
Content Adaptation for Context-aware Service in Ubiquitous
Computing Environment

Ying-Hong Wang
Department of Computer Science and

Information Engineering
Tamkang University, Tamsui, Taipei 251,

Taiwan
inhon@mail.tku.edu.tw

Chen-An Wang
Department of Computer Science and

Information Engineering
Tamkang University, Tamsui, Taipei 251,

Taiwan
chenan@mail.tku.edu.tw

Abstract:

The current trend is to access Web content
and applications anytime, anywhere and on any
device. Most Internet services and World Wide
Web content has been designed with desktop
computers, and often contain rich media, such as
images, audio, and video. But The devices differ
in network connectivity, processing power,
storage, display size, and format handling
capabilities. In many cases, this content is not
suitable for the new (often mobile) devices.
Therefore, content adaptation is needed in order
to optimize the service for different devices and
access methods.

This research discusses the way context is
used for Web content adaptation. The CC/PP and
UAProf are two related standards that define the
format to describe the capabilities of the devices
for accessing content. Context-aware
environment must allows adaptive access to
context information.

Keywords: context-aware, adaptation, SWRL

1. Introduction
Adaptation means a process of selection,

generation or modification of content (text,
images, audio and video) to suit to the user’s
computing environment and usage context. In
general, normal web page with different media
types. By using a PC connected to a Web site it’s
possible to see the original web page (without
adaptation) with headings, photos, text, and
video. When accessing the same service with a
mobile device the image is compressed. The text
is summarized to one paragraph and the video is
delivered as text or image depending on
bandwidth and the capabilities of the device.

Adaptation can take place on the client, on
the server or in an intermediate proxy. In
client-based adaptation approach, a client needs
to receive the same media encoding in different
versions while only one will be used. Another
problem is the fact that all computational
overhead is shifted to the client.

In server-based adaptation, functionalities of
web server are enhanced with content adaptation.
Transmission times are reduced by delivering
already adapted content. Traditionally, multiple
variants of the same content are stored on the
server and selected to match the client
identification. One common way of providing
content to different devices is to store the
content as Extensible Markup Language (XML)
and use Extensible Style Language
Transformation (XSLT) to convert the content to
appropriate makeup language.

In proxy-based adaptation approach, a proxy
server analyzes and transcodes the content
before sending the result to the client. Contents
server and proxies need to know what kind of
device is making the request in order to sending
the right content.

Context is the information that characterizes
the interactions between humans, applications
and the surrounding environment [1]. Many
researchers have tried defining context such as
Schilit et al. who decompose context into three
categories [2]: computing context, user context
and physical context. Muldoon et al. define user
context as an aggregation of his location,
previous activities, and preferences [4]. Sun
adopts the same definition and even adds
physiological information to user context [5].
Huang et al. define context of an entity is a
collection of semantic situation information that
characterizes the entity’s internal features or
operation and external relations under a specific
situation.

Context-aware Computing as mentioned by

mailto:inhon@mail.tku.edu.tw
mailto:chenan@mail.tku.edu.tw

Dey and Abowd refers to the ability of
computing devices to detect and sense, interpret
and respond to, aspects of a user’s local
environment and the computing devices
themselves[6]. Context-aware content adaptation
dynamically adapts their behavior to the user’s
current situation without user intervention.

In this paper, we address a content adaptation
approach for the proposed context-aware
architecture. The next section offers a survey of
related researches about context-aware. Section
3 describes the context-aware system
architecture. In section 4,content adaptation is
presented. Finally, conclusion and future work is
addressed.

2. Related Work

2.1. Methods of Client Capabilities
Recognition

In order to deliver suitable content for
different devices and user profile, The Web Site
needs to be able to differentiate between the
different device capabilities. The following are
two possible methods for providing device
recognition.

