty cycles can be 
further partitioned into I-cache miss penalty, branch 
redirection penalty, and GCT others such as store stall and 
flush penalty.  Completion stall cycles could be caused by a 
fixed-point unit (FXU), a floating-point unit (FPU), a load-
store unit (LSU), or other units such as the branch unit (BRU) 
or conditional register unit (CRU).  The LSU stall cycles 
could be further divided into cycles due to D-cache miss 
penalty, LSU reject caused by address translation, and LSU 
stalls due to other reasons [10, 11]. 
 
Figure 4(a) shows the CPIs for the three implementations 
sorting 10 million 80-byte records, with the CPI for the radix 
sort highest among the three.  On the other hand, the number 
of completed instructions varies drastically.  While the radix 
sort executed roughly 2.65 billion instructions, the SP and SD 
quicksort implementations completed more than 30 and 65 
billion instructions, respectively.  Note that the same quicksort 
algorithm is used for both the SP and SD implementations.  
The main difference is that the SD implementation uses the 
record array and swaps records, while the SP implementation 
uses the indirect pointer array and swaps pointers.  Figure 4(b) 
shows where the cycles were spent or stalled by various units. 
 
It can be seen from Figure 4(b) that the radix sort is the fastest, 
although its completion stall cycles made up more than 94% 
of the time.  The stall cycles are mainly caused by LSU due to 
D-cache miss or LSU reject such as ERAT miss.  The SP 

quicksort implementation suffers from more than 85% 
completion stall cycles, in which the majority was caused by 
LSU due to D-cache miss or LSU reject.  Compared with the 
radix sort and the SP quicksort, the SD quicksort 
implementation has a much smaller stall by LSU D-cache 
miss (4.47%) and stall by LSU reject (3.3%).  As the result, 
although the SD quicksort has to swap 88-byte records 
compared with swapping 8-byte pointers in the SP 
implementation, it still runs faster than the SP quicksort in this 
case. 
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Figure 4(a). Cycles per instruction (CPI) stack 
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Figure 4(b). Cycles spent in SP/SD quicksort and radix sort 

SP Pointer Array with Primary Keys 
One simple way to improve the performance of the SP 
quicksort implementation is to include the primary key in the 
pointer array.  Comparisons between keys can then be done 
sequentially inside the pointer array without any indirect 
access, unless secondary keys, if any, are needed for 
comparison.  
 
In Figure 5 we use the data set with 10 million 80-byte records 
again to compare the three implementations.  With the primary 
keys included in the pointer array, the first two 



implementations, one with median-3 pivots and the other with 
random pivots, have slightly more than 4% stall cycles due to 
D-cache miss or LSU reject.  Note that more than 70% of the 
cycles were stalled due to the same D-cache miss or LSU 
reject for the original SP implementation without the primary 
key.  Thus, the SP implementations with primary key in the 
pointer array indeed eliminate stalls in the LSU and improve 
performance. 

Cycles Spent
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SP with PKey
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PKey

Number of cycles
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Figure 5. Cycles spent in (i) SP with PKey and median-3 
pivots, (ii) SP with PKey, and (iii) original SP quicksort 

implementation without the primary key 
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Figure 6(a). User time (micro seconds) divided by N Log N.  

The SP quicksort with primary key performs consistently 
better than the SD quicksort 

 
Figure 6(a) shows the user time in micro seconds divided by N 
Log N, for the SD, SP with primary key, and radix sort 
implementations.  The system z wall time in micro seconds 
divided by N Log N is also shown as a reference.  The system 
z wall time is obtained by running a JCL script calling the 
SORT program for a given input data set.  In general, the 
savings in sorting time is consistently 50% or more.  It can be 
seen that the SP quicksort with the primary key included in the 

pointer array performs better than the SD quicksort, and both 
implementations show a flat CPI in Figure 6(b).   
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Figure 6(b). Cycles per instruction 

 
The copy-primary-key approach works well for the SP 
quicksort implementation, as its stall cycles reduced and CPI 
improved significantly.  As can be seen in the previous section, 
the user time is literally cut in half, demonstrating that the 
choice of implementation is critical.  Since quicksort performs 
better with balanced sub-partitions, using median-3 pivots 
help reduce the number of comparisons at the expense of extra 
random number generation and selecting the pivot.  Using 
more random numbers to select pivots would have 
diminishing benefits.  In addition, using insertion sort when 
the number of records in a sub-partition is less than certain 
threshold may also help reduce the user time.    

