
Design of an MC Interpolation Architecture for H.264 Video Decoder

Yi-Shiung Jang Kuen-Cheng Chiang Jean Jyh-Jiun Shann
Department of Computer Science and Information Engineering,

College of Electrical Engineering and Computer Science,
National Chiao Tung University,

Hsinchu, Taiwan, R.O.C.
changyihs.iic94g@nctu.edu.tw kcchiang@csie.nctu.edu.tw jjshann@cs.nctu.edu.tw

Abstract-H.264/AVC is the newest video coding standard.
Compared with MPEG-2, MPEG-4, and H.263, H.264/AVC
provides highest coding efficiency and better video quality.
Motion compensation is one of the techniques for
enhancement video quality in video decoder standard that
includes 6-tap FIR filter and 1/4-pel precision for
luminance and 1/8-pel precision for chrominance. In
H.264/AVC decoder, the motion compensation consumed
39% decoding time, which is the most important influence
of decoding system because of its complex computation.
For this reason, in this paper, we proposed an efficient
motion compensation interpolation architecture for
reducing computational complexity in H.264/AVC decoder.
Since the luminance computation occupies 80% of the
whole motion compensation interpolation computation,
consequently, we propose two algorithms to reduce the
computational complexity for luminance component — the
6-tap Mean Filter, which applies 6-tap FIR filter method
and Mean concept, and the 4-tap Mean Filter, which
applies 4-tap FIR filter method and Mean concept.
Furthermore, we propose a novel data supply mechanism,
called Snake Path, in order to save hardware area.
Presently, we adopt parallel and pipelined architecture for
our proposed method in hardware implementation. Through
the software simulation, the reconstructed video quality
shows approximate image quality compare with traditional
6-tap FIR filter adopting our proposed 6-tap Mean Filter
algorithm. Our designs are synthesized with TSMC 0.13 μm
technology. The synthesized results show that two proposed
algorithms with Snake Path control can save hardware cost
48% and 68%, respectively.

Keywords: Motion Compensation, H.264/AVC, FIR Filter,
MC Interpolation, Snake Path

1. Introduction
 To come up against the rapidly growing demands of
multimedia applications, many generations of video
encoding/decoding standards, such as MPGE-1, MPEG-2
and MPEG-4, swere developed by the ISO/IEC moving
picture experts groups. For providing a video stream in
higher quality via limited transmission resources, a better
video coding standard, H.264/AVC, was jointly developed

by ISO/IEC and International Telecommunications Union -
Telecommunications Standardization Sector (ITU-T) with
higher compression efficiency in stream bit-rate and better
video quality. Compared with MPEG-4 advanced simple
profile and H.263 high latency profile, H.264/AVC saved
about 37% and 48% bit-rate with the same quality of video,
respectively [1].

 H.264/AVC is a high efficiency coding standard based
on a motion compensated hybrid Discrete Cosine
Transform algorithm. To achieve the requirements of high
quality and low bit rate, it adopts many advance and
precision coding skills. The coding process of H.263/AVC
consists of the following major tasks: Inversed Integer
Discrete Cosine Transform, Context Adaptive Binary
Arithmetic De-Coding, Context Adaptive Variable Length
De-Coding, De-blocking Filter, Variable Block Size Motion
Compensation (MC), and Quarter-pixel Precision Motion
Vector [2, 3]. With deeper resolution of image
reconstruction into level of Quarter Pixel, the
computational complexity of MC interpolation is increased
compared with previous video standards [4,5]. Lappalainen
et al. [6] analyzed the execution behaviors of H.264 coding
and decoding process and indicated that the decoder
expanded large portion of computing power, over 39%, in
performing the MC interpolation. Obviously the highly
demanded computation resources for MC interpolation
dominated performance of entire H.264/AVC decoder.

 In this paper, we proposed two filtering algorithms and
designed associated hardware with effective parallel
computation mechanism for MC interpolation in
H.264/AVC decoder.