2.1.1. HTTP Request header field and User
Agent Detection

When Web clients send requests to Web
servers, they identify themselves. Current
Http/1.1 use four Accept header fields to
describe the capabilities and preferences of the
client: Accept, Accept-Charset,
Accept-Encoding and Accept-Language. The
Accept field describes which MIME types are
accepted by a browser. The other Accept header
fields describe preference for character set,
encoding and language. Information in HTTP
headers is limited and hard to extend. It was
designed for browser descriptions and it lacks
means for context and device capability.

In Addition to Accept header, clients send a
User-Agent header to identify themselves. It is
very simple but powerful enough to provide
some client-specific information. User-agent
strings have been used to perform content
adaptation since the early days of the Web.
User-agent header contains information about
the browser and operating system and
sometimes hardware information. But
User-Agent header works only for nearly static
device properties. With hundreds of different
browser existing today, it get tricky to support
every one by relying on the User-Agent field.

The User-Agent header contains information
about the browser and the operating system
making the request, and sometimes hardware
information (see table 1 for examples).

Table1 are examples of the Request header
fields produced by different browsers:
Table 1. Examples of User-Agent headers.

IE7 in Windows

XP

Mozilla/4.0(compatible; MSIE

7.0; Windows NT 5.1;

Mozilla/4.0(compatible; MSIE

6.0; Windows NT 5.1;

SV1);.NET CLR 1.1.4322;.NET

CLR 2.0.50727;.NET CLR

3.0.04506.30;.NET CLR

3.0.04506.648; InfoPath.2)

Firefox3.0.1 in

windows XP

Mozilla/5.0 (Windows; U;

Windows NT 5.1; zh-TW;

rv:1.9.0.1) Gecko/2008070208

Firefox/3.0.1

Nokia 6230

built-in browser

Nokia6230/2.0 (03.06)

Profile/MIDP-2.0

Configuration/CLDC-1.1

Nokia 6600

built-in browser

Nokia6600/1.0 (3.42.1)

SymbianOS/7.0s Series60/2.0

Profile/MIDP-

2.0 Configuration/CLDC-1.0

It’s important to note that neither of these
browsers correctly obeys the HTTP/1.1 content
negotiation standard.

2.1.2. Client Script or ActiveX application

Scripting languages such as JavaScript,
VBScript, Jscript, and WMLScript can be used
to provide device –spcific information. AcitveX
components can also be written to report the
browser device and connection characteristics.

2.2 The Standard of Context Extraction

Several standards have been defined which
address the interoperability problem. A few of
these standards are described here.

2.2.1 Composite Capability/Preferences
profiles (CC/PP)

As the numbers of variety of devices
connected to the Internet grows, there is
corresponding in the need to deliver content
tailored for the different devices. The
User-Agent header information discussed earlier
is not enough. Composite Capability/Preference

Profiles (CC/PP)[7] recommendation from the
W3C describes a method for using the Resource
Description Framework (RDF) of the W3C, to
provide a way for user agents and browsers to
specify metadata about device capabilities and
user preferences. This information can be
provided by the user to servers and content
provider. The servers can use this information
describing he user preferences o customize the
service or content provided. C/PP is an
extensible framework that can be used for
communicating the delivery context(screen size,
audio capabilities, bandwidth, etc) from a device
o a web server, resulting in the delivery of web
content s usable on a given device. CC/PP
allows different devices to specify their
capabilities in a uniform way.

There are several implementation of the
CC/PP standard. Blow is a list of a few of the
current implementations:
l Commercial implementations
n Nokia CC/PP SDK
n Intel CC/PP SDK
n Aligo M-1 Mobile processing Server

l Non-Commercial implementations
n DELI(HP laboratories Open Source
CC/PP server API
n DICE(University of Wales,
berystweyth)
n Panda and Skunk(Keio University)