Radix Sort with Primary Keys 
The pointer array for the radix sort uses three pointers for each 
record: one pointer pointing to the record, one up-link and one 
down-link pointer are used to build the doubled-link lists for 
the buckets.  Adding the primary key is one way to reduce the 
number of indirect accesses of the records.  
 
Figure 7(a) shows the CPI for radix sort, radix sort with 
primary key, and SP quicksort with median-3 pivots and 
primary key implementations using the data set with 10 
million 80-byte records.  It can be seen that with the primary 
key included in the pointer array the radix sort CPI drops 
substantially, from 13.8 to less than 8.  The number of 
completed instructions increases from 2.65 billion to 4.4 
billion while the total number of cycles drops slightly.  The SP 
quicksort with median-3 pivots and primary key executed 
more than 27 billion instructions.  Note that the CPI value in 
Figure 6(b) is calculated for the sorting only, which tends to 
be a little higher than that if the whole program is used.  
 
For radix sort each structure in the pointer array includes an 
up-link and a down-link for building doubled-linked lists, as 
well as the record pointer and the primary key.  Including the 



primary key in the pointer array helps reduce the CPI, 
although the CPI still goes up as the number of records 
increases, as shown in Figure 6(b).  As we pointed out earlier 
that the key is a 10-byte EBCDIC number string, resulting in 
many empty buckets for the radix sort.  The in-place 
placement at the end of each k-bit scan does not help either, 
since doubled-linked lists are made up of indirect pointers, and 
record pointers along with the primary keys are swapped 
through the use of these pointers.  Our result does show slight 
advantage in user time for the radix sort with the primary key 
in the pointer array, as shown in Figure 7(b).  As the user time 
drops below 20 seconds, the saving is close to 70% compared 
with the system z wall time.  On the other hand, more 
experiments may be needed, with larger data sets and different 
keys.   
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Figure 7(a). Cycles per instruction for (i) radix sort, (ii) radix 
sort with PKey, and (iii) SP with median-3 pivots and PKey 
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Figure 7(b). Cycles spent in (i) radix sort, (ii) radix sort with 

primary key, and (iii) SP quicksort with primary key  
 

Summaries 
While we use blocked fixed-length datasets from System z as 
inputs in this paper, we have also developed library routines to 

access variable-length, blocked or unblocked sequential data 
sets from DASD volumes.  Since variable-length records are 
preceded with record lengths, a pointer to a variable-length 
record point to the actual starting point of the record content 
instead of the record-length field.  Thus, the same sorting 
routines work for all four format combinations of a sequential 
dataset, i.e. fixed-length or variable-length, blocked or non-
blocked. 
 
While the radix sort may be faster than the quicksort, the 
quicksort algorithm is more flexible with  a comparison-based 
approach that can easily accommodate additional keys.  Thus, 
the SP quicksort with the primary key implementation would 
be a good choice if the key length is relatively large or when 
there are multiple keys to compare.  Our sorting 
implementation allows multiple keys stored with each record 
pointer in the pointer array, thus providing a flexible approach 
for multiple-key sorting operations.  Although the result could 
be highly data dependent, we believe that our implementations 
provide a good starting point for sorting in AIX systems. 
 
The library routines we developed to access datasets from 
DASD disks could be used for other applications as well.  The 
potential with such a library is huge.  Given such a library 
users of  a UNIX system with links to mainframe disks could 
have the capability to access mainframe datasets and perform 
operations on behalf of the mainframe.  Thus, the library could 
be used to offload operations from expensive mainframes to 
cheaper UNIX systems, saving precious mainframe cycles 
while possibly speeding up the operations. 
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