2. Background and Related Work
 The key technique of motion compensation
interpolation is based on n-tap FIR filtering for evaluating
the value of quarter pixel to improve the quality of image
with higher resolution. Before discussing computation
behaviors for the interpolation in detail, we first explained a
general executing flow of H.264/AVC decoder briefly.
Since the interpolation process for both luminance (luma)
and chrominance (chroma) components was very similar,
we illustrated the process only for luma component as an
example.

mailto:changyihs.iic94g@nctu.edu.tw
mailto:kcchiang@csie.nctu.edu.tw
mailto:jjshann@cs.nctu.edu.tw

2.1 Basic concept of H.264/AVC decoder
 The processing steps of a H.264/AVC decoder is
consisted of Entropy Decoder (ED) , Reorder (RO), Inverse
Scan and Quantization (IS/IQ), Inverse Discrete Cosine
Transform (IDCT), Deblocking Filter (DBF), Intra
Prediction (IP) and Motion Compensation (MC), as shown
in Figure 1. The encoded bitstream comes from a broadcast
system or video file source in a variable length coding style.
After ED processed the bitstream, motion vectors and
header information are isolated for MC and IP steps. One
the other hand, the pixel data is sent to the RO, IS/IQ, and
IDCT one by one to re-generate the image pixels in
macroblocks. Based on motion vectors and header
information, the MC and IP properly reconstruct the
original pictures with one or more reference pictures. For a
better video quality, a DBF is employed to remove blocking
effect cause by DCT and Quantization. Finally, the
resulting frame picture is shown in front of user via display
devices.

Figure 1. General Structure of a H.264 Decoder

 H.264/AVC is a macroblock-based system adopted a
tree structure motion compensation method. Unlike
previous standards, such as MPEG-4 and H.263,
H.264/AVC supports variable motion compensation block
sizes which ranged from 4x4 to 16x16, and fine sub-pixel
sample motion vectors [8]. Each macroblock and
sub-macroblock partition in an inter-mode is predicted base
on one or more previously encode video frames via motion
estimation. In decoder, the predicted samples are generated
according the motion vectors through motion compensation
and according the residual data to produce the
reconstructed macroblocks. Most of computations are
executed on the sub-pixel sample interpolation process and
the process was the most time consumed step of the
decoder steps.

2.1.1. Sub-pixel Sample Interpolation
 The execution of sub-pixel sample interpolation is
based on a 6-tap FIR filter with six filtering weights (1, -5,
20, 20, -5, 1) [9]. Figure 2 shows the locations of
integer-pixel, sub-pixel and quarter-pixel samples in the
luma component interpolation scheme. The integer-pixel
samples in the figure are labeled as A1-A6, B1-B6, C1-C6,
D1-D6, E1-E6 and F1-F6. The outer sub-pixel samples, b,
h, s and m, can be derived by applying 6-tap FIR filter
using integer-pixel samples as inputs. For example, the
horizontal sub-pixel b is computed according A3, B3, C3,
D3, E3 and F3 by applying equation (2.1). The final
prediction values b is derived through the Clip operation
that clips the resulting value between [0, 255]. In the same
manner, other sub-pixel samples s, h and m can be
generated by using integer-pixel samples located in the
same directions.

 b1 = (E3－5×F3＋20×A3＋20×B3－5×C3＋D3)
 b = Clip((b1＋16) >> 5) (2.1)

 The inner sub-pixel sample j is derived by calculating
the intermediate value denoted as j1 first by applying the
6-tap FIR filter to the intermediate values of the adjacent
six half sample positions in either the horizontal or vertical
direction, as shown in (2.2).

 j1 = (cc－5×dd＋20×h1＋20×m1－5×ee＋ff)
 j1 = (aa－5×bb＋20×b1＋20×s1－5×gg＋hh)
 j = Clip((j1＋512) >> 10)
 (2.2)

