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Abstract- In this paper, we present a novel
guantum secret key encryption algorithm based on
guantum discrete logarithm problem (QDLP). QDLP

isto find the exponent xfrom C = é_ |giX mod p> if C,
é|gi) and the prime p are given, where

o} =g'modp for a generator g. According to our

knowledge, QDLP cannot be solved by Shor’'s
guantum algorithm. Our algorithm assumes that the
sender and the receiver share the secret key x. If the
sender wants to send the message y to the receiver,
the receiver first uses the secret key xto construct a

quantum system & |i>|giX mod p> . Then, the receiver
sends the quantum channel § |giX mod p> to the

sender. After receiving |giX mod p>, the sender

uses the secret key x and the message y to generate
ciphertext § |xg Y mod p> . The receiver then

construct a quantum system é|i>|xgiymod p>.

According to the secret key x, the receiver can
obtain final quantum system § |i>|gy mod p> . Then,

thereceiver getsthevalue g’ modp after measuring.

Finally, the receiver can successfully recover the
message y by using Shor’ s quantum algorithm.
Obviously, the quantum system will be broken after
transferring messages. But, the secret key x can still
be used repeatedly in our algorithm.

Keywords. quantum secret key encryption, quantum
discrete logarithm, quantum cryptography

1. Introduction

In quantum cryptography [1], secretly
transferring messages between two entries is an
important issue. Obviously, two entries can use
quantum key distribution protocol [2] to obtain the
secret key. With the secret key, two entries can use
the one-time pads method in classical cryptography
to secretly transfer the message. However, the secret
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key can be used once. If we want to use the secret
key repeatedly, we must design a quantum secret key
encryption algorithm. According to [4], Brassard and
Bennett’ s key distribution protocol can be modified
as the secret key encryption algorithm. Assume that
the sender and the receiver share n secret bases. If
the sender wants to transfer the message of n
classical bits, he must generate n quantum states,
viewed as ciphertexts. The ith quantum state only
depends on the i-th basis and the i-th classical bit of
the message. After receiving the i-th quantum state,
the receiver can use the ith basis to measure the
state and obtains the i-th classical bit of the message.
Therefore, the modified Brassard and Bennett’ s
protocol with shared bases can secretly transfer the
message.

However, the secret key in the modified
Brassard and Bennett’ s protocol is traceable due to
the following attack. Assume that an attacker
pretends the sender. He randomly selects a message
of n classical bits and n bases. He generates n
gquantum states by using n bases and n classical bits,
and sends them to the receiver. The receiver
discovers n classical bits by measuring these
quantum states with his n secret bases. Assume that
the attacker obtains the discovered classical bits after
transformation. If thei-th classical bit of the message
is different from the i-th discovered classical bit, the
attacker learns that the ith secret basis is another
one different from his ith selected basis. Thus, the

n
attacker can recover 2 secret bases on average. To

avoid this attack, this paper presents a novel
quantum secret key encryption algorithm based on
the quantum discrete logarithm problem.

In this paper, we first define the quantum
discrete logarithm problem (QDLP). QDLPissmilar to
classica discrete logarithm problem (DLP). DLP is to
find the exponent x from C=g* modp if C, g, and p
are known. QDLP differs from DLP in that the base g
is changed into a superposition § |g;) - Thus, QDLP

istofindx from C=§ |gix mod p> ifC, &g}, and

p are given. According to our knowledge, QDLP
cannot be solved by Shor’ s algorithm [3]. Based on
QDLP, we present a novel quantum secret key
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encryption algorithm. Assume that the receiver, Alice,

and the sender, Bob, share the secret key x. Then,
Bob wants to send a message y to Alice. Thus, Alice
prepares two quantum registers to construct her
quantum channel. Let p and g be large primes

satisfying ¢|p- 1. She generates n1 states [i) in
first register, where i from 1 to @1, and then uses

-1
secret key X to compute %1

i=1
be stored in second register.

g™™% mod p> which will
Thus, Alice has

§1|i)|gi*m°dq mod p> , where g, =g'modp . Alice
i=1

-1
sends her quantum channel 5 |giX mod p> to Bob.

After Bob gets Alice’'s quantum channel, Bob
computes the ciphertext

g1 .
a g modp>=
i=1

message and X,

Sy .

a|><gi modp> , Where y is

i=1

satisfies x, 'x modq=1. Then,

Bob sends it to Alice. After Alice receives Bob' s
-1

ciphertext, she constructs 3 |i>|><giy mod p> by
i=1

combining her original first register. She uses xp'l,

the inverse of x modulo p, and the inverse of i to

-1 ity _%l . y
X, X7 modp>—a||>|g modp>.
i=1

%-1
compute g |i)
i=1

Then, Alice obtains g modp by measuring the

second register. At last, Alice obtains the message y
by Shor’ s quantum algorithm [3]. According to the
properties of quantum system, the quantum states
will disappear after measurement. Thus, the quantum
channel is used once for a message. Although the
guantum channel is temporarily generated, the secret
key x can be used repeatedly.

