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Abstract- In this paper, we present a novel 
quantum secret key encryption algorithm based on 
quantum discrete logarithm problem (QDLP). QDLP 

is to find the exponent x from ∑=
i

x
i p mod gC  if C, 

∑
i

ig  and the prime p are given, where 

pmodgg i
i =  for a generator g. According to our 

knowledge, QDLP cannot be solved by Shor’s 
quantum algorithm. Our algorithm assumes that the 
sender and the receiver share the secret key x. If the 
sender wants to send the message y to the receiver, 
the receiver first uses the secret key x to construct a 

quantum system ∑
i

x
i p mod gi . Then, the receiver 

sends the quantum channel ∑
i

x
i p mod g  to the 

sender. After receiving ∑
i

x
i p mod g , the sender 

uses the secret key x and the message y to generate 

ciphertext ∑
i

y
i p mod xg . The receiver then 

construct a quantum system ∑
i

y
i p mod xgi . 

According to the secret key x, the receiver can 

obtain final quantum system ∑
i

y p mod gi . Then, 

the receiver gets the value pmodg y  after measuring. 

Finally, the receiver can successfully recover the 
message y by using Shor’s quantum algorithm. 
Obviously, the quantum system will be broken after 
transferring messages. But, the secret key x can still 
be used repeatedly in our algorithm. 
 
Keywords: quantum secret key encryption, quantum 
discrete logarithm, quantum cryptography 
 
1. Introduction 
 

In quantum cryptography [1], secretly 
transferring messages between two entries is an 
important issue. Obviously, two entries can use 
quantum key distribution protocol [2] to obtain the 
secret key. With the secret key, two entries can use 
the one-time pads method in classical cryptography 
to secretly transfer the message. However, the secret 

key can be used once. If we want to use the secret 
key repeatedly, we must design a quantum secret key 
encryption algorithm. According to [4], Brassard and 
Bennett’s key distribution protocol can be modified 
as the secret key encryption algorithm. Assume that 
the sender and the receiver share n secret bases. If 
the sender wants to transfer the message of n 
classical bits, he must generate n quantum states, 
viewed as ciphertexts. The i-th quantum state only 
depends on the i-th basis and the i-th classical bit of 
the message. After receiving the i-th quantum state, 
the receiver can use the i-th basis to measure the 
state and obtains the i-th classical bit of the message. 
Therefore, the modified Brassard and Bennett’s 
protocol with shared bases can secretly transfer the 
message. 

However, the secret key in the modified 
Brassard and Bennett’s protocol is traceable due to 
the following attack. Assume that an attacker 
pretends the sender. He randomly selects a message 
of n classical bits and n bases. He generates n 
quantum states by using n bases and n classical bits, 
and sends them to the receiver. The receiver 
discovers n classical bits by measuring these 
quantum states with his n secret bases. Assume that 
the attacker obtains the discovered classical bits after 
transformation. If the i-th classical bit of the message 
is different from the i-th discovered classical bit, the 
attacker learns that the i-th secret basis is another 
one different from his i-th selected basis. Thus, the 

attacker can recover 
4
n

 secret bases on average. To 

avoid this attack, this paper presents a novel 
quantum secret key encryption algorithm based on 
the quantum discrete logarithm problem. 

In this paper, we first define the quantum 
discrete logarithm problem (QDLP). QDLP is similar to 
classical discrete logarithm problem (DLP). DLP is to 
find the exponent x from p mod gC x=  if C, g, and p 

are known. QDLP differs from DLP in that the base g 
is changed into a superposition ∑

i
ig . Thus, QDLP 

is to find x from ∑=
i

x
i p mod gC  if C, ∑

i
ig , and 

p are given. According to our knowledge, QDLP 
cannot be solved by Shor’s algorithm [3]. Based on 
QDLP, we present a novel quantum secret key 
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encryption algorithm. Assume that the receiver, Alice, 
and the sender, Bob, share the secret key x. Then, 
Bob wants to send a message y to Alice. Thus, Alice 
prepares two quantum registers to construct her 
quantum channel. Let p and q be large primes 
satisfying 1p|q − . She generates n-1 states i  in 

first register, where i from 1 to q-1, and then uses 

secret key x to compute ∑
−

=

1q

1i

q mod ix pmodg  which will 

be stored in second register. Thus, Alice has 

∑
−

=

1q

1i

q mod x
i p mod gi , where p mod gg i

i = . Alice 

sends her quantum channel ∑
−

=

1q

1i

x
i p mod g  to Bob. 