Figure 2. Integer-pixel and Sub-pixel Sample Locations in

Luma Component Interpolation Scheme

2.1.2. Quarter-pixel Sample Interpolation
 The luma values at quarter sample positions can be
derived by averaging one full nearest sample and one half
nearest sample [10]. For example, the quarter-pixel a is
computed by A3 and b as shown in equation (2.3). By
averaging with upward rounding of the two neighboring
samples located at integer and half sample positions, the
samples located at quarter sample positions labeled as a, c,
d, n, f, i, k, and q are calculated by applying the same
formula.

 a = (A3＋b＋1) >> 1 (2.3)

 By averaging with upward rounding of the two
neighboring samples locate at half sample positions in the
diagonal direction, the samples locate at quarter sample
positions labeled as e, g, p, and r can be derived by
applying equation (2.4).

 e = (b＋h＋1) >> 1 (2.4)

2.2 Related Works
 For the execution flow of H.264/AVC decoder, many
designs were proposed to improve the performance of the
process. Wang and Lie were designed new architectures for
executing interpolation and computational processes

efficiently, respectively.

2.2.1. Interpolation Architecture [11]
 Wang use multi-stage sub-pixel interpolation
architecture for luma component. The sub-pixel
interpolation architecture is composed of reference data
buffer and reference data feeding architecture. 9x9 pixels
valid reference data is stored into reference data buffer in
order to correspond with one 4x4 luma data interpolation.
The reference data feeding architecture composed of four
parts as show in Figure 3. According to the experimental
result and our observation shows the multi-stage sub-pixel
interpolation architecture is realized with traditional 6-tap
FIR filter may consume more hardware cost.

Figure 3. Reference Data Feeding Architecture

2.2.2. Computational Architecture [12]
 Lie proposed an alternative design using 4-tap
diagonal FIR filter for MC interpolation in luma component.
The luma values at half-pixel sample positions are derived
by applying a 4-tap FIR filter with filter weights (-1, 5, 5,
-1). Noticeable, the samples located at half sample position
labeled as j can be derived by using diagonal integer pixels
C2, B3, A4, and F5. Compared with traditional 6-tap FIR
filter, Lie's algorithm has disadvantage on quality
degradation in image PSNR performance because of the
mismatched filtering structure between encoder and
decoder. According the software simulation results, the
reconstructed frames may cause the sharpen effect, as
shown in the following. Figure 4 (a) is an original CIF
(352x288) frame of News and Figure 4 (b) is using 4-tap
diagonal filter FIR interpolation frame. Obviously, the
newscaster's face is sharpened of reconstructed frame
compared with original frame.

 (a) Original (b) 4-tap Diagonal Filter

Figure 4. Original Frame and 4-tap Diagonal Filter
Interpolation Frame

3. Design
 Under considerations of hardware implementation, we
employed a parallel and pipelined architecture to
implement the MC interpolation. The architecture, as
shown in Figure 5, is consisted of Reference Data Buffer
(RDB), Input Data Array (IDA), Pipeline Controller (PC),
and Fractional Interpolation Pipeline Architecture (FIPA).

Figure 5. Motion Compensation Interpolation Architecture

3.1. Proposed Algorithms for MC Interpolation
 We proposed two algorithms, STM Filter and FTM
Filter, to retain the reconstructed video with the same level
of quality as the video processed by traditional 6-tap FIR
filter and moreover to improve the computational efficiency.
The concept of STM filter is applying a 6-tap FIR filter
method and Mean concept. The luma values at half-pixel
sample positions can be derived by applying a 6-tap FIR
filter with filter weights (1, -5, 20, 20, -5, 1) and by
averaging four nearest samples at half sample positions.
The inner half sample position labeled as j in Figure 2 is
derived by averaging with upward rounding of the four
closest samples locate at half sample positions as shown in
(3.1).

 j = ((b＋h＋s＋m＋2) >> 2) (3.1)
 The STM filter, on the other hand, applies a 4-tap FIR
filter method and Mean concept. The luma values at
half-pixel sample positions can be derived by applying a
4-tap FIR filter with filter weights (-1, 5, 5, -1) and
averaging four neighboring samples at half sample
positions.

