A Greedy Approach to Query Processing for
Different Query Distributions in Data Warehouses

Ye-In Chang, Hue-Ling Chen, and Chien-Show Lin
Dept. of Computer Science and Engineering
National Sun Yat-Sen University
Kaohsiung, Taiwan, R.O.C
E-mail: changyi@cse.nsysu. edu.tw

Abstract

The Range-Based Indexr (RBI) reduces the response
time for on-line decision support in the data ware-
houses, especially for attributes with high cardinality in
data records. However, partitioning the entire ranges
wnto the number of bitmap vectors is a very critical is-
sue for the RBI, since the task of fetching data from the
disk for the attribute checking is very time-consuming.
Moreover, from the history of users’ queries in the
data warehouses, queries are frequently performed on
data records with the same value or ranges of the at-
tribute. It takes long disk I/O time when these data
records are partitioned into different bitmap vectors.
In this paper, we consider the history of users’ queries
on the design of the partitioning strategy. Based on
the greedy approach, we propose the GreedyExt and
GreedyRange strategies for answering exact queries and
range queries, respectively. These two strategies decide
the set of queries to construct the bitmap vectors such
that data records with the high frequency of the query
can be quickly and directly accessed. Then, the response
time can be reduced in most of situations.

Keywords: bitmap vector, data warehouse, disk ac-
cess, range-based bitmap index, response time.

1. Introduction

In the range-based index (RBI), a bitmap vector is
used to represent a range, instead of a distinct value.
The operations based on RBI for processing complex
adhoc queries are performed quickly for data records
with high cardinality in data warehouses, like those of
decision support systems in many scientific and busi-
ness domains [2, 3, 4, 6, 7, 8,9, 10, 11, 12, 13, 14]. For
example, to answer a range query such as “4 < A < 6”7,
we only need one bitmap vector RB to access the at-
tributes that may include 4.6, 5.9, 5.96, and so on.

range query. It is very time-consuming to fetch all data
from the related bitmap vectors in the disk for checking
the attribute value against the query condition.

Since data records in the data warehouse are often
non-uniformly distributed, it is a very critical issue to
partition the entire ranges into the number of bitmap
vectors for the range-based bitmap index [1, 5, 6, 7, 14].
As compared with the other previous strategies, the
Dynamic Bucket FExpansion and Contraction strategy
(DBEC) [15] could reduce disk I/O time to answer
range queries, when the distribution of data is not uni-
form. The key point of the DBEC strategy is to par-
tition the ranges with non-equal width but almost the
same number of data records. For example, consider-
ing the data 14, 9, 10, 19, 21, 15, 17, 16, 25, 12, 15, 10,
the partitions of the DBEC strategy are {9, 10}, {10,
14, 12}, {15, 16, 15}, {19, 21, 17} and {25}, and the
number of data records in each partition are 2, 3, 3,
3, 1, respectively. However, the DBEC strategy could
not guarantee to get the partition result with the given
number of bitmap vectors. For the above example, it
constructs 5 bitmap vectors instead of only 4 bitmap
vectors due to the limit of storage space. Moreover,
when the users’ queries for different data records with
the same value, these data records may be partitioned
into different bitmap vector based on the DBEC strat-
egy, which takes long disk I/O time. For the above
example, data records with the same value 10, are par-
titioned into 2 bitmap vectors. If we want to retrieve
value 10, we need to check two bitmap vectors.

