
 1

Changing Data Type Method of Data Obfuscation on Java Software

Hsiang-Yang Chen1,3 Ting-Wei Hou1
Department of Engineering Science, National Cheng Kung University, Tainan, R.O.C.1

Department of Information Management, Hsing Kuo University of Management, Tainan,
R.O.C.3

 i14248@mail.hku.edu.tw hou@nc.es.ncku.edu.tw

Abstract- A defense against reverse engineering is
obfuscation, a process that renders software
unintelligible but still functional. Our goal is to change
data type of variables for hiding original meaning to
prevent attack ed, especial for integer variables. We
designed “Changing Data Type Obfuscation” method
by changing the data type of variables, from long-term
to short-term or short-term to long-term, to protect
important variables of program code. We illustrate the
concept and techniques of “Changing Data Type”
method.

KEYWORD： reverse engineering, data obfuscation,
Java

1. Introduction

Since the Java decompiler appeared [1], the threat of

reverse engineering becomes worth-noticing. The Java
language was designed to compile into a platform
independent bytecode format. Much of the information
contained in the source code remains in the bytecode,
which means that decompilation is easier than with
traditional native code. Today, it is not a secret that Java
programs can be easily decompiled and reverse
engineered from Java bytecode to Java source code [2].

A defense against reverse engineering is obfuscation.

Obfuscation is a process that it keeps the program’s
semantic but make the program difficult to decompile.
The design of obfuscation is to prevent from the theft of
intellectual property by making it unable to derive
usable source code from bytecode. Obfuscating
transformations can be applied automatically to a
program by a tool called an obfuscator. Using
obfuscator to protect intellectual property for Java
commercial software is very important. Obfuscation
has become a critical to commercial software licensing.

In figure 1,the types of obfuscation techniques are as

follows [3] [4]:

Figure 1. Four types of obfuscations.

Lexical obfuscation modifies the lexical structure of

the program. Typically, they do nothing more then split
identifiers. All meaningful symbolic information of a
Java program, such as classes, fields, and method
names are replaced with meaningless information, such
as Crema[5] Java obfuscator.

Data obfuscation modifies the program data fields.

For example, it is possible to replace an integer variable
in a program with two integers. Data aggregation
obfuscations alter how data is grouped together. For
example, a two-dimensional array can be converted into
a one-dimensional array and vice-versa. Data ordering
obfuscations change how data is ordered. For example,
an array used to store a list of integers usually has the
ith element in the list at position i in the array. Instead,
we could use a function f(i) to determine the position
of the ith element in the list.[6]

Control obfuscation makes thieves difficult to

understand the control flow in individual program
functions [7][8]. One example, opaque predicates, uses
conditional- instructions whose predicates always
evaluate true or false. The branch of such a condition
that is always taken will contain meaning code, while
the other branch will contain arbitrary code.

Layout obfuscation involves obscuring the logic

inherent in splitting a program into procedures. One
approach is to perform in -line expansion of a procedure
in all places where the procedure is called.

Our study is focus on data obfuscation technique.

Section 2 describes the method of Changing Data Type
Obfuscation. Section 3 describes the design approach.
Section 4 describes the techniques of spitting data types.
Section 5 describes the discussion. Section 6 is the

Int. Computer Symposium, Dec. 15-17, 2004, Taipei, Taiwan.

439

 2

conclusion of this paper. Section 7 is the future work of
this study.

2. Design Methods

Figure 2 displays the concept: both the original

program and the policy feed into a transformation
procedure that generates the obfuscated program. After
some period of time and expended effort, an attacker
can gain understanding of OP. It has been postulated
that the program can run safely for a limited time [9].

 Figure 2. Obfuscation Transformation

We designed changing the data type of variables from

long-term to short-term, as figure 3. The data length of
long variable is 8 bytes. It can be splitting into 2 integer
variables. It was a straightforward thinking that
long-term variable could be splitting short-term
variables more and more, such as 4 short variables, 8
byte variables. The techniques of splitting techniques
introduces in section 3. We want to make the data
obfuscation complicated. So we thing can replace the
variable into an array, such “byte b[8];”. Because
human usually see an array store some data of same
type together, it does not store a whole data value. Even,
variable can be obfuscated into different type of
numeric, such as String.

Figure 3. Long data-items obfuscate short data-items

Figure 4 is the reverse method of figure 3. We can

split long-term data type variables into short-term data
type variables. And we can reverse the method to
extend the short-term data type variables into long-term
data type variables directly. But this extending method
will make the memory of obfuscated program larger
then an unobfuscated program. This is the main defect
of this method.

Figure 4. Short data items obfuscate long data items

3. Design Approach.

Figure 5 shows the flow of changing data type
obfuscator. The approach is following:

1. Parse program: Parse the unobfuscated program
to find all tokens of the program.

2. Search all variables of the program: Search and
keep all variables of tokens in the program.

3. Choice variables: User choice which variables
are important to obfuscate.

4. Choice splitting or extending: User can choice
using splitting or extending method to obfuscate
variables, these two method that we describe in
section 2.

5. Choice splitting techniques: If user choice
splitting method in step 4, user must choice
splitting techniques.

6. Obfuscate variables: Final step is to obfuscate
variables in the program.

7. End: The process is end.

Figure 5. The flow of Changing Data Type

Obfuscation

4. Splitting Techniques.

We design five kinds of splitting techniques for
obfuscation [10].