3.2. Reference Data Buffer and Input Data Array
 In order to achieve the parallel requirements, we
divided the reference data into two parts, the reference data
buffer store the reference data for a 4x4 luma block
interpolation and the input data array store the necessary
integer pixels for fractional interpolation pipeline
architecture, as shown in Figure 6. According the formula
of 6-tap FIR filter, the filter requires a larger area of pixel
data for interpolating a 4x4 block area. Two-pixel extension
on the left and top side of the 4x4 block and three-pixel
extensions on both right and bottom sides are required.
Therefore, the hardware needed to buffering sixty-five
neighboring pixels in registers for possible references. In
order to handle the frame whose boundaries or size are not
a multiple of four or eight, we divided the large block size
into multiple 4x4 blocks, and then the frame edges are
filled with the duplicates boundary pixels to receive straight
reference data in the filtering [13].

 The FTM filter method is based on 4-tap FIR filter,
when enforced a 4x4 block interpolation, the original 4x4
block needs to plus one-pixel extension to the left and top
and 2-pixel extension to the right and bottom except 4
pixels of four corners. Consequently, the hardware needs to
buffer forty-five neighboring pixels in registers for possible
references. Similarly, we used input data array between
reference data buffer and fractional interpolation pipeline
architecture.

Figure 6. RDB and IDA of MC Interpolation Architecture

3.3. Pipeline Controller of MC Interpolation
Architecture
 We proposed a new concept for pipeline controller,
which controlled and managed the data updating procedure,
called Snake Path, thereinafter abbreviation S Path. In STM
filter method, as show in Figure 7, the blue dot-real
rectangle represents S Path proceeding. That consists of
two streams, the red dotted line represents control stream,
and black arrow represents data stream that includes three
parts, the data input from reference data buffer by three
directions, the inner data stream of input data array, and
output data to FIPA by horizontally directions (second and
third row) and vertically directions (second and third
columns). In FTM filter method, because of using 4-tap
FIR filter for fractional sample interpolation, only
forty-five pixels reference data and twelve pixels reference
data is supplied for RDB and IDA, respectively. The
structure of Snake Path for FTM filter shows in Figure 8.

Figure 7. Structure of Snake Path for STM Filter

 The S path of STM filter method can be divided into
three portions: Shift-up, Shift-left and Shift-down. In FTM
filter method, the operations are the same as STM filter
method except the reference data buffer with forty-five
integer pixels and twelve integer pixels input data array.

3.4. Fractional Interpolation Pipeline Architecture
(FIPA)
 To achieve design simplicity, we chose pipeline

architecture to implement the fractional interpolation. For
pipeline interpolation architecture, we divide the fractional
interpolation process into three stages: Half-level, Center
half-level and Quarter-level.

Figure 8. Structure of Snake Path for FTM Filter

 The block diagram of fractional interpolation pipeline
architecture was shown in Figure 9. First, "Half-level"
handles two vertical and on second and third row column
and two horizontal on second and third row of input data
array by the SixTapFilterArray or FourTapFilterArray in
parallel; middle values of half-level future deliver to
"Center half-level" to enforce the intermediate half-pixel
filter by the MeanFilter; afterward, if the goal is the
quarter-pixel sample location then two half-pixel samples
or one half-pixel and one integer-pixel sample are filtered
by BilinearFilter. According to current motion vector, the
multiplexer choice which one of the samples on
integer-pixel sample location or sub-pixel sample location
output to next stage. The input data array, pipeline
controller, and PelOut are also included to compose of a
complete pipelined architecture. The detailed design of
each stage except BilinearFilter in the architecture is
explained in the following paragraphs. As for the design of
BilinearFilter, it is the same as that of the bilinear filter in
the related work.