In this paper, based on the greedy approach, we
propose the GreedyExt and GreedyRange strategies
for answering exact queries and range queries, respec-
tively. The two strategies consider the history of the
users’ queries and construct the given number of the
bitmap vectors for the data records which have high
frequency of the query and the attribute value against

However, for the range query such as “3 < A <67, the

the query condition. The data records with the same

range of the bitmap vector RB does not fully cover the

value or ranges of the attribute will be assigned into

Table 1: A stock trading example

Record | Ticker Trading | Closing | Exchange
ID Symbol Volume Price

1 AAPL 4,575,000 36.625 | NASDAQ
2 ABF 64,200 24.500 | NYSE

3 AET 369,000 72.625 | NYSE

4 CPQ 8,968,800 51.375 | NYSE

5 DEC 4,461,100 49.750 | NYSE

6 DELL 2,714,400 89.750 | NASDAQ
7 HWP 3,009,300 90.250 | NYSE

8 IBM 7,657,700 92.500 | NYSE

9 IFMX 3,493,600 33.000 | NYSE

10 INTC 17,694,400 65.500 | NASDAQ
11 LGNT 2,600 47.250 | NASDAQ
12 MSFT 18,288,600 91.125 | NASDAQ

Table 2: Two range-based bitmap vectors for the attribute ‘Trading
Volume'

—
—
—
—
—
—
—
—
= o
—
= o
~—

the same partition. Then, the average response time
of answering queries could be reduced. From our per-
formance analysis, we prove that our GreedyExt and
GreedyRange strategies could reduce the number of
disk accesses a lot.

The rest of the paper is organized as follows. In
Section 2, we briefly describe the range-based bitmap
index for data warehouses. In Section 3, we present
our GreedyExt and GreedyRange strategies which take
the history of users’ queries into consideration. In Sec-
tion 4, we make the analysis on our GreedyExt and
GreedyRange strategies. In Section 5, we give the con-
clusion.

2. Range-Based Bitmap Index

The main idea of range-based index is the reduction
of storage overhead by means of partitioning [15], i.e.,
attribute values are split into small number of ranges
that are represented by bitmap vectors. What is more,
a bit is set to 1 if a record falls into specified range; oth-
erwise, this bit is set to 0. The bitmap vector is used to
represent a range rather than a distinct value for the at-
tribute. Take Table 1 as an example. We assume that a
maximum trading volume of 20,000,000 shares per day,
which is quite a reasonable assumption for a stock ex-
change. We divide the values of attribute ‘“Trading Vol-
ume’ into two equally sized ranges: [0; 10,000, 000) and
[10, 000, 000; 20,000, 000). Two bitmap vectors, BM;
and BM>, are built for these two ranges, respectively,

Table 3: The process of the AND operation on two bitmap vectors

BM;: (rt 1 1 1 1 1 1 1 1 0 1
BMs3: (0o 111 1 0 1 1 1 0 O

oo o
~———

Result: (0 1 1 1 1 0 1 1 1 0 O

the bitmap vector BM> are set to 1 (which are under-
lined), the trading volume of the 10th and 12th stocks,
respectively, are both greater than 10,000,000 stocks
per day.

Although the small number of bitmap vectors are
needed to be stored based on RBI, the resulting query
process might be longer For eample, there is the query
like this: “select all stocks at NYSE that have a trad-
ing volume of ranges between 4,000,000 and 10,000,000
shares.” In order to retrieve the data to answer the
query, the AND operation is performed on two bitmap
vectors, BM; and BMj3, which are built for the range
[0;10,000,000) and the attribute ‘Exchange=NYSE’,
respectively. Table 3 show the process of the AND
operation. The result of 7 candidates, which are rep-
resented by the bit 1, need to be checked against the
value between 4,000,000 and 10,000,000. With RBI,
one of the great difficulties is to find an optimal par-
titioning of the range in order to decrease the number
of candidates checking which may be time-consuming
for query processing. Moreover, users may frequently
query for data records with the same value or range of
the attribute, e.g., “select the stock which has the clos-
ing price at 91.125 or ranges between 90 to 100”. These
queries is frequently happened in the data warehouse.
The data records with the value 91.125 or ranges be-
tween 90 and 100 have the high frequency of the query.
The response time can be reduced based on an opti-
mal partitioning of the range on the attribute ‘Closing
Price’.

