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 A Novel Concept to Improve the Redistribution Process  
for Language Models 

  
Abstract    

In the paper, a new concept, based on the non-
uniform redistribution probability for novel events, to 
improve the smoothing method in language models is 
proposed. Basically, there are two processes in the 
smoothing methods: 1)discounting and 2)redistributing. 
Instead of uniform probability assignment to each unseen 
events used by most smoothing methods, we propose new 
technique to improve the redistribution process. Referring 
to the probabilistic behavior of all seen events, the 
redistribution process for novel events in our method is 
non-uniform. The proposed technique is exploited on 
well-known and frequently-used Good-Turing smoothing 
method. The empirical results are demonstrated and 
analyzed for two n-gram models. The improvement is 
obvious and effective for smoothing methods, especially 
on higher unseen event rate. 
Keywords: Language model, Smoothing method, Good-

Turing, Cross entropy, Non-uniform 
Redistribution. 

1. Introduction 
Statistical language Models 

In many domains of natural language processing 
(NLP); such as speech recognition [1], grammar parser [4], 
document retrieval [17] and machine translation [Brown]; 
the statistical language models (LMs) [6], [10] plays an 
important role in natural language processing. The LMs 
can be exploited, for instance, to decide the correct target 
word sequence w . As shown in Fig. 1 of a speech 
recognition system, the P(W) is the conditional probability 
of a word sequence W given a speech data S, where 
W=w1w2w…wm is a possible translation of texts, m is word 

number of M. The predicted sequence w  can be 
expressed: 
      A language model is regarded as the probability 
distribution over events or token sequences (texts) that 
models how often each sequence occurs as a sentence. 
Chain rule is used to decompose probability prediction: 
 
 

(1) 
 
where mw1  denotes the word sequence with m words.  
 
Speech S                                              selected words 

w                         
 

 
α                                  P( ) 

                                        α                         
 

 

 
Fig. 1: LMs in a speech recognition system.                                   

n-gram Model 
Because of the finite training corpora in real world and 

to reduce the parameter space of word feature in 
languages, the approximate probability of a given word by 
using the (n-1)th preceding words is used to estimate 
sequence W.  

The probability model with various n can be written:             

                                         (2) 
where wi-n+1 denotes the history of n-1 word for word wi. 
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In many applications, the models for n=1, 2 and 3 are 
called unigram, bigram and trigram models [1], [8] and 
[16], respectively.   
      In Eq. (2), the probability for each event or token can 
be obtained by training the bigram model (for clarity, 
bigram model is illustrated). Therefore the probability of a 
word bigram will be written as: 
                                ,                                                     (3) 
 
where C(wi) is the count of word wi occurred in training 
corpus. The probability P of Eq. (3) refers to the relative 
frequency and such method is called maximum likelihood 
estimation (MLE).   

Data sparity issue in Language Models 
As shown in Eq. (3), C(‧) of a novel word, which 

don’t occur in the corpus, may be zero because of the 
limited training data and infinite language. It is always 
hard for us to collect sufficient datum.  The potential issue 
of MLE is that the probability for unseen events is exactly 
zero. This is so-called the zero-count problem. It is 
obvious that zero count will lead to the zero probability of 
P(‧) in Eqs. (2) and (3). The problem can be be a data 
sparity issue. 
      The prediction of zero probability of certain event is 
unreliable and unfeasible for most applications, especially 
for language models. The smoothing techniques [3], [4], 
[11] and [19], are essential and employed by language 
model to overcome the issue zero count of traditional 
language models, as described above.  

There are many smoothing methods, such as Add-1, 
Good-Turing [6], deleted interpolation [7], Katz [13], etc. 
There are several literatures discussing about smoothing 
methods [3], [4], [12], [14], [15], [16] and [18].   

2. Smoothing Processes in LMs 
The basic idea of smoothing process is to adjust the 

total probability of seen events and leave some probability 
mass (so-called escape probability, Pesc) for unseen events. 
Smoothing algorithms can be considered as discounting 
some counts of seen events in order to obtain the escape 
probability Pesc which will be assigned into the zero counts 
of unseen events. The adjustment of smoothed probability 

for all possibly occurred events involves discounting and 
redistributing processes: 

Discounting Prosess 
The probability of all seen and unseen events is summed 
to be 1 (unity). First operation of smoothing method is the 
discounting process, which discount the probability of all 
seen events.  