Figure 9. Block Diagram of Fractional Interpolation
 Pipeline Architecture

3.5. Architecture of SixTapFilterArray
 In STM filter design, we divide the half-pixel
interpolation process into two parts, SixTapFilterArray and
MeanFilter. For the half-level stage, we combine four 6-tap
FIR filter into a SixTapFilterArray to correspond with
half-pixel samples interpolation in horizontal and vertical
direction. Figure 10 shows that the architecture of

SixTapFilterArray, the input reference data is loading from
input data array, E3 to D3 and E4 to D4 are loading from
second and third row; B1 to B6, and A1 to A6 are loading
from second and third column, and output two horizontal (b,
s) and vertical (m, h) half-pixel samples to next stage.

Figure 10. Architecture of SixTapFilterArray

3.6. Architecture of FourTapFilterArray
 In FTM filter design, we also divide the half-pixel
interpolation process into two parts, FourTapFilterArray
and MeanFilter. We integrate four 4-tap FIR filter to build a
FourTapFilterArray in order to correspond with half-pixel
sample interpolation in horizontal and vertical direction of
half-level stage. Figure 11 shows that the architecture of
FourTapFilterArray, twelve integer samples are loaded
from input data array, F3 to C3 and F4 to C4 are loaded
from second and third row; B2 to B5 and A2 to A5 are
loaded from second and third column, then output a 4x1
half-pixel array to next stage.

Figure 11. Architecture of FourTapFilterArray

3.7. Architecture of MeanFilter
 The mean filter is used for intermediate half-pixel
sample interpolation process on center-location. Figure 12
shows the related position of the reference and fractional
interpolation pixels of mean filter. The gray blocks
represent the sample on full-pixel location and green block
represent the sample on half-pixel location. In our design,
the center half-pixel interpolation process needs adjacent
four half-pixel samples on horizontal and vertical location
to produce one center sample on half-pixel location. The
function representations of mean filter with one time filter
coefficient and the regulative result can be written as
equation (3.2). The architecture of mean filter with four
adders and one shifter is shown in Figure 13.

 j = ((b＋s＋m＋h)＋2) ÷ 4)
 j = ((b＋s＋m＋h)＋2) >> 2) (3.2)

Figure 12. Related Pixels of Mean Filter

Figure 13. Architecture of Mean Filter

 Our proposed methods use four 6-tap filters; each
6-tap filter with 7 adder (add.) and 3 shifter (shif.), or four
4-tap filters; each 4-tap filter with 5 adder and 2 shifter, and
one mean filter with 4 adder and 1 shifter, and one bilinear
filter with 2 adder and 1 shifter, and two cross registers
structure for storing unfiltered pixels. Obviously, our
methods can reduce half hardware cost compared with
6-tap FIR filter method. The number of filters, adders,
shifters, and registers may mirror the bulk of hardware cost.
Figure 14 illustrated the input data transfer and how the
luma filter worked of STM filter method. We sequentially
read in integer pixels from reference data buffer to input
data array. As soon as, we obtained enough data, we can
start to filter the integer pixels. For example, red blocks
represent 4x4 luma partition, black block represent
reference data extension, and circular number shows MC
interpolation location. First read four pixels A1, B1, A2,
and B2 form the first and second row. We needed to read
successive integer pixels until we got twenty pixels from
the first to the sixth row. Then, we had enough data to filter
and output the interpolation data while reading and filtering
integer pixels.

 For FTM filter method, we will need fewer cycles for
interpolating integer pixels and there was slight different in
data transfer, such as read data from second and third row
in cycle 0 and cycle 1 respectively, and read data from first
and fourth row in cycle 2 as show in Figure 15.

Figure 14. Reference Data Supplying Architecture of STM

Filter

Figure 15. Reference Data Supplying Architecture of FTM

Filter

 The time management of one 4x4 block of STM filter
method was shown in Figure 16. We needed 4 cycles for
reading reference data. Then, after finish reading, we
started to process interpolation. The interpolation pipeline
delay is consumed 4 cycles, among process periods, the last
cycle overlapped the first interpolation output pixel of
interpolation computing, and 16 cycles consumed on full
luma pixel interpolation computing. After we complete
interpolation, we start to process the next block.