The remainder of this paper is organized as follows.
In Section 2, we define the quantum discrete
logarithm problem. Section 3 presents a novel
quantum secret key encryption agorithm. We
discuss and analyze our agorithm in Section 4.
Finally, we draw the conclusionsin Section 5.

2. Quantum discrete logarithm problem

In this section, we define the quantum discrete
logarithm problem in Definition 1 and its general case
in Definition 2.

Definition 1: (Quantum Discrete Logarithm Problem,
QDLP)

Let p and g be two known large primes
satisfying g|p-1. We can find g with order g modulo p.
The quantum discrete logarithm problem is to find x
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from the superposition

Jr"i‘l|>| % madp)

where g, =g' modp and 0<x<q. #

The quantum discrete logarithm is similar to the
classical discrete logarithm problem because

g‘l|gi modp) and p are known. But, the classical
i=1

discrete logarithm problem is tractable due to Shor’ s
algorithm. Shor’ s agorithm can discover x from
C=g* modp . Shor prepares three quantum registers.
He puts the first two registers in the uniform
superposition of all |a) and |b) (mod p-1), and

computes g°C " modp in the third register. He has

o laal a)b)lo

find the discrete logarithm x with two modular
exponentiations and two quantum Fourier transforms.
But, how to solve the quantum discrete logarithm
problem by Shor’ s agorithm? According to Shor’ s
algorithm, we add one quantum register that put the

uniform superposition of all |gj> , wherejl [L.p- 7],

aCcP modp>. Further, Shor can

-1
and then replace g with g_|gji mod p>, where

i=1

gji:gjimod p. Thenwe have

001%2;) 2p2

aaaala

i=1 j=1 a=0 b=0

1
(P- Dy@- D(p- 2)

, Where C;; :gjiX mod p. Because the generator g;;

p-2
is unknown, we must try all possible values é_ |gj> .

Moreover, according to Shor’ s algorithm, we must
also know the values of C;;. Thus, it is difficult to
obtain the discrete logarithm by Shor’ salgorithm.

In the following, we present the general case of
QDLP in Definition 2 by modifing the first quantum
register of Definition 1.

Definition 2: (General case of QDLP)

Given alarge prime p, we can find g with order r
modulo p. Let a,, a,, ..., a,_, areintegers, less than
r, satisfying GCD( &, , r)=1, where i1 [0.k - 1]. The
general case of QDLP is to find x from the

superposition /_ a | a, >| g, mod p> . where

g, =9® modp and x isco-prime tor. #

The general case of QDLP is more difficult than
QDLPif a;, a,, ..., @, , areunknown.

[ BYg;)|g;°C;i * mod p)
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3. Our algorithm

In this section, we first introduce the parameters
in our algorithm. We choose two large primes p and q

satisfying glp-1. Then, we find gl Z," satisfying

g“modp =1. Assume that the sender, Bob, wantsto
send the message y to the receiver, Alice. They must

share the secret key x1 Z, whoseinverse x,™*

-1

inverse X,

satisfying  x, 'xmodg=1 and X

satisfying xp'lx mod p=1. Bob and Alice perform

the following stepsto transfer the messagey.
Step 1:
Alice

-1
Jl_l 3 |i)|0). Alice uses the secret key x to

g-li=
compute the exponent of g to the power of ix
and store it in second register, i.e.

prepares two quantum  registers

-1
! %1|i>|gixm°dq mod p>. Let g, =g' modp.

Ja-1%

This quantum system

4—1

channel be |F>A

is rewritten as

| >|g,xm°dq mod p> . Let the quantum

1
2 |g* mod p> . Alice then
i=1

sends |F ), toBob.
Step 2:
After receiving |F ), , Bob uses the message y,

the secret key x and the inverse xq'1 to

compute the ciphertext
-1

‘xg.”*“ mod p) =& |0, modp) .
i=1

Then, Bob sends | F )C to Alice.

Step 3:
After receiving |F),_

|F

, Alice can obtan a

quantum system

IF)o, = J—a|>|X9. mod p)

because she holds the original frst quantum

register. Then, Alice uses the inverse x,* to
compute
1 qo'
||:>D2 :Fa |X g, modp>
1 g
L 8 )

Finally, Alice computes the second register to
power of theinverse i * and obtains
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-1
o

a

|F>D3 :F

-1 3%

«/q 1i

Because i<q and ¢ is a prime, each i has the

inverse i satisfying i” i"*modq=1. Thus,

Alice can measure the second register and

obtains the result g modp . Because g and p

are known, Alice easily discovers y by using

Shor’ s agorithm.

Example:

Let p=11, g=5, g=3 and secret key x=3. Assume
that Bob wants to send message y=3 to Alice. Then,
they perform Step 1 to Step 3 asfollows.

Step 1.
AI ice generates the quantum channel

Za a| >|g,x"‘°GI5 mod11>

= E(|1>|3I 3T mod 11) +| 2)[3% *™*** mod 11)

o)

a|)|g mod p).

