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Abstract

The integer linear programming method has been used to bound the performance of a pro-
gram in a hard-real-time embedded system. The maximum value of the cost function of a
program under a set of linear constraints on the execution count of each instruction is an upper
bound of the worst-case execution time of the program. In this paper we extend this method to
bound the execution time of a program executed on a dynamic architecture where the execu-
tion time of each instruction depends on not only itself but also its adjacent instructions. Our
method follows the control flow of the program iteratively to determine the set of all possible
execution times of each instruction and construct a set of linear constraints on their execution
counts. We demonstrate the capability of this method on an architecture where a processor has
an instruction cache and an instruction pipeline, and cycle-stealing DMA I/0 is concurrently
executing. We conducted extensive simulations on a widely-used embedded microprocessor. The
experimental results show that our method safely and tightly bounds the worst-case execution

time of a program executed on such an architecture.
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1 Introduction

A hard-real-time embedded system is required to process tasks with timing constraints that must
be met to prevent the failure of the whole system. The schedulability analysis that determines
whether a particular system can meet its timing constraints relies on prior information on the
worst-case execution time (WCET) of each task. A number of methods have been developed by
different research groups to predict the WCET of a program [1,3-6,8-13]. Examples include,
but not limited to, the static cache simulation developed by Muller et al. [11], the timing schema
approach developed by Park et al. [12], and the distance-bound method developed by Lim et al. [10].

Li et al. [8] first converted the problem of bounding the WCET of a program into one of solving a
set of integer linear programming problems. This method defines the execution time of a program as
the sum of the products of the execution count of each instruction and its corresponding execution
time. The maximum value of the cost function under a set of linear constraints on the execution
counts is an upper bound of the WCET of the program. This method was extended by Li et
al. [9] to consider the effect of instruction caching, and incorporated with abstract interpretation
by Theiling et at. [13] to predict the cache behavior. However, all previous work assume that the
execution time of each instruction can be analyzed independently, without considering its adjacent
instructions.

This paper extends the integer linear programming method to bound the WCET of a program
executed on a dynamic architecture where the execution time of an instruction depends on not
only itself but also its adjacent instructions. Without loss of generality, we illustrate the idea
with an architecture where a processor has an instruction cache and an instruction pipeline, and
cycle-stealing DMA 1/0 is concurrently executing. A DMA controller (DMAC) operates either in
the burst mode or in the cycle-stealing mode. A DMAC that operates in the cycle-stealing mode
transfers data by stealing bus cycles from the executing program. The cycle-stealing operation
retards the progress of the executing program and extends its execution time. The execution time
of an instruction executing concurrently with cycle-stealing DMA 1/0 is the sum of the execution
time of the instruction when it executes alone and the delay due to cycle-stealing DMA 1/0.
Because a DMA transfer may cross two instructions on such an architecture, the delay suffered

by an instruction varies, depending upon the execution of the instruction itself and its adjacent



instructions.

Our method first follows the control flow of the program iteratively to determine the set of all
possible execution times of each instruction and their relationship with its adjacent instructions.
We next model the execution behavior of each instruction and its adjacent instructions by a di-
rected graph. Each execution time and each edge in the directed graph is assigned an execution
count. These execution counts must satisfy a set of linear constraints. These possible execution
times, execution counts, and linear constraints are used as inputs to an integer linear programming
problem, the solution of which is an upper bound of the WCET of the program being analyzed.

To demonstrate the effectness of our method on bounding the WCET, we conducted an exper-
iment on a widely-used embedded microprocessor. We compare our WCET predictions with the
traditional pessimistic WCET predictions for several sample programs. The experimental results
show that our predictions safely bound the WCETSs of these programs. In addition, our predictions
are as much as 47% tighter than the pessimistic predictions.

The rest of the paper is structured as follows. Section 2 describes related work. Section 3
describes the machine model and Section 4 describes the interference of cycle-stealing DMA I/0
on program execution time. Section 5 describes the iterative process that determines the set of
all possible execution times of each instruction. We present our experimental results in Section 6.