After Bob gets Alice’s quantum channel, Bob 
computes the ciphertext 

∑∑
−

=

−

=

=
− 1q

1i

y
i

1q

1i

xyx
i pmodxgpmodxg

1
q , where y is 

message and 1
qx −  satisfies 1 q mod xx 1

q =− . Then, 

Bob sends it to Alice. After Alice receives Bob’s 

ciphertext, she constructs ∑
−

=

1q

1i

y
i pmodxgi  by 

combining her original first register. She uses 1
px − , 

the inverse of x modulo p, and the inverse of i to 

compute ∑
−

=

− −
1q

1i

yi
i

1
p pmodxgxi

1

∑
−

=

=
1q

1i

y p mod gi . 

Then, Alice obtains pmodg y  by measuring the 

second register. At last, Alice obtains the message y 
by Shor’s quantum algorithm [3]. According to the 
properties of quantum system, the quantum states 
will disappear after measurement. Thus, the quantum 
channel is used once for a message. Although the 
quantum channel is temporarily generated, the secret 
key x can be used repeatedly. 
The remainder of this paper is organized as follows. 
In Section 2, we define the quantum discrete 
logarithm problem. Section 3 presents a novel 
quantum secret key encryption algorithm. We 
discuss and analyze our algorithm in Section 4. 
Finally, we draw the conclusions in Section 5. 
 
2. Quantum discrete logarithm problem 
 

In this section, we define the quantum discrete 
logarithm problem in Definition 1 and its general case 
in Definition 2. 
Definition 1: (Quantum Discrete Logarithm Problem, 
QDLP) 

Let p and q be two known large primes 
satisfying q|p-1. We can find g with order q modulo p. 
The quantum discrete logarithm problem is to find x 

from the superposition ∑
−

=−

1q

1i

q mod x
i pmodgi

1q
1

, 

where p mod gg i
i =  and qx0 << .                            # 

The quantum discrete logarithm is similar to the 
classical discrete logarithm problem because 

∑
−

=

1q

1i
i p mod g  and p are known. But, the classical 

discrete logarithm problem is tractable due to Shor’s 
algorithm. Shor’s algorithm can discover x from 

p mod gC x= . Shor prepares three quantum registers. 

He puts the first two registers in the uniform 
superposition of all a  and b  (mod p-1), and 

computes p mod Cg ba −  in the third register. He has 

∑∑
−

=

−

=

−

−

2p

0a

2p

0b

ba p mod Cgba
1p

1
. Further, Shor can 

find the discrete logarithm x with two mo dular 
exponentiations and two quantum Fourier transforms. 
But, how to solve the quantum discrete logarithm 
problem by Shor’s algorithm? According to Shor’s 
algorithm, we add one quantum register that put the 
uniform superposition of all jg , where j ]2p..1[ −∈ , 

and then replace g with ∑
−

=

1q

1i
j i p mod g , where 

p mod gg i
jj i = . Then we have 

 

∑∑∑∑
−

=

−

=

−

=

−

=

−

−−−

1q

1i

2p

1j

2p

0a

2p

0b

b
ji

a
j ij p mod Cggba

)2p)(1q()1p(
1

, where p mod gC x
jij i = . Because the generator j ig  

is unknown, we must try all possible values ∑
−

=

2p

1j
jg . 

Moreover, according to Shor’s algorithm, we must 
also know the values of j iC . Thus, it is difficult to 

obtain the discrete logarithm by Shor’s algorithm.  
In the following, we present the general case of 

QDLP in Definition 2 by modifing the first quantum 
register of Definition 1.  
Definition 2: (General case of QDLP) 

Given a large prime p, we can find g with order r 
modulo p. Let 0a , 1a , … , 1ka −  are integers, less than 

r, satisfying GCD( ia , r)=1, where ]1k..0[i −∈ . The 

general case of QDLP is to find x from the 

superposition ∑
−

=

1k

0i

x
ai pmodga

k

1
i

, where 

p mod gg i

i

a
a =  and x is co-prime to r.                          # 

The general case of QDLP is more difficult than 
QDLP if 0a , 1a , … , 1ka −  are unknown. 
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3. Our algorithm 
 