+ |3>|33'3m0d5 mod 11> +| 4>| 34 3mods oy 11>)

1
:§q1>|5>+|2>|3>+|3>|4>+|4)|9>)-
Alice sends |F)A = |5>+|3> + |4) +|9> to Bob.

Step 2:

Bob uses y=3, x=3 and X,
ciphertext

F), =|3 5°2™® mod 11) +[3" 37*™% mod 11)

+|3' 43 2mod5 mod 1l>+|3' 93’2m0d5 mod 11>

=[4)+[9)+[1) +[5).
Then, Bob sends |F)C to Alice.

Step 3:
Alice obtains the quantum system

),
- 2814+ 12)9) +[3k 141

=4 to compute

= 2 to compute the

%él|i>|xgiy modp>

Then, Alice uses x, "
1%%.

F ==

[P, =5ali)x

=%(|1)|4' 4mod11)+|2)4" 9mod11)

» xg,” mod p)

+|3)4” 1mod11) +|4)|4” 5mod11))

=2 (019 +[213)+[314) +}a))).

Finally, Alice computes the second register to
power of the inverse of the first register and
obtains
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F

), =5 [1fa ™ mod )
:%q 1)5* mod 11) +| 2) 3° mod 1)
+|3)4? mod11) +|4) 9* mod11))

- 3008+ 206}« 3)5)+ a5

Thus, Alice can measure the second register and
obtains the output. Then, we have g’ modp=5.

Because g=3 and p=11 is known, Alice easily
computes y=3 by using Shor’ sagorithm.

4. Discussion and analysis

We divide four cases to discuss and analyze our
algorithm in this section. Assume that an
eavesdropper, caled Nancy, exists in quantum
channel.

Casel:

Assume that an eavesdropper wants to get
secret key x from quantum channel or ciphertext. He
must face the QDLP. According to our knowledge,

QDLP cannot be solved by Shor’ s quantum algorithm.

Thus, our algorithm can prevent the attacks from
guantum algorithms. Moreover, in our agorithm, the
quantum channel is broken after measuring. However,
Alice and Bob still securely share the secret key.
Thus, we can use the secret key x more than once in
our algorithm.
Case 2:

Assume that Nancy steals the ciphertext

|F a_ |xg, mod p> Nancy wants to discover the

message y by using the measurement. Nancy can
measures |F ), and obtains avalue C{. Assume that
C¢=xg,” modp, where jT {1.q- 1} . Because x and
g; are unknown, Nancy cannot perform Shor's

guantum algorithm to obtain the valuey.
Case 3:
Assume that Nancy forges the Alice’ s quantum

channel to get the message y. Nancy can construct
-1
the quantum system as L% |i>|giquodq mod p>,
Ja-1ia
where x¢ is the forged secret ley. Nancy sends
-1
1

1 ¢
IF )= a

e

getsthe ciphertext
-1 4
3 Xgiw‘q mod p> .

1
F =
| >c¢ ’q'li:1

Then, Nancy uses the inverse ngl to compute

g, mod p> to Bob. At last, Nancy
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E - 1 %-l x§ x§x, od
s = g o o)
-1
:—1 g.Xgiqu mOdp>-
q-1lia

Finally, Nancy computes the second register to
power of theinverse of the first register and obtains

1 %l Syt
|F>DE :ﬁ"’} RN modp>
" mod >
,—1 a 9 p

Because x is unknown, Nancy obtains the value
(x"lgiy"il)i'lmod p. Thus, Nancy cannot decrypt
the ciphertext to get message y by Shor’ s algorithm
unless she knows the secret key x.
Case4:
We can prepare the first quantum register as
Definition 2. Alice prepares the quantum system
1%t
J_
the value a, satisfies GCD( a, , r)=1, wherer is the

order of g modulo p. It is more difficult for Nancy to
get the secret key x from quantum channel

|a, >| O, “mod p> In the first quantum register,

k-1
3 |g; modp> . Furthermore, it is also difficult to
i=0
discover

| F

the message y from the ciphertext

a |xga mod p> Thus, based on the general

case of QDLP, the quantum secret key encryption
algorithm is more secret.

5. Conclusion

In this paper, we define the quantum discrete
logarithm problem (QDLP). QDLP differs from DLP in
that the base g is changed into a superposition

a |g;) . QDLPistofindx from C=§ |giX mod p> if
C a |g)) . and p are known. According to my

knowledge, QDLP cannot be solved by Shor’s
algorithm. Based on QDLP, we present a novel
quantum secret key encryption algorithm. Assume
that Bob wants to send a message y to Alice. Alice
prepares two quantum registers to construct her
guantum channel. At last, Alice obtains the message
y by Shor’ s quantum algorithm [3]. According to the
properties of quantum system, the channel will be
broken after measuring. Thus, the quantum channel is
used once for a message. Although the quantum
channel is temporarily constructed, the secret key x
can be used repeatedly. Furthermore, we discuss that
our quantum algorithm is based on the general case
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of QDLP. Because é|ga modp> is unknown, this

algorithm is more secure.
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