Finally, Section 7 gives some concluding remarks.

2 Related Work

The integer linear programming method was first used by Li et al. [8] to compute the WCET of
a program executed alone without interrupts on a simple architecture where the execution time of
each instruction is fixed. This method first decomposes a program into a number of basic blocks,
each of which is a straight-line sequence of instructions. The execution time ¢; of a basic block
B; is equal to the sum of the execution times of all instructions in the block. The execution time
of the program can be computed by summing the products of the execution counts of the basic
blocks in the program and their corresponding execution times. Let x; be the execution count of

the basic block B;, and N be the number of basic blocks in a program. The WCET of the program



is bounded by the maximum value of the cost function
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under a set of linear constraints on the x;’s. The execution behaviors of the basic blocks are related
together through the set of linear constraints on their execution counts. In addition, the user can
provide path information in the form of linear constraints to eliminate infeasible paths, which can
never be executed, to tighten the WCET prediction.

The assumption that the execution time of each instruction is fixed does not hold on an
instruction-cache architecture. Li et al. [9] extended the integer linear programming method de-
scribed above to consider the effects of both direct-mapped and set-associative instruction-cache
architectures. This method first partitions each basic block into one or more [-blocks. An I-block
is a sequence of contiguous instructions within the same basic block that are mapped to the same
cache line. Consequently, all instructions except the first one in each [-block will always reside in
the instruction cache when accessed. An [-block has two possible execution times on an instruction-
cache architecture, one when the first instruction of the [-block causes a cache hit and one when
it causes a cache miss. Let c?’ ; and ¢; denote the cache-hit and cache-miss execution times of the

I-block B;_;, and let z” . and z denote its cache-hit count and cache-miss count, respectively. The
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execution count of B; ; is equal to the execution count z; of B;, i.e.,
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Furthermore, the cost function of the execution time of the program is replaced by
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The cache behavior, direct-mapped or set-associative, can be specified in the form of linear con-

straints on the xﬁj’s and z7";’s. The maximum value of the cost function (2) under the set of linear

constraints on the execution counts is an upper bound of the WCET of the program being analyzed.



CPU

Instruction Pipeline

Main DMA I/0
Instruction Cache Memory Controller Device
1/0 Bus

Figure 1: The machine model

3 The Machine Model

Our work builds on top of the method described in Section 2 and the cost function (2) to predict the
WCET of a program executed on an architecture where the execution time of an [-block depends
on not only itself but also its adjacent I-block. Without loss of generality, we base our method on
a commonly-used machine model shown in Figure 1. The CPU has an on-chip instruction cache
and an instruction pipeline. The DMAC and the CPU share a single I/O bus. We focus on the
case in which the DMAC operates in the cycle-stealing mode. The bus controller allows only one
bus master at any time. Consequently, either the CPU or the DMAC, but not both, can hold the
bus and transfer data at any time instant.

On a pipelined processor, multiple instructions are overlapped in execution. We represent the
execution of an I-block when it executes alone on this machine model by two reservation tables,
one when it causes a cache hit and one when it causes a cache miss. We call them the cache-hit
reservation table and the cache-miss reservation table, respectively. A reservation table describes
the activities within a pipeline [7]. In a reservation table, the rows represent the stages in the
pipeline and the columns represent the pipeline status in each processor cycle.

An example is given in Figure 2 to show an /-block and its cache-hit and cache-miss reservation
tables. The instruction pipeline is composed for 4 stages. An instruction is fetched during the In-
struction Fetch (IF) stage, and decoded during the Instruction Decode (ID) stage. The instruction
executes during the Execution (EX) stage, and data produced by the instruction is written to the
memory during the Write Back (WB) stage. Because we are concerned primarily with whether

there is any bus-access activity during a pipeline stage, we classify all pipeline stages into two cat-
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Figure 2: An I-block and its cache-hit and cache-miss reservation tables

egories: B (bus-access) stages and E (execution) stages. B-stages are those pipeline stages during
which there is bus-access activity. In contrast, during E-stages, there is no bus-access activity. We
mark a processor cycle in the reservation table by a B if the corresponding stage at the indicated
processor cycle is a B-stage, and by an E if it is an E-stage. The cache-miss reservation table shown
in Figure 2c begins with several B-stages to fetch the instruction and the subsequent instructions
in the [-block from the main memory. Each of the subsequent instructions begins with an E-stage
to fetch the instruction from the on-chip instruction cache. Because none of the instructions in the
[-block fetches any operand, all ID stages are E-stages. Finally, all EX stages are E-stages and all
WB stages are B-stages.