In this section, we first introduce the parameters 
in our algorithm. We choose two large primes p and q 
satisfying q|p-1. Then, we find *

pZg ∈  satisfying 

1pmodg q = . Assume that the sender, Bob, wants to 

send the message y to the receiver, Alice. They must 
share the secret key *

qZx ∈  whose inverse 1
qx −  

satisfying 1q mod xx 1
q =−  and inverse 1

px −  

satisfying 1p mod xx 1
p =− . Bob and Alice perform 

the following steps to transfer the message y. 
Step 1: 

Alice prepares two quantum registers 

∑
−

=−

1q

1i

0i
1q

1
. Alice uses the secret key x to 

compute the exponent of g to the power of ix 
and store it in second register, i.e. 

∑
−

=−

1q

1i

q mod ix p mod gi
1q

1
. Let p mod gg i

i = . 

This quantum system is rewritten as 

∑
−

=−

1q

1i

q mod x
i p mod gi

1q
1

. Let the quantum 

channel be ∑
−

=

=Φ
1q

1i

x
iA

p mod g . Alice then 

sends 
A

Φ  to Bob. 

Step 2: 
After receiving 

A
Φ , Bob uses the message y, 

the secret key x and the inverse 1
qx −  to 

compute the ciphertext  

∑
−

=

−

=Φ
1q

1i

xyx
ic

p mod xg
1

q ∑
−

=

=
1q

1i

y
i p mod xg . 

Then, Bob sends 
c

Φ  to Alice. 

Step 3: 
After receiving 

c
Φ , Alice can obtain a 

quantum system 

 ∑
−

=−
=Φ

1q

1i

y
iD

p mod xgi
1q

1
1

  

because she holds the original first quantum 
register. Then, Alice uses the inverse 1

px −  to 

compute 

.p mod gi
1q

1          

p mod xgxi
1q

1

1q

1i

y
i

1q

1i

y
i

1
pD2

∑

∑
−

=

−

=

−

−
=

−
=Φ

 

Finally, Alice computes the second register to 
power of the inverse 1i−  and obtains  

.p mod gi
1q

1          

p mod gi
1q

1

1q

1i

y

1q

1i

y i
iD

1

3

∑

∑
−

=

−

=

−
=

−
=Φ

−

 

Because i<q and q is a prime, each i has the 
inverse 1i−  satisfying 1q mod ii 1 =× − . Thus, 

Alice can measure the second register and 
obtains the result p mod g y . Because g and p 

are known, Alice easily discovers y by using 
Shor’s  algorithm. 

Example: 
Let p=11, q=5, g=3 and secret key x=3. Assume 

that Bob wants to send message y=3 to Alice. Then, 
they perform Step 1 to Step 3 as follows. 
Step 1: 

Alice generates the quantum channel 

∑
=

4

1i

5 mod x
i 11 mod gi

4

1
 

)11 mod 3411 mod 33       

11 mod 3211 mod 31(
2
1

5 mod 345 mod 33

5 mod 325 mod 31

××

××

++

+=

        ( )94433251
2
1

+++= . 

Alice sends 9435
A

+++=Φ  to Bob. 

Step 2: 
Bob uses y=3, x=3 and 2x 1

q =−  to compute the 

ciphertext  

11mod9311mod43          

11mod3311mod53

5 mod 235 mod 23

5 mod 235 mod 23
c

××

××

×+×+

×+×=Φ

5194 +++= . 

Then, Bob sends 
c

Φ  to Alice. 

Step 3: 
Alice obtains the quantum system  

).54139241(
2
1

p mod xgi
2
1 4

1i

y
iD1

+++=

=Φ ∑
=  

Then, Alice uses 4x 1
p =−  to compute 

)11 mod 54411 mod 143        

11 mod 94211 mod 441(
2
1

p mod xgxi
2
1 1q

1i

y
i

1
pD2

×+×+

×+×=

=Φ ∑
−

=

−

    

( )94433251
2
1

+++= . 

Finally, Alice computes the second register to 
power of the inverse of the first register and 
obtains  
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∑
=

−

=Φ
4

1i

q mod yi
iD

p mod gi
2
1 1

3
 

)11 mod 9411 mod 43        

11 mod 3211 mod 51(
2
1

42

31

++

+=
 

( )54535251
2
1

+++= . 

Thus, Alice can measure the second register and 
obtains the output. Then, we have 5p mod g y = . 

