
Smart-Fit: Peer-to-Peer Topology Construction Strategy for Live Video
Streaming towards Minimal Delay

Chun-Hao Chang, Peng-Jung Wu, Chung-Nan Lee
Department of Computer Science, National Sun Yat-sen University, Kaohsiung, Taiwan
M953040034@student.nsysu.edu.tw, wupl@cse.nsysu.edu.tw, cnlee@cse.nsysu.edu.tw

Abstract-Due to the fast growing bandwidth of
Internet users, the P2P live video streaming on the
Internet is feasible today. In this research, we
proposed a topology construction method:
Smart-Fit, towards minimizing the transmission
delay between users and video server. The concept
is based on minimizing the hop counts between
server and users, in further to reduce the delay.
The proposed method builds a predicted ideal
template. Then the topology is constructed
according to the template. Simulation results show
the proposed method successfully reduces the hop
count and the transmission delay between users
and server. Moreover, due to the reduction of hop
count, the packet loss rate is also reduced.

Keywords: P2P, Topology, Construction, Delay.

1. Introduction
The existing P2P topology construction method

for peer-to-peer streaming can be categorized
towards two groups: random-neighbor and
tree-based. Random-neighbor approach such as
Coolstreming [1] and GridMedia [2], are robust to
the dynamic nature of peers. The random-neighbor
approach distributes data to the random neighbors,
with either “push” or “pull” modes and improves
peers utilization efficiency according to their local
information; consequently, the choosing of
neighbor is not global optimum for a specific
metric, for example, the average delay from server
to peers. Outreach [3] is proposed by Small et al., a
topology construction method reduces server
bandwidth costs.

The tree-based approach such as Splitstream [4]
and CoopNet [5], have been proposed. ZIGZAG [6]
uses hierarchical clustering to manage topology
while a system is in a large scale. However, the
algorithms are complicated and may not be
accommodated for high-transient environment.

In contrast to the benefits of the P2P
architecture, most of the existing studies fall short
of addressing the overlay topology construction for
a live streaming environment towards minimizing

video delay between server and peers. In a real
time broadcasting session, such as sports event or
financial information, the algorithms to construct
such topology are necessary.

In this paper, a topology construction strategy,
Smart-Fit, is proposed. The general objective is to
construct an overlay topology with minimal delay
and packet loss rate by reducing the peers’average
peer hop count to video server. Our contributions
are the following. First, we present the framework
that minimizes the peers’ average peer hop count
in an ideal environment with complete knowledge
of all participating peers. Second, based on the
perception of the framework, we present the
Smart-Fit algorithm to construction the topology.
Since the topology with strictly minimum average
hop count is not possible because of the transient
nature of peers, we build the topology towards a
goal template. The template represents the
predicted minimum average hop count topology
after ΔT time. Finally, by minimizing the average
hop count, the packet delay and the packet loss
rate are reduced significantly.

The rest of the paper is organized as follows.
Section 2 introduces the preliminaries and
definitions. Section 3 presents the related strategies.
Section 4 presents the proposed method. Section 5
brings the experimental results and the conclusions
are drawn in Section 6.

2. Preliminaries and Definitions
In a binary tree structure having two levels as

shown in Figure 1, peers in level one (peer 1 and
peer 2) obtain all streaming data directly from
server, and the peers in level two obtain the
streaming data from peers in level one. As long as
the system grows up, the depth of the tree
increases, which introduces network delay.
Network delay is the time taken for a packet to
traverse the network. When a server broadcasts a
streaming packet, peer 1 receives the packet first
and then forwards to peer 4. The time peer 4
receives the packet equals the time peer 1 receives
the packet plus network delay between them. It is
easy to understand that the peer who has larger hop

count from the server suffers larger network delay.

Figure 1. An example of the binary tree.