The pipelined execution of an I-block affects the pipelined execution of a successor (i.e., an
I-block executed immediately after it). We define the tail of a reservation table as its last few
columns starting from the column at which the CPU is ready to fetch the first instruction of a
successor to the last column of the table. We concatenate the tail of a reservation table of an -
block and a successor’s cache-hit (cache-miss) reservation table to obtain another reservation table

which describes the pipelined execution of the successor when it causes a cache hit (cache miss).
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Figure 3: The execution of an /-block and its successor

Figure 3a shows the cache-miss reservation table of the /-block in Figure 2, and Figure 3b shows
the cache-hit reservation table of a successor. The tail of the [-block’s reservation table consists
of columns 11 to 13. We concatenate the tail of the [-block’s reservation table and the successor’s
cache-hit reservation table to obtain the reservation table shown in Figure 3c. In turn, the tail
of the new reservation table consists of columns 7, 8, and 9. The execution time of an [-block is
the interval from the time when the CPU is ready to fetch the first instruction of the [-block to
the time when the CPU is ready to fetch the first instruction of a successor, if the [-block has any
successor, or the time when the CPU finishes the execution of the [-block, if the [-block has no
successor (i.e., the last [-block). Let T, be the period of a processor clock cycle. Accordingly, the
execution time of the [-block in Figure 3 is 10+ T, and the execution time of the successor is 6 * T¢,

if it has any successor, or 9 * T, otherwise.
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Figure 4: The concurrent execution of the DMAC and a sequence of processor cycles

4 Cycle-Stealing DMA 1/0

We call a processor cycle a B-cycle if at the processor cycle any stage in the instruction pipeline is a
B-stage. Otherwise, we call a processor cycle an E-cycle. The CPU uses the system bus only during
B-cycles. To analyze the bus contention between the CPU and the DMAC during the cache-miss
execution of the /-block shown in Figure 2¢, we represent the bus-access pattern of the [-block by

a sequence of B-cycles and E-cycles,
B1—>B2—>B3—>B4—>E5—>E6—>E7—>B8—>B9—>E10—>E11—>E12—>E13.

Figure 4 illustrates the concurrent execution of the DMAC and the sequence of processor cycles.
Here we assume that bus contention between the CPU and the DMAC is regulated according to
the VMEDbus [14] bus access protocol. This protocol is sufficiently general that our analysis may be
easily applied to many other commonly-used bus protocols. To access the bus, the DMAC asserts
the bus request line. Since the bus is used by the CPU during B; to B4 cycles, the DMAC waits.
The bus is free after the CPU enters E5 cycle from B4 cycle. The DMAC gains the control of the
bus after a short delay, called the bus master transfer time (BMT). The DMAC keeps transferring
data as long as the CPU continues to be in E-cycles. The CPU sends a bus request when it is ready
to enter Bg cycle from E7 cycle. Because the DMAC is currently transferring data, the CPU waits
and the pipelined execution stalls. The DMAC checks whether there is any pending request at the
end of each data transfer. If there is a bus request, the DMAC releases the bus. After another

BMT delay, the CPU gains the control of the bus and the pipelined execution resumes.
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Figure 5: The interference of DMA I/O on the pipelined execution of a successor

Let m be the number of units of data the DMAC transfers during the interval between By cycle
and Bg cycle. Let R be the length of time the pipelined execution stalls. In this example, R is
the time between E7 cycle and Bg cycle. We assume that the transfer of each unit of data by the
DMAC takes the same amount of time and denote this time by DT. Let T be the total execution

time of three processor cycles, Es, g, and E7. We can calculate m by the equation

T — BMT
=|—F]. 3
m { DT -‘ (3a)
Once m is known, we can calculate the time of stall R by the equation
DT +2%BMT - T
R:[m* +T* -‘*Tc. (3)
C

where T, is the period of a processor clock cycle. The detail of the derivation for these equations
can be found in our previous work [5].