Figure 16. Time Management of One 4x4 Block of STM

Filter

4. Experimental Results
 The verification environment of our designs was based
on H.264 reference software JM11.0 at High profile which
was providing by JVT [14]. All sequences was make up of
only one I-frame at the starting of a sequence, and two
B-frames were inserted between each two uninterrupted
P-frames, the QP of three types were set to 25. Full search
motion estimation with a range of ±16 and hadamard
transform was used. The test samples, includes eight QCIF
and CIF sequences : "Akiyo", "Carphone", "Mobile",
"Foreman", "News", "Coastguard", "Container", "Silent",
one QCIF sequence : "Salesman", and two CIF sequences :
"Stefan", "Football" were used for tests. Each sequence,
composed of 100 QCIF (176x144 pixels) frames and 300 or
258 CIF (352x288 pixels) frames. Other specification such
as frame rate was set to 30, entropy coding was set to
CABAC, and the RD-optimized mode decision is disabled.

 Since the H.264/AVC has been become the standard,
in the software simulation, we kept the interpolation
method of encoder and investigate the feasibility of
adopting different interpolation filters (i.e., 4-tap diagonal

FIR filter [9] and our proposed FTM filter and STM filter)
in MC interpolation of decoder.

 We modified the source code of H.264/AVC decoder,
using 4-tap diagonal filter [9] and our proposed methods
instead of traditional 6-tap filter algorithm in MC
interpolation. The peak signal-to-noise ratio (PSNR)
performance for the QCIF sequences and the CIF
sequences are shown in Table 1 and Table 2. We only
compare the PSNR performance of luma element (PSNRY)
between the frames constructed by using 6-tap filter, 4-tap
diagonal filter, FTM filter, and STM filter. The gain of table
is the difference in PSNRY between 6-tap filter and
employing interpolation methods. Form simulation results,
the 4-tap diagonal filter caused average 4.65 dB and 8.2 dB
PSNRY degradation for reconstructed video quality of
QCIF sequences and CIF sequences, respectively.
Relatively, our proposed FTM filter and STM filter average
less than 4.47 dB and 2.02 dB of QCIF sequences, and less
than 7.39 dB and 3.18 dB of CIF sequences.

 Table 1. PSNR Performance for the QCIF Sequences

6-tap 4-tap
diagonal FTM STM

Sequence PSNRY
(dB)

PSNRY
(gain)

PSNRY
(gain)

PSNRY
(gain)

Akiyo 40.84 38.04
(-2.80)

37.90
(-2.94)

39.88
(-0.96)

Carphone 39.50 34.10
(-5.00)

34.56
(-4.94)

37.50
(-2.00)

Mobile 36.07 25.38
(-10.69)

24.38
(-11.69)

27.99
(-8.08)

Foreman 38.56 30.82
(-7.74)

31.97
(-6.59)

35.41
(-3.15)

News 39.21 36.28
(-2.93)

36.96
(-2.25)

38.16
(-1.05)

Coastguard 36.56 33.01
(-3.55)

32.92
(-3.64)

34.88
(-1.68)

Container 38.51 33.94
(-4.57)

33.95
(-4.56)

38.46
(-0.05)

Silent 38.22 35.94
(-2.28)

36.09
(-2.13)

37.53
(-0.69)

Salesman 38.07 36.18
(-1.89)

36.51
(-1.56)

37.53
(-0.54)

Average 38.39 33.74
(-4.65)

33.92
(-4.47)

36.37
(-2.02)