The Dynamic Bucket Ezxpansion and Contraction
strategy (DBEC) [15] constructs bitmap vectors for
range-based bitmap index for high cardinality at-
tributes with skew. It consists of two phases. In the
first phase, data records are sequentially scanned and
multiple equally-spaced vectors are used to count the
number of records falling into each vectors. Whenever
a vector has accumulated more than a certain num-
ber of records, it is dynamically expanded into more
smaller-range vectors. Upon completion of counting,
multiple small-range vectors are then contracted into
the final vectors such that each vector contains about
the same number of records. In the second phase, data
records are then sequentially scanned again to actually

as shown in Table 2. Since the 10th and the 12th bits of

build the bitmap indexes, with a bitmap vector rep-

resenting the range of each final vector. However, the
data records with the same value or ranges of the at-
tribute may be partitioned into different bitmap vectors
by the DBEC strategy such that each vector contains
about the same number of records. Furthermore, the
DBEC could use more bitmap vectors than the given
one which is the limit of the storage. Consequently, it
costs the large number of disk accesses to retrieve these
similar data records in different bitmap vectors.

3. Strategies for the History of Queries
From the history of users’ queries, we may find that
most of users’ queries frequently focus on the same
value or range of data records. Therefore, we present
two greedy strategies, GreedyExt and GreedyRange, to
construct the bitmap vectors by considering the history
of users’ queries. The variables used in the GreedyExt
and GreedyRange strategies are shown in Table 4.

3.1. The GreedyExt Strategy for Exact
Queries

The basic idea of the GreedyExt strategy is to de-
cide the ranges according to the frequencies of users’
exact queries on some distinct values of the attribute
in the history. Take Table 1 as an example. The fre-
quency (= freg;) of users’ queries on the attribute
‘Closing Price’ (= Val;) are shown in Table 5. The fre-
quency, fregq;, is calculated by cg;/tol, and is recorded
in freq_table, where cq; is the count of the exact query
for data record with the value Val; of the attribute
and tol = Y1 | ¢q;, 1 < i < n. If the storage space
of the bitmap index is limited to be M bits, we can
use the PN bitmap vectors to construct the bitmap
index, where PN = |[M/n]. In the following exam-
ple, we assumed that the frequencies of the values of
the attribute have already been calculated. We also
assume that there are 1000 data records and 5000 bits
as the offered storage space. Therefore, we construct
the bitmap index by using 5 = (|5000/1000]) bitmap
vectors.

The GreedyExt procedure is shown in Figure 1.
Take Table 5 as an example. First, we sort freq_table
according to the frequency fregq; of each query on
Val;, in a descending order, and record the result in
f-table, as shown in Table 6. Since PN = 5, we have
NumHFQ@ = |(5—1)/2] = 2. That is, we will find the
two values, 91.125 and 65.500, which have the highest
two frequencies of the query in f_table, respectively.
Then, we sort the values, 91.125 and 65.500, in an as-
cending order, and record them in HF'@Q. Table 7 il-
lustrates the GreedyExt strategy step by step. In Step
1, we obtain HFQ[1] = 65.500 and HFQ[2] = 91.125.

Next, in Step 2 of Table 7, we have Ry = HFQI[1] =
65.500 and Ry = HFQ[2] = 91.125. Finally, in Step

Table 4: Variables in the GreedyExt and GreedyRange strategies

Variable Description
n The number of records
PN The number of the bitmap vectors
freq_table The table contains Val;
and the corresponding freg;
Val; The ith value of freq_table
freq; The frequency of the query for Val;
f-table The table contains V;
and the corresponding f;
Vi The ith value of f_table
fi The frequency of the query for V;
HFQ The array recording queries
NumHFQ The length of the array HF'Q
i The range ¢ of the query
R; The partitioned range of the ith bitmap vector
BM; The bitmap vector of the partitioned range R;
fixR The length of the initial range