Figure 5 illustrates how the cache-miss execution of the /-block shown in Figure 2c affects the
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Figure 6: A simple loop

execution time of a successor when DMA I/0 is concurrently executing. Figure ba, a simplified
version of Figure 4, shows the pipelined execution of the [-block when DMA 1/0 is present. Fig-
ure bb shows the cache-hit reservation table of a successor. To determine the execution time of the
successor, we concatenate the tail of the [-block’s reservation table and the successor’s cache-hit
reservation table to obtain another reservation table shown in Figure 5¢c. The first four processor
cycles of the new reservation table are E-cycles and the next one is a B-cycle. The pipelined exe-
cution stalls due to DMA I/O between the end of the first four E-cycles and the start of the next
B-cycle. To determine the length R of stall, we need to determine if any DMA transfer crosses
the execution of Eqg cycle of the I-block and the first instruction of the successor. If there is one
such DMA transfer, let b denote the length of time from when the DMA transfer starts to when
the CPU is ready to fetch the first instruction of the successor, as shown in Figure 4. We call this
length the elapsed time of the crossing DMA transfer in the I-block. We can calculate R, using a

slight modification of Eq. (3) by setting T to

T;+BMT +b

where Ty now is the total execution time of the first four E-cycles. In contrast, if there is no such
DMA transfer, we can use Eq. (3) directly to calculate Rs. Finally, in this example, the execution
time of the I-block is (R + 10 * T.) and the execution time of the successor is (Rs + 6 x T.), if it

has any successor, or (R + 9 * T.) otherwise.



5 Iterative Integer Linear Programming

A DMA transfer can cross an [-block and its predecessor (i.e., an [-block executed immediately
before it) when the predecessor ends with an E-cycle and the [-block causes a cache hit (i.e., begins
with an E-cycle). As a result, to determine the set of all possible execution times of the [-block
we must first analyze all its predecessors that end with an E-cycle. This requirement may lead
to a cycle of dependencies. Let us take the loop structure in Figure 6 as an example. Each node
in this graph represents an [-block, and each edge represents a control flow edge. Assume that
the [-blocks B and C' each end with an E-cycle. Because C' is a predecessor of B, the execution
time of B depends on C. Since B is a predecessor of C', the execution time of C' depends on B.
When we have a loop of dependencies like the one shown in Figure 6, we follow the control flow
of the program iteratively to calculate the set of all possible executions times of each [-block. The
iterative process may examine the same I-block repeatedly until its all possible execution times are
determined. Since there is only a finite set of these values, this process will eventually terminate.
We describe the iterative algorithm below. This algorithm first determines the set of all possible
execution times of each [-block and constructs a directed graph. It next assigns each execution
time and each directed edge an execution count. A set of linear constraints on these execution
counts are generated. Finally, it constructs the cost function of the program using these possible

execution times and execution counts.

5.1 The main Procedure

Figure 7 shows the main procedure. This procedure requires as input the [-block control structure
of the program to be analyzed and the instructions in each [-block. Let the first [-block in the
program be denoted B; ;. The procedure creates a directed graph G = (V,D). Each node in V'
represents a reservation table of an I-block with stalls due to DMA I/O. The node is labeled with
the corresponding execution time and execution count. Each directed edge between two nodes
represents the fact that the pipelined execution of the [-block represented by the target node is
affected by the tail of the reservation table of the [-block represented by the source node.

We use a variable L to hold the list of I-blocks waiting to be analyzed. For each [-block there

is a list of edges whose targets are the cache-hit case of the [-block. These edges are yet to be
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Input: the [-block structure of a program, and
By 1, the first [-block to be executed.
Output: the cost function and a set of linear constraints.