 The adjustment can be divided into two types: static 
and dynamic. Static smoothing methods, as most 
smoothing methods, discount the probability based on the 
frequency of events in trained corpus. However, dynamic 
smoothing method, i.e., cached-based language, discounts 
the probability based on the frequency of seen events in 
cache and trained corpus.  

Redistributing Process 
In this operation of smoothing algorithm, the escape 
probability Pesc obtained from all seen events will be 
redistributed to all unseen events. Pesc is usually shared by 
all the unseen events. That is, the escape probability Pesc is 
redistributed uniformly to each unseen event, Pesc/U, 
where U is the number of unseen events of a language.  

The redistribution process of most well known 
smoothing methods, such as Add-1, Absolute discounting, 
Good-Turing, Delete interpolation, Back-off and Witten-
Bell, and so on. The escape probability Pesc (or called 
probability mass for all unseen events) is uniformly shared 
by all unseen events. It is a possible factor that affects the 
performance of smoothing algorithm. There are little 
previous papers discussing how to redistribute the escape 
probability PESC, and how the different redistribution can 
improve the smoothing methods for language models.  

3.  Improving the Smoothing Process 
Interval Behavior of Seen Events Count 
       As described in previous section, there are two main 
processes for smoothing methods; discounting and 
redistributing. Within the redistributed process, the escape 
probability Pesc (or so-called probability mass for unseen 
events) is shared uniformly by all unseen events for most 
smoothing methods, such as Add-one, Delete interpolation 
and Witten-Bells method A and C. In other words, each 
event obtain same smoothed probability Pesc/U. Based on 
the observation of behaviors for seen events, each event 
has its probability relying on the event frequency in the 
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training corpus. It is obvious that the probability 
distrubition for each event is quite different. Therefore, It 
is unreasonable to assign same probability to each 
incoming unseen events.  

Based on the empirical results, we can obtain the 
frequency interval (offset) between two new successive 
events for two models; Chinese character word unigrams 
and bigrams. There are 100M (108) Chinese characters for 
source training data. The sentences in source are 
segmented into words and 65M (65*106) words are 
obtained. The length of word is 1.45 Chinese characters 
per word in average.    

The recourse files are randomly selected and we 
obtain the offset diagrams. More than 100 training 
processes are implemented and then the final curve can be 
obtained in average. The regression curves Y1 and Y2 for 
Chinese word unigram and character bigram models can 
be described as follows: 
Y1 = 1E-10x3 - 4E-06x2 + 0.0307x - 39.825                     
Y2 = -1E-16x4 + 2E-11x3 - 6E-07x2 + 0.0058x - 3.7502 
where x and y denotes the data size the offset. 

An idea for redistributing escape probability Pesc  is 
that how many tokens read-in while the next new event 
will occur. It means the count interval between two 
successive different events, which vary usually with the 
training data N. Basically, the larger the training data N, 
the larger the interval. In the beginning of training phase, 
next new events will occur in short interval of count. It 
means that next new event will occur rapidly at smaller N 
while slowly at larger N. 

The larger the training data N is, the larger the offset 
(interval) is. The empirical regression curves present the 
general interval of original intervals and its trend 
increased gradually. Note that the regression curves varied 
with N and flatter at the beginning and steeply at end of 
curves. The regression curve will be employed to calculate the 

smoothed probability, described next. 
  

Redistributing Process for Unseen Events 
       As described above, the regression curves from seen 
events can be used to demonstrate the interval of unseen 
events. Based on the regression curves derived from the 
seen events occurrence, we can furthermore derive the 
behaviors for estimating the probability assigning to the 

next incoming unseen event. Note that all the probability 
for seen and unseen events should be unity; which must 
satisfy the basic statistical condition. 
         Supposed that the interval yi on training data Ni, the 
distribution for all unseen events can be as follows:  

 
                                                                                       (4) 
 
where yi denotes the interval on location i and U denotes 
the types of unseen events. 1/yi  can be regared as the 
derivatives at yi and as the probability for unseen events.      
       The smoothed probability assigning to an unseen 
event Ui  is: 
                                                                                        (5) 
     Referring to Eqs (4) and (5), the total smoothed 
probability for all unseen events is Pesc. The probability for 
all seen and unseen events are summed as unity. 

4.  Evaluation  
Our proposed method will be evaluated on the well-

known and popular smoothing Good-Turing technique.  
The cut-off value for word count is usually used to 
improve the technique. Based on the empirical results, we 
can obtain best cut-off value on various training data N.   