Table 5: Table freqg_-table: an example of the GreedyExt strategy

Val; freq;
36.625 | 0.06
24.500 | 0.01
72.625 | 0.02
51.375 | 0.14
49.750 | 0.05
89.750 | 0.02
90.250 | 0.03
92.500 | 0.10
33.000 | 0.04
65.500 | 0.20
47.250 | 0.01
91.125 | 0.32

Procedure GreedyEzt(n, PN, freq-table);
begin
/* Step 1: construct array HFQ[i] */
sort table freq-table according to freg;
in a descending order and store the result in f_table;
NumHFQ := [(PN —1)/2];
sort NumHFQ values f_table.V;
in an ascending order, 1 <1 < NumHFQ,
and record the result in array HFQ;
/* Step 2: according to HFQ][i], each range Ra«; can be defined
as follows. */
for i :=1to NumHFQ do
Ra.i = HFQIil;
/* Step 3: each range Ra.;—1 can be defined as follows, 1 <14 <
(NumHFQ +1). */
let R; be a range such that Ry < HFQ[1];
for i :=2 to NumHFQ do
let Ro.«;—1 be a range
such that HFQ[i — 1] < Roxi—1 < HFQ][i];
let RZ*(NumHFQ)+1 be a range
such that HFQ[NumHF Q] < Rau(NumHFQ)+1;
end;

Figure 1: The GreedyEzt procedure

Table 6: Table f_table for the GreedyExt strategy after sorting

Val; freq;
91.125 (HFQ) | 0.32
65.500 (HFQ) | 0.20
51.375 0.14
92.500 0.10
36.625 0.06
49.750 0.05
33.000 0.04
90.250 0.03
72.625 0.02
89.750 0.02
24.500 0.01
47.250 0.01

Table 7: The process of the GreedyExt strategy

Val; freq; | Step 1 Step 2 | Step 3
24.500 | 0.01

33.000 | 0.04

36.625 | 0.06

47.250 | 0.01 Ry (BMy)
49.750 | 0.05

51.375 | 0.14

65.500 | 0.20 HFQI[1] | R Ry (BM>)
72.625 | 0.02

89.750 | 0.02 R3 (BM3)
90.250 | 0.03

91.125 | 0.32 | HFQ[2] | R4 R4 (BMy)
92.500 | 0.10 Rs (BMs)

3 of Table 7, the final results are shown as follows:
R, < 65.500 (= HFQI1]), 65.500 (= HFQ[1]) < R3 <
91.125 (= HFQ[2]) and 91.125 (= HFQ[2]) < Rs.
There are 5 (= PN) bitmap vectors, BM; to BMs,
for five ranges, Ry to Rs, respectively, which are built
for the frequencies of users’ exact queries in Table 5.
Therefore, a large number of users’ exact queries on
data records with the same value of the attribute can
be answered quickly and directly from the disk, instead
of checking against the query condition. Then, the av-
erage response time is reduced.

3.2. The GreedyRange Strategy for Range
Queries

The basic idea of the GreedyRange strategy is to
decide the ranges according to the frequencies of users’
queries on some ranges of values of the attribute in the
history. Take Table 1 as an example. Table 8 shows
the history of the users’ queries on the attribute ‘Clos-
ing Price’ which are ranged between Val; and Val;11,
where Val;y; = Val; + fixR. For example, the range
ry ranges between 0 and 10, where fiz R is equal to 10.
The frequency, freq;, is calculated by cg; /tol, where cg;

Table 8: Table freq-table: an example of the GreedyRange strategy

T Val; | freg;
r1 0 0

T 10 0
T3 20 0.01
T4 30 0.10
5 40 0.06
T 50 0.14
r7 60 0.20
T 70 0.02
rg 80 0.02
r10 | 90 0.35

Table 9: Table f_table for the GreedyRange strategy after sorting

i Val; freq;
10 90 (HFQ) 0.35
ry 60 (HFQ) | 0.20
6 50 0.14
T4 30 0.10
5 40 0.06
rs 70 0.02
) 80 0.02
T3 20 0.01
1 0 0