2.2.2 User Agent Profile (UAProf)

User Agent Profile (UAProf) specification
developed by the Open Mobile Alliance (OMA,
former WAP Forum) is a concrete CC/PP
vocabulary dedicated to mobile phone
description and it defines an efficient
transmission of the CC/PP descriptions over
wireless networks. Mobile phones complying
with the UAProf specification provide CC/PP
descriptions of their capabilities to servers.
Content servers, gateways and proxies can use
this information and optimize the content for the
device and the user. User Agent Profiles consists
of description blocks for the following key
components:
l Hardware Platform: for example, the

type of device, model number, display size,
input and output methods, color capability, etc
l Software Platform: operating system

software, mine type, character sets, transfer
encoding, video and audio encoders supported
by the device, etc
l BrowserUA: Browser info,

HTML/XHTML, Java, JavaScript, frames and
tables capability
l Network characteristics: GSM/GPRS

capability, security support, Bluetooth support

l WAP characteristics: WAP/WML
support, deck size
l Push characteristics: push content types,

push message size
UAProf files are quite comprehensive and

they trend to grow large. That is why only the
URL of the device profile is transmitted from the
mobile terminal to the server. The content server
fetches the profile from the device profile
repository and may store it in its own database
for later use. The WAP gateway or HTTP proxy
must support UAProf header forwarding.

2.3. Semantic Rule language (SWRL)

Semantic Rule language (SWRL) based on a
combination of the OWL DL and OWL Lite
sublanguages of the OWL. Web OntoIoy
Language with the Unary/Binary Datalog
RuleML sublanguages of the Rule Markup
Language. SWRL includes a high-level abstract
syntax for Horn-like rules in both the OWL DL
and OWL Lite sublanguages of OWL. A
model-theoretic semantics is given to provide
the formal meaning for OWL ontologies
including rules written in this abstract syntax.
The rules arc of the form of an implication
between an antecedent (body) and consequent
(head)[8]

SWRL’s structure is consisted of four
parts.:Imp, Atom, Variable and Building,
explained below:
l Imp: head and body of the rules, consists

of Atoms
l Atom: the descriptions of head and body
l Variable: the variables used in recording

rules
l Building: records the logic comparison

relationship that can be used by SWRL.

3.Context-Aware System Architecture
The context-aware system architecture is

presented in this section. Figure 1 shows the
proposed context-aware system architecture.

Figure 1. System architecture

In this system, there are five main agents as
following:

l Context- management agent (CMA): The

context management agent (CMA) is the system
administrator. The CMA negotiates with context
provider agents to acquire the required context.
The CMA can also cancel, modify, or
renegotiate context because of environmental
changes. The CMA also stores relevant
information in a knowledge base repository for
inference and knowledge sharing.
l Inference Agent: The inference agent

manages the inference process. It uses context
captured from context providers and users as
facts in the context inference process. It uses
these facts to build a system knowledge base
repository for reasoning new context
information. The inference agent also reasons
user preference from history of user.
l Content agent: The content agent selects

the most appropriate content according to user
context and user preferences
l Hypertext agent: Hypertext agent

organizes the hypertext structure of the web
interface. When the bandwidth is limited, it
decomposes large content in linked pages.
l Presentation agent: The presentation

agent builds an adequate layout for the web
pages according to the layout capabilities of the
device

3. Content adaptation
Adaptation means a process of selection,

generation, or modification of content to suit to
the user’s context. Each web page, depending on
its content, has a different layout that requires
adaptation to match device capabilities. Before
content adaptation, the system needs to acquire
user context information first. Then the system
selects the most appropriate content according to
user context and user preferences.

4.1 Acquiring context information
Wherever adaptation takes place, it must be

based on information about the user context.
This can include the device’s capabilities, the
network’s characteristics, user preferences and
other parameters such as users’ preferred
language or their location.

In section 2, several strategies had be
mentioned for acquiring user context. The most
popular method is to analyze the HTTP
user-agent parameter that comes with the HTTP
request header and map this parameter to a
device or browser repository on the server side.
However, user-agent header works only for
nearly static device properties. Using the

UAProf basing on the CC/PP framework
establishes a more effective mechanism for
gathering dynamically changing context
information on the server. However, UAProf
only provided a common vocabulary for WAP
devices. But most of the vocabulary can be
adopted for other non WAP devices like normal
Web browsers on PCs, notebooks or PDAs.