Basic Idea of Good-Turing Method 
Good-Turing method is a well-known and effective 

smoothing technique, which was first described by I. J. 
Good and A. M. Turing in 1953 [7] and  used to decipher 
the German Enigma code during World War II. Some 
previous works are in [4] and [9]. Notation nc denotes the 
number of n-grams with exactly c count in the corpus. For 
example, n0 represent that the number of n-grams with 
zero count and n1 means the number of n-grams which 
exactly occur once in training data.  

Based on Good-Turing smoothing, the redistributed 
count c*will be presented in term of nc, nc+1 and c as: 
      .                  .                                                             (6) 
  

Best Cut-off Value in Good-Turing 
Smoothing Method 

In the most previous works of smoothing methods, 
they discussed the situation the possible event types B 
were much larger than the training data N 1)( <<N/B , 
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such as words trigram models in English text or character 
triigrams in Chinese. However, the situation should be 
considered in certain applications. For instance, the event 
types B of Chinese character bigram is close to 1.69*108, 
while the training data size N, in general, is usually less 
than 1*108. In such case, the ratio of N/B is smaller than  1. 

The cut-off value co for event count is used to 
improve the Good-Turing Smoothing, as shown in 
previous section. The best co on various Training data N 
should be analyzed to obtain better improvement. 

Cross Entropy  
In the subsection, we introduce cross entropy, which 

has always been used to evaluate and compare different 
probabilistic model. For a testing data set T which 
contains a set of events, e1,e2,…,em, the probability for the 
testing set P(T) can be described as: 

                                                                                  (7) 
 
 where m denotes the number of events in testing set T 
and P(ei) denotes the probability of event ei, obtained 
from n-gram language model, assigning to event ei. 
     When we don’t know the actual probability 
distribution p that generated some data the cross entropy 
CH can be employed. For example, we use some M, 
which is a model of p. Therefore, the cross entropy CE of 
M on p can be regarded as: 
 

.     (8) 
 

4.4 Data Sets and Empirical Models  
      In the following experiments, two text sources are 
collected from the news texts and Academic balanced 
corpus (ASBC); the former and the later contain 100M 
and 10M Chinese characters, respectively. In this paper, 
we construct two language models to evaluate the cross 
entropy (CE) of the technique for improving the 
smoothing process; 1) word unigrams model (the length 
of a word is 1.45 characters in average), 2) Chinese 
character bigrams. The cross entropy is calculated on 
various data size N in our experiments.   
     Comparing uniform with non-uniform redistribution 
probability for unseen events, Fig. 2 and Fig. 3 display the 

cross entropy (CE), unseen event rates and improvements 
of different cut-off co on various N for word unigram and 
character bigram models, respectively. The best cut-off co 
can be found on various N for both models. For the word 
unigrams model, it is apparent that the best CE 
improvement reaches near 1.8% at N=0.5M, and the 
effectiveness decreases while the N is larger, as shown in 
Fig. 2. For bigram model, the best CE improvement 
reaches near 14.3% at N=1M, and the effectiveness 
decreases while the N is larger, as shown in Fig. 3. 
     Both models reach lower CE while the cut-off and 
non-uniform redistribution technique are exploited.  It can 
improve better, especially on higher unseen event rate. It 
means that smaller training data N will reach same 
performance of that on larger N by using the proposed 
technique to improve the smoothing process.  

5. Conclusions 
In the paper, we have proposed an effective 

technique, based on the non-uniform redistribution 
probability for novel events, to improve the redistribution 
process in smoothing method of language models. The 
smoothing method is used to resolve the zero count 
problems in traditional language models.  The cut-off co 
for event count is used to improve the zero nc issue of 
Good-Turing Smoothing.   

Based on the probabilistic behavior of seen events, 
the redistribution process exploited by our technique is 
non-uniform. The improvements discussed in the paper 
are apparent and effective on Good-Turing smoothing 
methods.   

Empirical results are demonstrated and analyzed for 
two language models to evaluate the proposed technique 
methods discussed in the paper; Chinese word unigrams, 
character bigram model. The cross entropy can be reduced 
in these two models.  

Both models reach lower CE for various cut-off co on 
different training data N and non-uniform redistribution 
probability are used. Two methods can improve better, 
especially on higher unseen event rate. In other word, we 
can improve especially the CE for application with small 
training data N. The best CE improvement reaches 1.8% 
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and 14.3% for word unigrams and character bigram 
models.  
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Figure 2: the cross entropy, unseen event rates and improvements on different  
cut-off co on various N for word unigram model. 

 

Figure 3: the cross entropy, unseen event rates and improvements on different  
cut-off co on various N  for character  bigram model. 