Because g=3 and p=11 is known, Alice easily 
computes y=3 by using Shor’s algorithm. 
 
4. Discussion and analysis 
 

We divide four cases to discuss and analyze our 
algorithm in this section. Assume that an 
eavesdropper, called Nancy, exists in quantum 
channel. 
Case 1:  

Assume that an eavesdropper wants to get 
secret key x from quantum channel or ciphertext. He 
must face the QDLP. According to our knowledge, 
QDLP cannot be solved by Shor’s quantum algorithm. 
Thus, our algorithm can prevent the attacks from 
quantum algorithms. Moreover, in our algorithm, the 
quantum channel is broken after measuring. However, 
Alice and Bob still securely share the secret key. 
Thus, we can use the secret key x more than once in 
our algorithm. 
Case 2: 

Assume that Nancy steals the ciphertext 

∑
−

=

=Φ
1q

1i

y
ic

p mod xg . Nancy wants to discover the 

message y by using the measurement. Nancy can 
measures 

c
Φ  and obtains a value C′ . Assume that 

p mod xgC y
j=′ , where }1q..1{j −∈ . Because x and 

jg  are unknown, Nancy cannot perform Shor’s 

quantum algorithm to obtain the value y. 
Case 3: 

Assume that Nancy forges the Alice’s quantum 
channel to get the message y. Nancy can construct 

the quantum system as ∑
−

=

′

−

1q

1i

q mod x
i p mod gi

1q
1

, 

where x′  is the forged secret key. Nancy sends 

∑
−

=

′
′ −

=Φ
1q

1i

x
iA

p mod g
1q

1
 to Bob. At last, Nancy 

gets the ciphertext  

 ∑
−

=

′
′

−

−
=Φ

1q

1i

yxx
ic

p mod xg
1q

1 1
q . 

 Then, Nancy uses the inverse 1
qx −′  to compute 

.p mod xg
1q

1

p mod xg
1q

1

1q

1i

yx
i

1q

1i

yxxx
iD

1
q

1
q

1
q

1

∑

∑
−

=

−

=

′′

′

−

−−

−
=

−
=Φ

 

Finally, Nancy computes the second register to 
power of the inverse of the first register and obtains 

.p mod gx
1q

1

p mod )xg(
1q

1

1q

1i

yxi

1q

1i

iyx
iD

1
q

1

1-1
q

2

∑

∑
−

=

−

=
′

−−

−

−
=

−
=Φ

 

Because x is unknown, Nancy obtains the value 

pmod)gx(
11

q
1 iy x

i
i −−−

. Thus, Nancy cannot decrypt 

the ciphertext to get message y by Shor’s algorithm 
unless she knows the secret key x.  
Case 4: 

We can prepare the first quantum register as 
Definition 2. Alice prepares the quantum system 

∑
−

=

1k

0i

x
ai pmodga

k

1
i

. In the first quantum register, 

the value ia  satisfies GCD( ia , r)=1, where r is the 

order of g modulo p. It is more difficult for Nancy to 
get the secret key x from quantum channel 

∑
−

=

1k

0i

x
a pmodg

i
. Furthermore, it is also difficult to 

discover the message y from the ciphertext 

∑
−

=

=Φ
1k

0i

y
ac

pmodxg
i

. Thus, based on the general 

case of QDLP, the quantum secret key encryption 
algorithm is more secret. 
 
5. Conclusion 
 

In this paper, we define the quantum discrete 
logarithm problem (QDLP). QDLP differs from DLP in 
that the base g is changed into a superposition 

∑
i

ig . QDLP is to find x from ∑=
i

x
i p mod gC  if 

C, ∑
i

ig , and p are known. According to my 

knowledge, QDLP cannot be solved by Shor’s 
algorithm. Based on QDLP, we present a novel 
quantum secret key encryption algorithm. Assume 
that Bob wants to send a message y to Alice. Alice 
prepares two quantum registers to construct her 
quantum channel. At last, Alice obtains the message 
y by Shor’s quantum algorithm [3]. According to the 
properties of quantum system, the channel will be 
broken after measuring. Thus, the quantum channel is 
used once for a message. Although the quantum 
channel is temporarily constructed, the secret key x 
can be used repeatedly. Furthermore, we discuss that 
our quantum algorithm is based on the general case 
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of QDLP. Because ∑
i

a pmodg
i

 is unknown, this 

algorithm is more secure. 
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