2.1. Definition of Average Hop Count
Let the peer who is connected to server as

parent be called a “level 1 peer”, q1, which has the
distance one hop count to the server; in the same
way, a peer who is connected to a “level n-1 peer”
as parent is called a “level n peer”, qn, which has
the distance n hop counts to the server. Suppose
there are n levels in the current session. Let the set
of level n peer Qn, be: Qn={qn, qn,… , qn}. Let the
number of peer in the set Qn, be mn. Then the
peers’ average hop count (distance) to the server,
D, is defined as:

















n

i
i

n

i
i

n

n

m

im

mmm

nmmm
D

1

1

21

21

)(

...

)...21(

2.2. Problem Statement
Since the peer’s hop count to server is directly

related to delay, based on a given topology Y, the
goal is to build a topology after a duration ΔT,
without moving the existing peers in Y, such that
the global peers’ average hop count to server is
minimum. Suppose that there are n types of
different uplink peers, without losses of generality,
these n types of peer have the same willing to enter
the session; thus, each type of peer has different
arrival rate. Let λi be the arrival rate of type i peer.
And every participating peer has a departure rate μ.
Let Ni be the number of type i peer in the current
session and Y be the current session topology. The
peers’ average hop count (distance) to server is D.
The problem statement is: Given Y, {N1, N2, … Nn},
{λ1, λ2, … λn}, μ, ΔT, to find a topology Y’after ΔT,
without moving existing peers in Y, such that D is
minimized.

3. Related Strategies
In the Smart-Fit, we seek to construct the best

topology towards minimizing the average hop
count between the server and participating peers.
To design such a superior topology, we first take
insight of the characteristic of some existing and
straightforward strategies previously proposed.

3.1. Strategy: Random
One simple and possible approach to arrange

peers in the topology is to connect them randomly.
When a new peer joins the session, it randomly
connects to a participating peer, including server,
who has sufficient upload bandwidth to forward
the streaming.

Figure 2 shows an example of the random
topology. The black node is the streaming server.
The white peers are the participating peers. The
number inside a peer represents the max number of
children it can support. In reality, different peers
have different uplink bandwidths, so the number of
each peer is not quite the same. The index besides
a peer represents the session entry order.

This kind of strategy is simple, flexible, and
easy to implement. However, the random strategy
does not take any metric into optimization. In
Figure 2, the minimum hop count objective is
clearly not achieved.

Figure 2. An example of the random topology.

3.2. Strategy: Best-Place First
Since the goal is to achieve minimum hop count

between streaming server and participating peers,
one straightforward strategy is to assign new
arrival peer to the closest position to the server.

Figure 3. An example of the best-place first
topology.

Figure 3 shows and example of best-place first
strategy. When a new peer arrives, it first contacts
the server. The server first checks if it has
available bandwidth. If yes, the new joining peer
connects to the server. Else, the server picks the
peer who has the smallest distance to it and has
enough available bandwidth as the parent of the
new joining peer. If there are peers having same
distance to server, the server picks randomly one

from them. The new joining peer then connects to
the assigned parent.

3.3. Framework of Minimum Hop Count
Although the Best-Place First assigns the

closest position to server for each new peer, it does
not guarantee the overall topology having a
minimum average distance; it might fall into the
trap of local optimum. Figure 4 shows a smaller
average distance topology compared to Figure 3.
The problem is the Best-Place First inserts peer
only based on the current information. If some
topology awareness mechanisms are added and the
behaviors of peers are predicted, the system may
insert peers in a more efficiency way.

Figure 4. A better arrangement than the Best-Place
First in Figure 3.

From a simple view point of the data structure:
assuming there are a fixed number of nodes with
different maximum out-degree, building these
nodes into a tree structure with minimum tree
height is making the largest out-degree node as the
root and connecting the remaining nodes in a
descend way with respect to their out-degree. That
is, making the larger out-degree peer at the higher
level of the tree. The following examples briefly
explain the view. Assuming there are one node
with maximum out-degree three, one node with
maximum out-degree two, and two nodes with
maximum out-degree one. The tree structure builds
with these nodes having the minimum tree height
is the leftmost topology in Figure 5. No other
methods build the tree with smaller tree height,
neither the middle one nor the rightmost one in
Figure5. Inversely, putting the smaller out-degree
nodes at higher level of a tree makes the tree the
highest, like the rightmost one.