Procedure:
1 Set G=(V,D) to (0,0).
Set L to {Bl,l}-
Set unprocessed list of each I-block to (.
While L is not empty do

— dequeue an [-block from L and assign it to By ;

— call analyze(By,) procedure.
For each [-block By, ; of the program do

— construct two linear constraints that bound the cache-hit count

and the cache-miss count of the [-block.

7 — construct a linear constraint for the directed edges leaving each node.
8 — construct a linear constraint for the directed edges entering each node.
9 — construct the total execution time expression of the [-block.
10 Construct a cost function by summing each [-block’s total execution time expression.

SOk W N

Figure 7: The main procedure

examined as a crossing DMA transfer may affect the execution time of the [-block; hence this list
is called the unprocessed list of the I-block. This list is initially empty and is modified each time
the [-block is analyzed.

Initially, L contains only the [-block Bj ;. The unprocessed list of By ; is empty, denoted by 0.
Similarly, both the node set V and edge set D of the graph G are empty. During each iteration of
the while loop (lines 2 to 4), the I-block (called By ;) at the head of L is dequeued and its execution
time is analyzed by the procedure analyze (described below). The analyze procedure checks each
successor of the [-block By, ;. A successor is added to the list L if the successor is not yet examined
(i.e., visited), or if analyze has added a new directed edge to the cache-hit case of the successor
and the edge is not yet processed. This iterative process continues until L becomes empty, at which
time all [-blocks and all directed edges between pairs of [-blocks have been analyzed.

Once a complete directed graph G = (V, D) is obtained, we construct a set of linear constraints
and the total execution time expression for each I-block in the program (lines 5 to 9). We first

construct two linear constraints that bound the sum of the execution counts of all possible cache-hit
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Input: an [-block By, and a directed graph G = (V, D).
Output: an updated directed graph G.

Procedure:

If (By, is the first [-block in the program and has never been visited)
— update the node set V accordingly.

Process each edge in By, ;’s unprocessed list in the following manner:
(a) determine the execution behavior of By ; when it causes a cache hit for the edge;
(b) check if there is a node in V' representing this execution behavior;
(c) if (such a node cannot be found) update V' accordingly;
(d) add a new edge to the edge set D;
(e) repeat the steps (a-d) when By ; causes a cache miss;
(f) remove the edge from the unprocessed list and D.

10  Update D accordingly for each node added to V.

11  Update the list L appropriately.

1
2
3
4
)
6
7
8
9

Figure 8: The analyze procedure

(cache-miss) execution times of an [-block By to be equal to its cache-hit count $Z,z (cache-miss
count fol) We next construct a linear constraint that bounds the sum of the execution counts of
the directed edges leaving each node in V' to be equal to the execution count of the node, and a
linear constraint that bounds the sum of the execution counts of the directed edges entering each
node to be equal to the execution count of the node. Finally, we construct the total execution time
expression of By ; by summing the products of each possible execution time by its execution count.

The cost function for the program is constructed at the end of this procedure (line 10). The
maximum value of the cost function under the set of linear constraints is an upper bound of the

WCET of this program.

5.2 The analyze Procedure

This analyze procedure first checks if the [-block By is the first [-block of the program and has
never been visited. If By ; is such an [-block, it adds two nodes of By, ; to the node set V: a node
that represents the cache-hit reservation table and a node that represents the cache-miss reservation
table, both including the stalls due to DMA I/O. Each node is labeled with the corresponding

execution time and its execution count (lines 1 to 2).
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If there are edges in the unprocessed list of By, ;, the procedure processes each edge in the list
in turn and removes it from the list and the edge set D (lines 3 to 9). It determines the pipelined
execution behavior of By ; in the way described in Section 4 for each edge in the list. In the cache-hit
case, the procedure concatenates the tail of the reservation table represented by the source of an
edge and By, ’s cache-hit reservation table to obtain another reservation table. It next uses Eq. (3)
to calculate the amount of time the CPU stalls during the execution of the new reservation table.
The procedure then checks whether this execution behavior is the same as the one represented by
any of By ;’s nodes in V. If it finds such a node in V, it adds to D a new edge from the source of
the original edge to the node. Otherwise, it adds to V' a new node representing the new reservation
table and add to D a new edge from the source node of the original edge to the new node. It
next determines the pipelined execution behavior of By ; when it causes a cache miss in a similar
manner.