T2 10 0

is the count of the range query for data records form
Val; to Valiy1, and is tol = Y1 eq;, 1 < i < n and
recorded in freq_table. In the following example, the
frequency, freg;, for each range r; of the attribute for
the query have been already calculated and are shown
in Table 8. If we limit the storage of the bitmap index
to be M bits, we can use the PN bitmap vectors to con-
struct the bitmap index, where PN = |M/n|. In our
example, we assume that there are 1000 records and
5000 bits as the offered storage space. Therefore, we
construct the bitmap index by using 5 = (|5000/1000])
bitmap vectors or even smaller than 5 bitmap vectors.
The GreedyRange procedure is shown in Figure 2.
Take Table 8 as an example. First, we construct the
table freq_table and sort table freq_table, according
to the frequency of each query, freg;, in a descending
order, and record the result in f_table, as shown in
Table 9. Since PN (= 5), we have NumHFQ = | (5 —
1)/2] = 2. That is, we find two values, 100 and 70,
which have the highest two frequencies of the query in
f-table, respectively. Then, we sort values, 90 and 60,
in an ascending order, and record them in HF'(). Table
10 illustrates the GreedyExt strategy step by step. In
Step 1, we obtain HFQ[1] = 60 and HFQ[2] = 90.
Next, in Step 2 of Figure 10, we obtain 60(=
HFQ[l]) < Ry < 70 (= HFQ[1] + fizR) and 90(=

Procedure GreedyRange(n, PN, freq-table);
begin
/* Step 1: construct array HFQ[i] */
sort table freq_table according to freq;
in a descending order and store the result in f_table;
NumHFQ := |(PN —1)/2];
sort NumHF'Q values f_table.V;
in an ascending order, 1 <¢ < NumHFQ,
and record the result in array HFQ;
/* Step 2: according to HFQ[i], each range Ra.; can be defined
as follows. */
for i := 1 to NumHFQ do
let Ra.; be a range
such that HFQ[i] < Rox; < HFQIi] + fixR;
/* Step 3: each range Ra.;—1 can be defined as follows, 1 < ¢ <
(NumHFQ +1). */
let R; be a range such that R1 < HFQ[1];
for i :=2 to NumHFQ do
let Rax;—1 be a range
such that HFQ[i — 1] + fizR < Raxi—1 < HFQ]i];
let Row(NumHFQ)+1 be a range
such that HFQ[NumHF Q]+
end;

fizR < R2*(NumHFQ)+1;

Figure 2: The GreedyRange procedure

Table 10: The process of the GreedyRange strategy

T Val; | freq; | Step 1 Step 2 | Step 3

r1 0 0

ro 10 0

r3 20 0.01 R1 (BMy)
T4 30 0.10

rs 40 0.06

6 50 0.14

7 60 0.20 HFQ[1] | Re Ry (BM3)
rg 70 0.02 Rs3 (BM3)
ro 80 0.02

710 90 0.35 HFQ[Q] R4 R4 (BMy)

HFQ[2]) < Ry < 100 (= HFQI[2] + fizR). Finally,
in Step 3 of Figure 10, the final results are as follows:
R; <60 (= HFQI1]) and 70 (= HFQ[1] + fizR) <
R3; < 90 (= HFQJ2]). Therefore, only 4 bitmap vec-
tors, BM; to BMjy, for ranges Ry to R4, respectively,
are built for the history of users’ range queries in Ta-
ble 8. A large number of users’ range queries on data
records with the same range of the attribute can be
answered quickly and directly from the disk, instead of
checking against the query condition. Then, the aver-
age response time could be reduced in most of situa-
tions.