Figure 5. Framework of min. hop count.

3.4. The Placement Dilemma
In reality, the peers’ behaviors are dynamic. So

it is impossible to make the topology always
having minimum average hop counts. The
dynamic of peers brings insertion dilemma as
illustrated in Figure 6(a). Suppose there are three
types of peers who can support three, two, and one
children respectively. When there is a moderate
type of peer entering, it’s hard to decide where it
should connect to. From the view point of locally
optimal, the new peer should connect to the server
for reaching the minimum tree height. However, if
the next entering peer is the strong uplink type,
like Figure 6(b), the strong uplink peer is forced to
connect to the lower level than the moderate peer,
violates the objective of placing stronger uplink
peer at higher level of the topology. The other way
is to connect it as level two peer, reserving server
bandwidth for future stronger uplink peer. Because
the dynamic of peer’s behavior, the next entering
peer may be a weak one, like Figure 6(c). This
makes the reservation in vain and causes the
topology grows meaninglessly higher.

Figure 6(a). The insertion dilemma.

Figure 6(b). Dilemma case 1.

Figure 6(c). Dilemma case 2.

4. The Proposed Method
Because of the transient nature of peers makes

the topology always having minimum average hop
counts impractical. Based on the uplink bandwidth
statistic of the real world peers [7], the proposed
Smart-Fit strategy uses current information and the
predicting model to build a sample template after
ΔT, which represents the topology with minimum
average hop counts to server. Smart-Fit inserts
new peer with respect to the template. Once the
peers’ behaviors match the predicting template,
then the topology has the minimum average hop
counts after ΔT.

4.1. Building Template
The template is built based on the known

information: the arrival rate of each type of peer
{λ1, λ2, … λn}, the number of each type peer in the
current session {N1, N2, … Nn}, peer departure rate
μ, and ΔT. The model below builds the template
after ΔT.

The predicted number of arrival peer of type i,
Ai, i=1 to n, during ΔT is:

ii TA 

The predicted number of leaving peer of type i,
Li, i=1 to n, during ΔT is:

 ii NTL

Therefore, the predicted changing number of
type i peer, Pi, i=1 to n, during ΔT is:

)()(  iiiii NTTLAP

Because there are n types of peers, the predicted
changing number of total peers after ΔT is:

 
 


n

i

n

i
iii NTTP

1 1

))()((

After the predicted changing number of each
type of peer is calculated, the template after ΔT can
be built. The template is built in a top-down
manner, since the high uplink peers need to be
placed at the top of the topology; it starts with the
strongest type n peer. The predicted changing
number of type n peer is Pn, because they are
expected to but haven’t come yet, so the predicted
changing peer is called the “virtual peer”. These Pn

“virtual peers” need to be placed into the template.
The process is simple: according to the available
bandwidth in current template, place these Pn

virtual peers as close to server as possible. And
after all the Pn virtual peers are placed into the
template, it takes turn to the second strongest
uplink virtual peer, type n-1 with Pn-1 virtual peers.
The process continues until all types of predicted
virtual peers are inserted to the template.

Figure 7 shows the example. At time now, there
is an existing topology, and we wish to generate
the template topology after ΔT, ΔT=10 seconds.
Assume the statistic data shows there are two types
of peer whose upload and download bandwidth is
larger than the video rate; the type one peer takes
account for 2/3 of the total peer and type two peer
takes account for 1/3. Assume there are 0.6 peers
entering the session every second on average and
each peer has the mean service time of 50 seconds,
equals the departure rate μ=0.02. Then after time
period ΔT, it is expected to increase
[(10×0.4)-(10×4×0.02)]=3 type one peers and
[(10×0.2)-(10×2×0.02)]=2 type two peers in the

session.
The dot-line nodes are virtual peers. The

template is first built from inserting type two
virtual peers. In this case, the closest available
locations to server are two quotas at level two, so
these two type two virtual peers are placed at level
two. After all the type two virtual peers are
inserted, it begins to insert the type one virtual
peers. Now the closest available locations to server
are at level three, so the type one peers are placed
at level three. The built template is like Figure 7.
The template indicates the quotas of each type of
peer at different levels during ΔT. In this example,
during ΔT, there are two quotas for type two peer
at level 2, and three quotas for type one peer at
level 3. After the template is built, the peer who
joins during ΔT is placed according to the template

05.0

4.01 

2.02 

Figure 7. Building template.

