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中文摘要 

 
本論文探討 GSM 語音對文句相關語者

確認效能之影響。我們依據隱藏式馬可夫模型

製作語者確認系統供語者模型訓練與測試之

用。為切合實際環境，我們在多種行動條件下

錄製了一套 GSM 語音資料庫。最後，本論文

針對各種訓練與測試環境進行了一系列的實

驗，並提出較前人更為精確的結果。 

關鍵詞：文句相關語者確認、隱藏式馬可夫模

型、GSM語音資料庫。 

 
Abstract 

This paper investigates the effects of GSM 

speech on text-dependent speaker verification 

performance. An HMM-based system is 

implemented for performance evaluation. In 

order to match the real-world environments, the 

full-rate GSM speech database over cellular 

network is collected under different driving 

speeds. Experimental results obtained from 

different combinations of training and test 

conditions are presented, which provide more 

accurate results than previous works that used 

transcoded databases. 
Keywords: text-dependent speaker verification, 

HMM, GSM speech database. 

 
Ⅰ. Introduction 

 
With the rapidly growing of mobile phone 

user, the mobile commerce is becoming the most 

popular service in financial transactions. For 

sharing the immense benefits of mobile market, 

many securities firms attempt to offer more 

convenient financial services for customers via 

mobile cellular network. Typical example is the 

mobile trading system that uses voice-activated 

transaction interface. With the aid of automatic 

speech recognition (ASR) technology, such 

systems make stock exchange and information 

retrieval in hands-busy and eyes -busy situations 

possible. The principal problem encountered in 

such systems; however, is how to test and verify 

the identity of speakers. 

Recently, several researchers have addressed 

the problems of speaker verification in mobile 

communication environments [1, 2]. Castellano, 

et al., [1] showed that full rate GSM coder and 

LPC10 coder significantly degrade the 

verification accuracy. Besacier, et al., [2] 

indicated that a low LPC order in GSM coding is 

responsible for the most performance 

degradations. In both systems; however, only 

transcoded speech databases were used for 

performance evaluation. That is, those speech 

data were generated by the above-mentioned 

coders with the process of encoding and 

decoding, and thus can not reflect the real effects 

of GSM speech in mobile environments. 

To match real-world mobile environments, 

instead of transcoded data, the field full-rate 

GSM speech of 13 kbps over cellular network 

was collected in this research. Performance of 

speaker verification under different mobile 

conditions are evaluated and compared. The 

remaining part of this paper is organized as 

follows. Section 2 describes the implementation 

of speaker verification system. Experimental 

results are given and discussed in Section 3. 
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Fig. 1 HMM-based speaker verification system. 

 

 

Finally, brief concluding remarks are presented in Section 

4. 

 
Ⅱ. HMM-Based Speaker Verification 

System 
 

A text -dependent speaker verification system based on 

continuous density Gaussian mixture, hidden Markov 

model (HMM) [3] was implemented for performance 

evaluation. The main components of the system shown in 

Fig. 1 are described as follows. 
 

2.1 Speech Database 

A Mandarin speech database consisting of 20 male and 

20 female speakers was collected from GSM network 

connected to a computer telephony integrated (CTI) 

interface. The GSM speech coder belongs to the class of 

Regular Pulse Excitation-Long Term Predication-linear 

predictive (RPE-LTP) coders. Since most of the cellular 

calls are placed inside a vehicle, in this research, three 

in-vehicle call environments were considered: stopped 

cars (0 km/hr) with running engine, running cars with 

driving speeds of 50 km/hr (in urban area) and 90 km/hr 

(in freeway). Each speaker pronounced 40 7-digit strings 

at each condition according to Table 1, the same contents 

as MAT-160 database of ROC Computational Linguistics 

Society [4]. This resulted in a database that consists of 

480034040 =×× digit strings. 

 
Table 1 The contents of GSM speech database 

0424040 0637223 0830873 1182720 1640233 

1642125 1674310 2123213 2036733 2865776 

3019988 3261464 3489468 3576446 3582619 

4309860 4779899 5081144 5243712 5326477 

5492950 5523208 5939183 5962861 6337988 

6377001 6393496 6412416 7329669 7362377 

7380408 7688544 7992249 8198714 8532261 

8631513 8640829 9085035 9560613 9738479 

 

 

2.2 Hidden Markov Model 

The HMM is a finite state statistical structure which has 

been applied in many applications such as speech 

recognition and channel modeling [3]. An N-state HMM is 

defined by the parameter set 
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where 

iπ :   initial state probability for state i, 

ija :   transition probability from state i to state j, 
)(xbi :  state observation probability density function 



 

(pdf). 