4. Performance Study

Since the task of fetching data from the disk has a
direct effect on the response time, we take the average
number of disk accesses as the performance measure.
Let those n sorted data records, V;;, be divided into
PN bitmap vector, where V;; is the jth data record in

the ith bitmap vector, and each bitmap vector, BM;
contains k; data records. Suppose the probability of
each data record queried is identical in the data ware-
house, the average number of disk accesses is calculated
as follows. Take the bitmap vector BM; as an example.
If we want to search the data record Vj1, we must ac-
cess k1 data records form the disk. Similarly, we access
k1 data records for Vis, Vi3, -+, Vig,, and the number
of disk accesses for the data records in BM; is ki * kq.
The total number of disk accesses for all data records is
kyxky+kykka -+ kpnxkpy = ki * 4k +- -+ kpy?
and the average number of disk accesses is
(klz + k22 + -+ kpNQ)/n = Zf:]\lf klz/n

When we use the GreedyExt or GreedyRange
strategies by considering the history of queries, the
number of disk accesses could be decreased. We con-
struct the bitmap vectors, BM;, according to the fre-
quent queries, which are recorded in HF'Q). If we have
the query which asks the values that are part of HFQ,
we can directly access the data records form the disk
according to the bitmap vector. Therefore, the average
number of disk accesses, which is 253:]\1, k;® /n originally
can be reduced to

(@ - SRy
ZNumHFQ fz % 1)/n

based on the GreedyExt and GreedyRange strategies,
where 1 is the summation of the frequency of the
queries and the other variables are shown in Table 4.
If the queries are recorded in HF@, we only use the
bitmap vector and access data from disk once. On the
other hand, if the queries do not be recorded in HF'Q,
we compute that the number of disk accesses is equal to
(1= NumHEQ gy ¢HFQu;cr; ki) by considering
the queries which are nth recorded in HFQ.

Take Table 7 as an example. Two distinct val-
ues 65.500 and 91.125 are recorded in HF(@ and
NumHF(@ = 2. For those queries on values recorded
in HF'Q, we can use only the bitmap vectors, BM> and
By, which takes one disk access, respectively. When we
consider the queries on the other values except the val-
ues recorded in HF'(), the number of disk accesses is
equal to (1 — 0.20 — 0.32) * (62 + 32 4 12) = 22.08.
Therefore, the average number of disk accesses is

((1 _ ZNumHFQ fz) *
ZNumHFQ fz « 1)/’!7,

= ((1—0.20—0.32) % (62432 +12) +
=183

as compared to
SN k2 = (62 + 12+ 32 +12+12)/12 =4

Take Table 10 as another example. Two ranges r7

D v, ¢HPQuseR; ki

Do, ¢HPQ v eR; kit

(0.20+0.32) %1) /12

and rqg are recorded in HF'Q) and NumHF(@ = 2. For
those queries on ranges recorded in HF'(), we can use
only the bitmap vectors BM, and BM,, which takes
one disk access, respectively. When we consider the
queries on the other ranges except the ranges recorded
in HF(Q, the number of disk accesses is equal to (1 —
0.20 — 0.35) * (62 + 22) = 18. Therefore, the average
number of disk accesses is

(1 - SRy
Sy fix 1)/

= ((1-10.20 — 0.35) * (6> + 22) + (0.20 + 0.35) x 1) /10
=1.855

as compared to

SN2 I = (62 + 12 + 22 +12)/10 = 4.2.

Z'UjQHFQ,’U]‘GRi kl +

5. Conclusion

To reduce the response time on fetching the data
records with the high frequency of the query from the
disk, we consider the history of users’ queries on the
design of the partitioning strategy for the range-based
bitmap index. We have presented the GreedyExt and
GreedyRange strategies for answering exact queries
and range queries, respectively. Based on these two
strategies, the data records with the high frequency
of the query can be quickly and directly accessed.
We have made the analysis on the performance of
our GreedyExt and GreedyRange strategies. We have
proved that the two strategies can reduce the average
number of disk accesses a lot in order to reduce the
response time.

Acknowledgment

This research was supported in part by the National
Science Council of Republic of China under Grant
No. NSC-95-2221-E-110-101 and National Sun Yat-
Sen University. The authors like to thank “Aim for
Top University Plan” project of NSYSU and Ministry
of Education, Taiwan, for partially supporting the re-
search.