4.2. Arrival and Departure of Peer

Figure 8. Arrival and departure of peers.

Figure 8 illustrates the process when a peer
arrives and leaves. At time now, the template is
already built. When a type two peer enters, it first
checks the template for the closest type two virtual
peer to server; it finds two quotas at level two so it
is randomly connected to a level one peer. Then, a
type two virtual peer in the template is replaced
with the real peer and link. The joining process is
done. Next, when the middle type one peer leaves,

the real link in the template is removed and it is
changed to a virtual peer. The process continues, if
the peers behave just like predicted, then the peers
in the topology has the minimum average hop
count to server after ΔT. And after ΔT, the next
new prediction is made and the new template is
built, it follows the new template to insert the
joining peer afterwards. We only care about
placing each peer to the right level; connecting to
which parent is not specifically restricted. The
process repeats until the session is over.

4.3. The Deviations
Since the template is built from the prediction

with statistic data, there is time when the peers’
behaviors out of the prediction, for example, a
certain type of peers arrive too many and exceed
the predicting number in template. The Smart-Fit
makes new prediction and new template at the
moment deviation happens and builds the topology
heading for the new goal. After the new template
is made, the new peer would be able to insert to
the topology again.

5. Experimental Results
In this simulation, the video rate is 256kbps and

the server’s upload bandwidth is 10Mbps. There
are 5 different types of peer, which is set according
to the statistic data mentioned in [1]. From type
one peer to type five peer, they have upload
bandwidth of 4096Kbps, 2048Kbps, 1024 Kbps,
512Kbps and 256Kbps respectively. The arrival
rate of type tree peer is 0.5 and the others are 0.125.
The service time of participating peers are random
variable with exponential distribution with mean
1800 seconds. The peers’ arrival behaviors are
random variable follow the exponential
distribution with their respective arrival rate. In the
ns-2 simulations, we use the GT-ITM Generator to
create 600 nodes transit-stub graph as the
underlying network topology. Amount them are 24
transit nodes and 576 stub nodes. The 24 transit
nodes distributed in 4 transit domains with 6
transit nodes in each one. Each transit node
connects three stub domains and there are 8 stub
nodes in each one. The participating peers are
randomly connected to the stub nodes. There is
only server with no participating peer at the
session startup time. Each simulation runs 10 times
and the results are the average of it.

Figure 9 shows the results of peers’ average
hop count to server with different strategies.
Random strategy performs the worst because it
doesn’t take any metric into optimization. During
the early period of the session, the Best-Place First
and the Smart-Fit ΔT=50 perform better. However,
when the time goes on, the Best-Place First always

connects the joining peer to the highest level of the
topology ignoring the global objective, leaving low
upload bandwidth peers at the high level of the
topology, causing the performance to drop down.
When the system approaches the stable state, the
Best-Place First performs worse than any of the
Smart-Fit strategies.

Smart-Fit performs the best when predicting
period ΔT=300 and ΔT=500, that is, predicting the
future peers’behavior and making new template as
the topology growing goal every 300 to 500
seconds. The small ΔT causing the predict period
too short, can’t precisely predict the trend of the
peer in a macro scope way, making a result toward
the local optimal, just like the Best-Place First.
However, when the ΔT is too large, the fault
tolerance of the system becomes bigger, this
means when the topology grows to a wrong way, it
takes longer time to be aware of and makes new
goal and correction, which also brings negative
effect to the topology. The Smart-Fit reduces 17%
of hop count compared to the Best-Place First.

Figure 9. Average hop count to server.