For each node added to V, the procedure adds to the edge set D an edge from the node to each
successor and adds the edge to the unprocessed list of the successor (line 10). Finally, if it added

any node to V, it adds all By ’s successor [-blocks to the list L (line 11).

6 Experimental Results

We conducted extensive experiments to demonstrate the effectness of our method on bounding
the WCET of programs executing concurrently with DMA I/O on a dynamic architecture. We
evaluated the performance of our method by comparing our WCET predictions with the traditional
pessimistic predictions for several sample programs. In the following we first describe the control

flow of the experiment. We next describe the experimental results.

6.1 The Control Flow

Figure 9 describes the control flow of the experiment. Table 1 lists the sample programs in our
tested workload. For each sample program, we compiled it into a MC68030 assembly program and
executed the assembly program on a MC68030 simulator with the worst-case data set to obtain
the worst-case execution trace. We identified the worst-case data set of each sample program by a

careful study of the program. We used the MC68030 in this experiment because it is a widely-used
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source program assembly program —> execution trace
static analysis dynamic analysis

Figure 9: The control flow of the experiment

‘ Name H Description

Sels a selection-sort function for 50 elements.

Bubs a bubble-sort function for 50 elements.

Mtxm || a matrix-multiplication function for two 10x10 matrices.
Mtx2 || similar to Mtxm but unrolls the whole innermost loop.

Table 1: The tested set of programs

embedded microprocessor for which instruction timing information is available.

This experiment is divided into two parts: static analysis and dynamic analysis. In the static
analysis part, we compared our WCET prediction with the pessimistic WCET prediction of the
program. In the dynamic analysis part, we compared our WCET prediction with the pessimistic
WCET prediction of the worst-case execution trace of the program.

We implemented our methods in the form of a timing tool. The timing tool contains about
15,000 lines of C++ code, part of which is obtained from a tool called Cinderella, developed by
Li et al [9]. Our timing tool takes as input an MC68030 assembly program. As required by all
previous work [1,3-6,8-13], the user needs to provide loop bound information on the analyzed
program. The user can also provide additional information in form of linear constraints to tighten
the WCET prediction.

The MC68030 microprocessor contains an on-chip 256-byte direct-mapped instruction cache
which is organized as 16 16-byte lines. It also uses an instruction pipeline which allows as many
as two instructions to be executed simultaneously. We obtained the timing information of each
instruction from the Motorola 68030 manual [2]. The clock frequency of the microprocessor was 20
MHz, and the period of a clock cycle T, was 50 ns. A 0-wait memory was used, and each DMA

transfer took two clock cycles. Hence, we set DT to 100 ns. Finally, BMT was 5 ns.
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‘ Name H # of instructions ‘ % of long instructions

Sels 11,713 0%
Bubs 21,335 0%
Mtxm 40,789 10%
Mtx2 10,592 20%

Table 2: The features of tested traces

6.1.1 Static Analysis

Given an assembly program, we first computed its WCET when it executes alone. We denote
this value by A;. We next used our method to compute the WCET of the program when it
executes concurrently with DMA I/0 and denote this value by W,. We compared W, with Ay to
measure how much DMA I/0 extends the WCET of the program. In addition, we computed the
maximum units of data the DMAC can transfer during the execution of the worst-case execution
path. We denote this value by M. We also used a pessimistic method to predict the WCET of
the concurrent execution of the program and a DMA I/O operation that transfers M units of
data. The pessimistic method bounds the WCET by the sum of A; and the execution time of the
DMA I/O operation when it is carried out alone. We denote this pessimistic prediction by W¢.
We measure the effectiveness of our method by the percentage P; of reduction from the pessimistic
prediction, i.e.,