1. Parse tree. A long-term variable store as parse

Int. Computer Symposium, Dec. 15-17, 2004, Taipei, Taiwan.

440

 3

tree, which using short–term variables. As Figure
6.

Figure 6. The splitting technique is parse tree.

2. Permutations ordered lists. We can obfuscate

integers into permutations. The obfuscation
parameters can be used to control the size of the
set of elements, a permutation/mapping that
corresponds to incrementing, as Figure 7.

Figure 7. Permutaions ordered lists.

3. Using module method. We can use module

method to splitting variable, as Figure 8. The
prime is a prime number in Figure 8.

Figure 8. Using module method.

4. Using Boolean operator. We can use Boolean
operator to splitting variable, such as NOT, OR,
AND, XOR etc. For example:

111100002 =111100002 AND 111100002;

5. Restructure array. We can split an array into

several sub-arrays, merge two or more arrays into
one array, fold an array (increasing the number of
dimensions), or flatten an array (decreasing the
number of dimensions) [11].

Figure 9. Restructure array [11].

5. Discussion

The Changing Data Type Obfuscation can use to

protect very important data, such as pay-money. Figure
9 show that bob tamper the pay money form 0.05$ to
0.01$. It can use our designed obfuscation to protect the
money variable. The variable of money is splitting into
an array of the short-term variables. Bob tamper an
array of the short-term variable is hardly, he is very
easy to makes mistake. So the obfuscation method can
use in Tamper-proofing techniques, too.

Figure 9. Bob tamper the value of pay money.

Lexical obfuscation makes meaningful symbolic

information of a Java program, such as classes, fields,
and method names are replaced with meaningless
information. For example, a field name PayMoney may
simply be replaced with p1. If our designed obfuscation
combined lexical obfuscation, it will protect important
data field better, as Figure 10.

Figure 10. Changing Data Type Obfuscation

combined Lexical obfuscation.

6. Conclusion

The task of making reverse engineering difficult is

not easy. We designed “Changing Data Type
Obfuscation” method by changing the data type of
variables, from long-term to short-term or short-term to
long-term, to protect important variables of program

Int. Computer Symposium, Dec. 15-17, 2004, Taipei, Taiwan.

441

 4

code. We illustrate the concept and techniques of
“Changing Data Type” method. Our designed
obfuscation is a very simple method of obfuscator. But
it can let attacker understand hardly from the
obfuscated program.

Our designed obfuscation can combine other

obfuscation techniques, such as Lexical obfuscation,
other Data obfuscations, Control obfuscations, etc. It
will protect software very better.

5. Future Work

We will increase the splitting techniques in this study.

We want to change numeric data type to other data type,
as figure 3, such as “long variables transfer into String
variables”.

Beside, for protecting obfuscated programs from

being de-obfuscated to original source code, we must
improve to combine other obfuscations, such as other
Data obfuscations, Control obfuscations, etc.

Acknowledgements

The project is supported by NSC under project NSC

(93-2213-E-006-105-).

Reference

[1] Hans Peter van Vliet. ”Mocha - The Java

decompiler”,
http://wkweb4.cableinet.co.uk/jinja/mocha.html,
January 1996.

[2] WingSoft Company. “JavaDis - The Java
Decompiler”, http://www.wingsoft.com/wingdis.ml,
March 1997.

[3] Christian Collberg, Clark Thomborson,
“Watermarking, Tamper-Proofing, and Obfuscation
-Tools for Software Protection”, IEEE Transactions
on Software Engineering, vol.28, no.8, August
2002, pp.735-746

[4] Gleb Naumovicb Nasir Memom, “Preventing Piracy,
Reverse Engineering, and Tampering”, IEEE
Computer Society, 2003, pp.64-71

[5] Hanpeter van Vliet, “Crema: the Java obfuscator”,
http://www.brouhaha.com/~eric/computers/mocha.
html, 1996

[6] Douglas Low, Protecting Java Code Via Code
Obfuscation , ACM Crossroads, Spring 1998

[7] Christian Collberg, Clark Thomborson, Douglas
Low, “Manufacturing Cheap, Resilient, and
Stealthy Opaque Constructs”, In Proceedings of the
25th ACM SIGPLAN-SIGACT symposium on
Principles of programming languages, San Diego,
California, United States, 1998, pp.184-196

[8] Douglas Low, “Java Control Flow Obfuscation”,
Master’s Thesis, Department of Computer Science,
University of Auckland, New Zealand, June 1998

[9] F. Hohl. “Time limited blackbox security: Protecting
mobile agents from malicious hosts”, In Mobile
Agents and Security, 1419 in LNCS.

Springer-Verlag, 1998, pp. 92-113.
[10] Lee Badger,Larry D'Anna,Doug Kilpatrick,Brian

Matt,Andrew Reisse,Tom Van Vleck,
“Self-Protecting Mobile Agents Obfuscation
Techniques Evaluation Report”,
www.networkassociates.com, November 30, 20011

[11] Collberg, Thomborson, Low, “Breaking
Abstractions and Unstructuring Data Structures”,
International Conference on Computer Languages,
1998

Int. Computer Symposium, Dec. 15-17, 2004, Taipei, Taiwan.

442