In this way the mechanism illustrates in
Figure 2 distinguishes between UAProf enabled
devices, devices providing the user agent and
devices giving support for client side code like
JavaScript, Jscript, and Java(combinations are
possible).The client side code directly gather
device properties on the client.

Figure 2. the mechanism of acquiring the

user context

The processing of the user context on the

server depends on the obtained request.
l If the request only includes the user-agent

parameter, this parameter is mapped to the
according device profile in a device repository
l If a UAProf enabled device sends a

user-agent profile within the request, that
information is handled by DELI [3] on the
server side which provides an API for Java
servlets to determine client capabilities using
CC/PP and UAProf
l When the devices don’t support UAProf,

this system collect the context of the devices via
client side code. The gathered context
information on the client is sent within the
HTTP request header. The server processes that
information and merges it with an existing or by
DELI generated device profile.

When the client sends the request to the
server, the request includes user context
information. Http agent forwards the request to
ontology agent. Because companies responsible
for authoring profiles are often different to those
creating CC/PP processors, it is possible there

may be disgreements when interoperability
problems occur. Ontology agent validates
CC/PP profiles.

Then CM agent acquires user context and
negotiates with context repository. After CM
agent acquires context information, it modifies
the profile and forward to inference agent.
Inference agent uses the information to build a
system knowledge base repository for reasoning
new context information. The inference agent
also reasons user preference from history of user

Figure 3. The flow of user context

4.2 Building SWRL Rules

SWRL rule can be tight together with
Ontology and directly use Ontology’s
description of relationship and words. Because
of this advantage of SWRL[9], so the
correlations between Classes don’t need extra
rule descriptions. so this research uses SWRL to
develop rules

The following 2 correlations need to be
described when developing the rules:
l the correlations between the same domain
l the correlations between different domain
For example, determines if a device supports

full color image:
SWRL rule:

device(?d)ΛColorCapable(?d,?boolean)
ΛhasImageCapable(?d,?boolean)
ΛSWRLb:equal(?boolean,“Yes")
→hasColorfulImg(?d, “Yes”)

4.3Executing Jess inference and Updating
OWL Knowledge Base

Using rule in conjunction with ontologies is
a major challenge for the semantic web. We first
achieved an implementation of SWRL using the
protégé OWL plugin. We use the protégé OWL
plugin for editing OWL ontologies and SWRL
rules, Racer for reasoning with OWL ontologies,
the Jess inference engine for reasoning with
SWRL rules. Figure 4 illustrates how to build
individual and his class. To bridge between
protégé SWRL and Jess ,we use the protégé

plugin JessTab, allowing to integrate protégé and
jess.

Figure 4. building individual and classes

Figure 5 illustrates the inference architecture.

The step here can be broken down to the
following four steps:

1. Representing OWL Concepts as the JESS
Fact Base

2. Representing SWRL Rules as Jess Rules
3. Combine the Fact Base and Rule Base to

execute JESS Inference
4. Executing Jess Rules and Update OWL

Knowledge Base According inference results

Figure 5. inference architecture
The Jess template provides a mechanism for

representing OWL class hierarchy. A jess
hierarchy can be used to model an Owl class
hierarchy using a Jess slot.