-Ww

6.1.2 Dynamic Analysis

The approach we took to demonstrate the improvement of our method on each program’s worst-
case execution trace is similar to the one used in the static analysis. We first computed the
execution time of a trace when it executes alone and denote this value by A,;. We next simulated
the concurrent execution of the trace and DMA I/0 to find the execution time of the trace when
it executes concurrently with DMA I/O and the number of units of data the DMAC transfers.
We denote them by W; and Mg, respectively. We compared W, with A4 to measure how much
DMA I/0 shows down the execution of the trace. The trace can be treated as a program with only

straight-line code. Since the program contains only one execution path, our WCET prediction was
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exactly the same as Wy. In other words, given the trace and a DMA I/O operation that transfers
M units of data, both of which are ready at the same time, our method bounds the WCET by Wj.
Let W7 denote the pessimistic WCET prediction of the concurrent execution of the trace and the
DMA I/O operation. We measure the effectiveness of our method by the percentage of reduction
from the pessimistic prediction, i.e.,
P, = Mw;gyvd * 100%

In addition, we evaluated the accuracy of our method by comparing the execution time Wy of the
worst-case execution trace and our WCET prediction W; of the structured program.

Column 2 of Table 2 lists the number of instructions in the worst-case execution trace of
each program. To investigate the relationship between the performance of our method and the
computational requirement of a program, we classify all instructions into two categories: long
instructions and short instructions. An instruction is a long instruction if, during its execution, the
CPU does not need the bus for 10 processor clock cycles or more. In contrast, during the execution
of a short instruction, the CPU never allows any I/O device to have the bus for such a long period.
Generally speaking, long instructions do intensive computation, and short instructions do data
movement or simple computation. For example, the instructions MULU.W D1,D2 and DIVU.W D2,DO
are long instructions and MOVE.L (A3)+,DO and ADD.L DO,D1 are short instructions. We tested
programs with different computational requirement in the experiment. Column 3 of Table 2 gives
the percentage of long instructions in each trace. Among the tested program, Mtx2 is obtained
by unrolling the innermost loop of Mtxm. As shown in Table 2, this loop-unrolling procedure

significantly increases the percentage of long instructions.

6.2 Experimental Results

We first used the method described in Section 5 to compute the WCET of a program when it
executes concurrently with DMA I/O on a dynamic architecture. A similar method without con-
sidering the stalls caused by DMA I/0O can be used to compute the WCET of the program when
it executes alone. Table 3 shows the experimental results of the static analysis. In order to study

the relationship between the reduction percentage Ps and the size of the instruction cache, we
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4 line instruction cache 8 line instruction cache

Name Ws/As | WE[As | Ps Name Ws/As | WE[As | Ps

Sels 1.05 1.84 | 43% Sels 1.06 1.88 | 44%
Bubs 1.07 1.84 42% Bubs 1.07 1.85 42%
Mtxm 1.03 1.64 37% Mtxm 1.03 1.89 46%
Mtx2 1.02 1.71 40% Mtx2 1.02 1.71 40%

16 line instruction cache 32 line instruction cache

Name Ws/As | W2/ As | Ps Name Ws/As | W2/ As | Ps

Sels 1.06 1.88 44% Sels 1.06 1.88 44%
Bubs 1.07 1.85 42% Bubs 1.07 1.85 42%
Mtxm 1.03 1.94 47% Mtxm 1.03 1.94 47%
Mtx2 1.02 1.81 44% Mtx2 1.02 1.92 47%

Table 3: The static-analysis experimental results

conducted the same experiment on processor configurations with instruction caches of 4, 8, 16, and
32 16-byte cache lines. Columns 2 and 3 give the values of W, and W, respectively, after each
is normalized to As. Column 4 gives the value of Ps; for each program. A program has a higher
cache-hit ratio when it executes on a process configuration with more cache lines. Consequently,
when a program executes on a processor configuration with more cache lines, it has a larger value
of P;.