 Subsequently, we further discussed the restructured
video quality of different interpolation methods. We could
obviously realized not only the PSNRY degradation as
show in above tables, but also damaged and caused the
sharpen effect for reconstructed frame. Such as the roof and
the eyes of foreman sequence, and the newscaster faces of
news sequence. There are two reasons may cause the
effects, first reason was the mismatch between encoder and
decoder, another was the 4-tap diagonal filter using
diagonal direction integer-pixel samples to process
intermediate half-pixel sample, which may created lower
correlation with 4-tap filter coefficients compared with
using horizontal or vertical direction integer-pixel samples
with 6-tap filter coefficients in traditional 6-tap filter. This
signifies the reconstructed frame may cause larger error
under mismatch situations, nevertheless since the FTM

filter using four nearest half-pixel samples with mean
method to deal with the intermediate half-pixel sample, that
enhanced the correlation about interpolation pixel,
accordingly, there were lower sharpen influence for
reconstructed frame beside 4-tap diagonal filter.

Table 2. PSNR Performance for the CIF Sequences
6-tap 4-tap

diagonal FTM STM
Sequence

PSNRY
(dB)

PSNRY
(gain)

PSNRY
(gain)

PSNRY
(gain)

Akiyo 41.91 32.61
(-9.30)

34.39
(-7.52)

39.11
(-2.80)

Carphone 39.69 31.32
(-8.37)

32.56
(-7.13)

37.11
(-2.58)

Mobile 36.58 22.63
(-13.95)

23.18
(-13.40)

27.99
(-8.59)

Foreman 38.43 31.11
(-7.32)

32.66
(-5.77)

35.79
(-2.64)

News 40.35 32.62
(-7.73)

33.60
(-6.75)

38.27
(-2.08)

Coastguard 37.03 28.57
(-8.46)

29.48
(-7.55)

32.26
(-4.77)

Container 38.35 27.97
(-10.38)

28.06
(-10.29)

37.53
(-0.82)

Silent 38.11 32.81
(-5.30)

34.29
(-3.82)

37.02
(-1.09)

Stefan 37.75 28.03
(-9.72)

28.27
(-9.48)

32.15
(-5.60)

Football 38.22 36.71
(-1.51)

35.99
(-2.23)

37.35
(-0.87)

Average 38.64 30.44
(-8.20)

31.25
(-7.39)

35.46
(-3.18)

 For the same reason as FTM filter method, the STM
filter using nearest four half-pixel samples to process the
intermediate half-pixel sample, and the four half-pixel
samples in horizontal and vertical direction were processed
by using 6-tap FIR filter, hence, the sharpen effect may be
improved for reconstructed frame. Such combination may
create almost video quality for reconstructed frames
contrast with traditional 6-tap filter and reduced the
consumption of hardware cost. Obviously, not all of the
PSNR performances are superiority of the reconstructed
frames by STM filter over the reconstructed frames by
4-tap diagonal filter. The video quality by STM filter was
nearly with original frame and reconstructed frame by other
interpolation methods. Considering the nearly video quality
for H.264/AVC decoder, STM filter was the better choices
on the lower computing complexity video decoding system.

5. Conclusion
 In this paper, we proposed two luma interpolation
algorithms for MC interpolation in H.264/AVC
decoder--FTM filter and STM filter and designed effective
parallel and pipelined hardware architecture for the
proposed algorithms, which included a new data supply
method--Snake Path controller for realization in hardware.
The average PSNR performance of luma element in FTM
filter, by which that is less than 7.39 dB and higher than
0.81 dB compared with 6-tap FIR filter and 4-tap diagonal
FIR filter at penalty of slightly sharpen effect; the average

PSNR performance in STM filter, by which that was less
than 3.18 dB and higher than 5.02 dB compared with
traditional 6-tap FIR filter and 4-tap diagonal FIR filter at
nearly video quality. Both the FTM and STM MC
interpolator were synthesized with TSMC 0.13 um
technology. Our design employs fewer adders, shifters, and
registers for realization in hardware, the hardware cost of
FTM filter and STM filter could save 68% and 48%
compared with 6-tap FIR filter, and that could save 21%
and increase 29% compared with 4-tap diagonal FIR filter.
If the computational complexity was a top priority and the
video quality was next consideration, the FTM filter may
be a better choice with lower hardware cost design; but if
the video quality is a top priority and the computational
complexity is next consideration, the STM filter may be
another better choice with nearly reconstructed video
quality design.