• Define Jess template to represent the the
owl:Thing class:
– (deftemplate OWLThing (slot name))
• a class “device” that a direct subclass

of owl:Thing could then be represented as
follows in Jess:
– (deftemplate device extends

OWLThing)
• the OWL individual can be asserted as

a member of the class Model :

– (assert(device(name Nokia7610)))
• The property of the individual

Nokia7610:
– (assert (colorCapable Nokia7610 Yes))

Figure 6 Presenting SWRL Rule as Jess

Rule
Figure 6 illustrates how to present SWRL

Rule as Jess Rule.the following SWRL atom
indicates that variable boolean must be Yes or
No:

l [Yes,No](?boolean)
For example, the following SWRL rule

determines if a device supports full color image
l device(?d)Λ ColorCapable(?d,?boolean)

ΛhasImageCapable(?d,?boolean)
ΛSWRLb:equal(?boolean,“Yes")
→hasColorfulImg(?d, “Yes”)

The above rule can be representing in jess as
following:

• (defrule aRule (device(name ?d))
(ColorCapable ?d “Yes”)
(hasImageCapable ?d ”Yes”) =>
(assert (hasColorfulImg ?d “Yes”))

4.4 Provide appropriate content to users
based on the Inference results

When content agent acquires the reasoned
context from CMA, it requests the content based
on user context. It selects the most appropriate
content according to user context and user
preferences. The content agent decides which
content will be adapted. The video adaptation
may is removal, substitute, video framerate
(resolution) reduction, format conversion.

The adapted content is forwarded to
Hypertext agent. Hypertext agent defined the
hypertext structure according to use context by
introducing links and decomposes large pages to
take into account the display limitation of the
device. Then presentation agent builds an
adequate layout for the web pages.

5.Conclusion

First, this paper proposes a inference
mechanism for context-aware service. Through
this inference mechanism, users using different
devices can get appropriate content based on
inference results. Second, we can demonstrate
the correlation between classes and individual
and provides better scalability by means of
building ontologies. Last, SWRL is based on
ontology based rule language, Rules written
based on SWRL can directly use established

object relationship from ontology.

References
[1]P. Brézillon, “Focusing on context in

human-centered computing", IEEE
Intelligent Systems, vol. 18, pp. 62-66, 2003

[2] B. Schilit, N. Adams, and R.Want,
“Context-aware Computing Applications”,
in Proc. Of IEEE Workshop on Mobile
Computing Systems and Applications,
Santa Cruz California,USA,1994

[3]M. Butler, ”DELI : A Delivery context
Library for CC/PP and UAProf”, HP,
External Technical Report
HPL-2001-260,2002

[4]C. Muldoon, G. O’Hare, D. Phelan, R.
Strahan, and R. Collier, “ACCESS: An
Agent Architecture for Ubiquitous Service
Delivery”, in Proc. Of The Seventh
International Workshop on Cooperative
Information Agents. (CIA’2003), Helsinki,
Finland, 2003

[5] J. Sun, “Information Requirement Elicitation
in Mobile Commerce”, communications of
ACM, 46, 12, pp 45-47, December 2003.

[6]A.K. Dey and G.D. Abowd, ”Towards a
Better Understanding of Context and
Context-awareness. ” , in Proc. Of the
CHI’2000 Workshop on Context-Awareness,
The Hague, Netherlands, April 2000.

[7] G. klyne, F. Renolds, C. Woodrow, H. Ohto,
J. Hjelm, M.H. Butler and
L.Tran, ”Composite Capability/preference
Profiles (CC/PP): Structure and
vocabularies”, W3C Working Draft (January
2004),
http://www.w3.org/TR/2004/REC-CCPP-str
uct-vocab-20040115/

[8]M.O. Conner, H. Knublauch, T. Samson,
M.Musen, ”Writing Rules for the Semantic
Web Using SWRl and Jess”,8th International
Protégé Conference, Protégé with Rule
Workshop, Madrid, Spain, SMI-2005-1079,
2005

[9]V. Ricquebourg, D. Durand, D.Menga,
B.Marhic, L. Delahoche, C. Loge,
A.Jolly-Desodt,” Context inferring in the
Smart Home : An SWRL approach”,
Advanced Information Networking and
Applications Workshops, 2007, AINAW '07.
21st International Conference. Volume 2,
21-23 May 2007 Page(s)290 – 295,Digital
Object Identifier 10.1109AINAW.2007.130

http://www.w3.org/TR/2004/REC-CCPP-str