Table 4 shows the dynamic-analysis results of the four experiments with 4, 8, 16, and 32 cache
lines. Column 3 gives the cache-hit ratio of each trace. Column 4 gives the bus utilization of each
trace when it executes alone. The bus utilization of a trace is the amount of time the CPU uses the
system bus to the execution time of the trace. Because a trace that has a higher percentage of long
instructions spends more time in computation, it has a lower bus utilization. Column 5 and 6 give
the values of W, and WY, respectively, after each is normalized to A4. Column 7 gives the value
of P; for each trace. We can see that our method produces a larger reduction percentage Py for a
trace with a higher hit ratio and a larger percentage of long instructions. Column 8 gives the value
of Wy/Ws on each processor configuration. The fact Wy/W, < 1 for any tested program shows
that our WCET prediction W;s safely bounds the execution time W, of the worst-case execution
path of the program. A program is deterministic if it contains only an execution path. Among the

tested programs, Mtxm and its loop-unrolled version Mtx2 are deterministic. An execution trace
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4 line instruction cache

Name % of long | cache-hit bus WalAa | Wi/ Aa | Pa | Wa/Ws
instructions ratio utilization
Sels 0% 0.98 0.25 1.05 1.79 41% 0.54
Bubs 0% 1.00 0.23 1.07 1.82 41% 0.49
Mtxm 10% 0.80 0.39 1.03 1.64 37% 1.00
Mtx2 20% 0.80 0.30 1.02 1.71 40% 1.00
8 line instruction cache
Name % of long | cache-hit bus WalAa | WS/ Aa | Pa | Wa/Ws
instructions ratio utilization
Sels 0% 1.00 0.17 1.06 1.87 43% 0.52
Bubs 0% 1.00 0.21 1.07 1.84 42% 0.48
Mtxm 10% 0.99 0.13 1.03 1.89 46% 1.00
Mtx2 20% 0.80 0.30 1.02 1.71 40% 1.00
16 line instruction cache
Name % of long | cache-hit bus Wa/Aag | WS/ Aq | Pa | Wa/Ws
instructions ratio utilization
Sels 0% 1.00 0.17 1.06 1.87 43% 0.52
Bubs 0% 1.00 0.21 1.07 1.84 42% 0.48
Mtxm 10% 1.00 0.10 1.03 1.94 47% 1.00
Mtx2 20% 0.90 0.20 1.02 1.82 44% 1.00
32 line instruction cache
Name % of long | cache-hit bus WalAq | Wi/ Aq | Pa | Wa/Ws
instructions ratio utilization
Sels 0% 1.00 0.17 1.06 1.87 43% 0.52
Bubs 0% 1.00 0.21 1.07 1.84 42% 0.48
Mtxm 10% 1.00 0.11 1.03 1.93 47% 1.00
Mtx2 20% 1.00 0.08 1.02 1.92 47% 1.00

Table 4: The dynamic-analysis experimental results
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of a deterministic program is its only execution path, and the execution time of the trace is the
actual WCET of the program. For each of the Mtxm and Mtx2 programs, the execution time
W, of the trace is equal to our WCET prediction Wy of the program, i.e., Wy/W, = 1. This fact
shows that our method does not impose any pessimistic assumptions and, therefore, tightly bounds

the WCET of a program executing concurrently with DMA I/0.

7 Concluding Remarks

In this paper we presented an iterative integer linear programming method that can be used to
bound the performance of a program executed on a hard-real-time embedded system where the
execution time of each instruction depends on not only itself but also its adjacent instructions. We
illustrate the capability of this method with an architecture where a processor has an instruction
cache and an instruction pipeline, and cycle-stealing DMA I/0 is concurrently executing. The
experimental results show that our method safely and tightly bound the WCET of a program
executed on such an architecture. As we do not impose any architecture-specific restriction in
our iterative integer linear programming method, we believe our method can be easily adapted to

accurately bound the WCET of a program executed on other dynamic architectures.
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