6. Reference
[1] J. Ostermann, J. Bormans, P. List, D. Marpe, M.

Narroschke, F. Pereira, T. Stockhammer and T. Wedi,
"Video coding with H.264/AVC: tools, performance,
and complexity," IEEE on Circuits and Systems
Magazine, vol.4, pp. 7-28, 2004.

[2] T. Wiegand, G. J. Sullivan, G. Bjontegaard, and A.
Luthra, "Overview of the H.264/AVC Video Coding
Standard", IEEE Transactions on Circuits and Systems
for Video Technology, vol. 13, no. 7, pp. 560-576,
2003.

[3] A. Azevedo, B. Zatt, L. Agostini, and S. Bampi,
"Motion compensation sample processing for HDTV
H.264/ACV decoder" in IEEE Norchip, pp. 110-113,
Nov. 2005.

[4] M. Horowitz, A. Joch, F. Kossentini, A. Hallapuro,
"H.264/AVC baseline profile decoder complexity
analysis," IEEE Trans. Circuits Syst. Video Technol.,
vol. 13, pp. 704-716, July 2003.

[5] H. W. Feng, Z. G. Mao, J. X. Wang, D. F. Wang,
"Design and implementation of motion compensation
for MPEG-4 AS profile streaming video decoding," in
Proc. 5th Int. Conf. ASIC, vol. 2, pp. 942-945, Oct.
2003.

[6] Ville Lappalainen, Antti Hallapuro, and Timo
D.Hamalainen, "Complexity of Optimized H.26L
Video Decoder Implementation", Circuits and Systems
for Video Technonlogy, IEEE Transactions, July 2003.

[7] I. E. G. Richardson, H.264 and MPEG-4 video
compression: Video Coding for NextGeneration
Multimedia. Chichester, UK: John Wiley & Sons,
2003.

[8] Philip P. Dang. Embedded architecture for fast
implementation of H.264 subpixel interpolation. in:
Subramania Sudharsanan, V. Michael Bove. Embedded
Processors for Multimedia and Communications II.
San Jose, CA, USA: SPIE PRESS, 72-78, 2005.

[9] T. Wedi and H. G. Musmann, "Motion- and
Aliasing-compensated Prediction for Hybrid Video
Coding," IEEE Trans. Circuit Syst. Video Technol.,
vol.13, no.7, pp.577-586, July 2003.

[10] Joint Video Team (JVT) of ISO/IEC MPEG and ITU-T
VCEG, "Draft ITU-T recommendation and final draft
international standard of joint video specification
(ITU-T Rec. H.264/ISO/IEC 14 496-10 AVC",
JVTG050, 2003.

[11] Ronggang Wang, Mo Li, Jintao Li, Yongdong Zhang,
"High Throughput and Low Memory Access Sub-pixel
Interpolation Architecture for H.264/AVC HDTV
Decoder" IEEE Transactions on Consumer Electronics.
vol.51, issue.3, pp.1006-1013, Aug. 2005.

[12] W. N Lie, H. C. Yeh, C. F Chen, and etc.,
"Hardware-Efficient Computing Architecture for
Motion Compensation Interpolation in H.264 Video
Coding" in Proc. of IEEE Int. Symp. On Circult and
Systems, Kobe, Japan, pp. 2136-2139, May 2005.

[13] T. Sihvo, and J. Niittylahti, "H.264/AVC Interpolation
Optimization" in Proc. IEEE Workshop on Signal
Processing Systems Design and Implementation, 2003,
SIPS 2005. 2-4 pp. 307-312, Nov. 2005.

[14] Video Team H.264/AVC Reference Software Version
JM11.