Figure 10 shows the result of the average
packet delay. The smaller hop count means smaller
delay. The result of this simulation matches the
trend in previous section. Among them, the
Smart-Fit still performs best and reduces the
packet delay up to 19% compared to the
Best-Place First.

Figure 10. Avg. packet delay to server.

The packet loss rate is directly related to the

hop count of peers; the more links and hops a
packet traverses from the source to the destination,
the higher the loss probability of the packet is.

Figure 11 shows the average packet loss rate
from video server to each participating peer. In this
simulation, the packet loss probability among each
link is a random variable with uniform distribution
between mean 0 and 0.05. The results show that
the Smart-Fit not only reduces the delay of the
packet transmission but also reduces the packet
loss rate by minimizing the hop count between
peers. The Smart-Fit reduces the packet loss rate
up to 10% compared to the Best-Place First.

Figure 11. Packet loss rate.

The Smart-Fit strategy arranges new arrival
peers according to a template which is built with
current peers and future predicted peers. Thus,
there is a possibility that the Smart-Fit assigns a
peer to connect a certain level parent that haven’t
enter yet. In this case, the peer has to wait for the
correct parent to enter, starting the data
transmission. Figure 12 shows the waiting
percentage of the total peers. With the proper
setting of the ΔT, about 4% to 6% percent of the
peers suffer a waiting period. Figure 13 shows the
average waiting time of them. Again, with the
proper setting of ΔT, the peers who suffer the
waiting period only need to wait about 2 to 4
seconds for parent. Both of the waiting percentage
and the waiting time are considered pretty low.

Figure 12. The waiting percentage.

Figure 13. Average waiting time.

6. Conclusions
In this paper, the Smart-Fit, a strategy of

building P2P topology for live media streaming
toward minimizing the delay between broadcasting
server and each participating peers is proposed.
The other straightforward methods are compared.
Simulation results show that among them the
Smart-Fit looks the most promising. The Smart-Fit
reduces packet delay up to 19% compared to the
Best-Place First and reduces packet loss rate up to
10% when the network condition is poor.

References
[1] X. Zhang, J. Liu, B. Li and T. P. Yum,

“CoolStreaming/DONet: A DataDriven Overlay
Network for Efficient Live Media Streaming,” in
Proceedings of the IEEE INFOCOM’05 Conference,
pp.2102-2111, Mar. 2005.

[2] M. Zhang, L. Zhao, J. L. Y. Tang and S. Yang,
“GridMedia: A Multi-Sender Based Peer-to-Peer
Multicast System for video streaming,” in
Proceedings of the IEEE ICME’05, pp.614-617, Jul.
2005.

[3] T. Small, B. Li, and B. Liang, “Outreach:
Peer-to-Peer Topology Construction towards
Minimized Server Bandwidth Costs,” IEEE Journal
on Selected Areas in Communications, vol. 25, no. 1,
pp.35-45, Jan. 2007.

[4] M. Castro, P. Druschel, A.-M. Kermarrec, A.
Rowstron and A. Singh, “SplitStream:
High-bandwidth Content Distribution in Cooperative
Environments,” in Proceedings of the 2nd
International Workshop on Peer-to-Peer Systems,
vol. 2735, pp. 292-303, Feb. 2003.

[5] V. Padmanabhan, H. Wang, P. Chou and K.
Sprianifkulchai, “Distributing Streaming Media
Content using Cooperative Networking,” in
Proceedings of the 12th International Workshop on
Network and Operating Systems Support for Digital
Audio and Video, pp. 177-186, May. 2002.

[6] D. A. Tran, K. A. Hua and T. T. Do, “A Peer-to-Peer
Architecture for Media Streaming,” IEEE Journal on
Selected Ares in Communications, vol. 22, no. 1, pp.
121-133, Jan. 2004.

[7] S. Saroiu, P. K. Gummadi and S. D. Gribble, “A
Measurement Study of Peer-to-Peer File Sharing
Systems,” in Proceedings of the Multimedia
Computing and Networking, Jan. 2002.