References
[1] K. Aouiche, J. Darmont, O. Boussaid and F. Ben-
tayeb, “Automatic Selection of Bitmap Join Indexes
in Data Warehouses,” Proc. of the 7th Int. Conf. on
Data Warehousing and Knowledge Discovery, pp. 64—
73, 2005.

[2] S. Azefack, K. Aouiche and J. Darmont, “Dynamic
Index Selection in Data Warehouses,” Proc. of the 4th
Int. Conf. on Innovations in Information Technology,
pp. 1-5, 2007.

[3] L. Bellatreche, K. Boukhalfa and M. Mohania, “Prun-
ing Search Space of Physical Database Design,” Proc.
of the 18th Int. Conf. on Database and Ezxpert Systems
Applications, pp. 479-488, 2007.

[4] Z.Z. Gong, K. F. Hu and Q. Li. Da, “A Grouping Ag-
gregation Algorithm Based on the Dimension Hierar-
chical Encoding in Data Warehouse,” Proc. of the 6th
Int. Conf. on Computer Information Systems and In-
dustrial Management Applications, pp. 135142, 2007.

[5] N. Goyal, S. K. Zaveri and Y. Sharma, “Improved
Bitmap Indexing Strategy for Data Warehouses,”
Proc. of the 9th Int. Conf. on Information Technology,
pp. 213-216, 2006.

[6] A. Gupta, K. C. Davis and J. G. Litton, “Performance
Comparison of Property Map and Bitmap Indexing,”
Proc. of the 5th ACM Int. Workshop on Data Ware-
housing and OLAP, pp. 65-71, 2002.

[7] M. Jurgens and H. J. Lenz, “Tree Based Indexes vs.
Bitmap Indexes: A Performance Study,” Int. Jour-
nal of Cooperative Information Systems, Vol. 10, No. 1
pp. 355-376, March 2001.

[8] Y.Lim and M. Kim, “A Bitmap Index for Multidimen-
sional Data Cubes,” Proc. of the 15th Int. Conf. on
Database and Expert Systems Applications, pp. 349—
358, 2004.

[9] E. O’Neil, P. O’Neil and K. Wu, “Bitmap Index Design
Choices and Their Performance Implications,” Proc.
of the 11th Int. Symp. on Database Eng. and Applica-
tions, pp. 72-84, 2007.

[10] R. R. Sinha, M. Winslett, Wu. Kesheng, K. Stockinger
and A. Shoshani, “Adaptive Bitmap Indexes for Space-
Constrained Systems,” Proc. of the 24th Int. Conf. on
Data Eng., pp. 1418-1420, 2008.

[11] K. Stockinger, “Bitmap Indices for Speeding Up High-
Dimensional Data Analysis,” Proc. of the 13th Int.
Conf. on Database and Ezpert Systems Applications,
pp. 881-890, 2002.

[12] K. Stockinger, K. Wu and A. Shoshani, “Evaluation
Strategies for Bitmap Indices with Binning,” Proc. of
the 15th Int. Conf. on Database and Expert Systems
Applications, pp. 120-129, 2004.

[13] G. Velinov, D. Gligoroski and M. K. Popovska, “Hy-
brid Greedy and Genetic Algorithms for Optimiza-
tion of Relational Data Warehouses,” Proc. of the 25th
Int. Conf. on Artificial Intelligence and Applications,
pp. 470-475, 2007.

[14] R. Wrembel and C. Koncilia, Data Warchouses and
OLAP: Concepts, Architectures, and Solutions, Idea
Group Inc, Hershey, Pennsylvania, USA, 2007.

[15] K.L. Wu and P. S. Yu, “Range-Based Bitmap Indexing
for High-Cardinality Attributes with Skew,” Proc. of
Int. Conf. on Computer Software and Applications, pp.
61-67, 1998.