 

2.3 Model Training 

Firstly, the training utterances (digit strings) of each 

speaker are segmented into a sequence of isolated digits 

based on the measured values of energy and zero crossing 

rate. Each digit was modeled by a left-to-right HMM of 6 

states as shown in Fig. 2 where each state contains 8 

Gaussian mixtures. The speech features including 12 

mel-frequency cepstral coefficients (MFCCs) and 12 delta 

MFCCs were extracted for each utterance of 30-ms 

Hamming-windowed frame with 10-ms frame shift. The 

extracted features were then used to train the HMM digit 

model by employing the segmental K -means training 

procedure [3]. Finally, each speaker is represented by a 

speaker model that comprises those derived HMM digit 

models . 
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Fig.2 The left-to-right HMM. 

 

2.4 Scoring of Verification 

After constructing speaker model, the speaker 

background model of each specified speaker was then 

obtained based on similarity measure [5] as follows. The 

similarity between speaker i and speaker j is defined as 
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where  

iλ : the sequence of digit HMMs of speaker i, 

jλ :  the sequence of digit HMMs of speaker j, 

iO :  the training utterances of speaker i, 

jO :  the training utterances of speaker j.  

Note that the most similar speakers will receive the 

smallest similarity score. Next, a cohort speaker set is 

constructed depending on the ranking of measured 

similarity scores, and finally the first M  (between 10 and 

15) speakers are selected to represent the speaker 
background model of speaker i, which is denoted as 

î
λ . 

In the testing phase, the normalized log likelihood score 

[6] used for verification is calculated against a specified 

speaker model and its corresponding speaker background 

model: 
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where  

O:    the testing utterances, 
)/( iOP λ : the likelihood related to speaker i, 

)/(
î

OP λ : the likelihood related to speaker background 

model of speaker i.  

The speaker i will be accepted if its score is larger than a 

predetermined threshold. 

 

III. Experimental Results 
 

A series of experiments were conducted to evaluate the 

effects of GSM speech on the performance of speaker 

verification by using the system described in Section 2.  

In all experiments, three test environments were 

differentiated: (1) stopped cars (0 km/hr) with running 

engine, (2) running cars of 50 km/hr, and (3) running cars 

of 90 km/hr.  For each mobile environment, utterances of 

10, 20, and 30 digit strings are randomly chosen from each 

true speaker for training, which are denoted by T10, T20, 

and T30, respectively. All test results are presented in 

terms of equal-error-rate (EER). 

In the first experiment, tests with 30 true speakers (15 

male and 15 female) and 10 impostors (5 male and 5 

female) are performed with 15-speaker background model.  

The utterances of impostors and those of true speakers 

other than training are used for test. Thus, the total number 

of test trials for the cases of T10, T20, and T30 are 

respectively equal to 30 (true speakers) × 40 (total 

speakers) ×  30 (test strings) = 36000, 30 × 40 × 20 = 

24000, and 30 × 40 × 10 = 12000. The results obtained 

from different combinations of training and test conditions 

are given in Table 2. It can be seen from the results that 

the performance is improved with the increase of training 

data in all test conditions. For example, an improvement 

of 38.4% was obtained when the training data is increased 

from T10 to T30 in the matched case of 0 km/hr. In 

addition, the mismatched conditions present significant 

performance degradations as compared to the matched 

conditions, especially in the case of 0 km/hr and 90 km/hr 



 

where the degree of mismatch between training and test 

conditions is the highest. 

In the second and third experiments, a total of 20 male 

and 20 female speakers were respectively tested, 15 of 

them are true speakers and the others are impostors. 

10-speaker background model is  utilized in both 

experiments. As expected, the experimental results 

illustrated in Table 3 for 20 male speakers and Table 4 for 

20 female are consistent with that of Table 2. That is, the 

improved performance can be obtained with the increase 

of training data and matched condition yields the best 

result. Furthermore, it is of interest to note that the 

performance of male is much better than that of female, 

with at most 34.3% in the matched case of 0 km/hr. 

 
Ⅳ. Conclusions 

 
We have investigated the effects of GSM speech on a 

text -dependent speaker verification system based on 

hidden Markov model. A field GSM speech database was 

built from different mobile environments. Experimental 

results demonstrate that verification performance 

decreases with the increase of degree of mismatch 

between training and test conditions. Best performance 

was obtained in case of matched condition for male 

speakers. It must also be mentioned that this study gives 

more accurate results than previous works that used 

transcoded databases. Consequently, this investigation 

provides a useful baseline for performance evaluation of 

speaker verification in mobile ASR-based trading systems. 

In order to improve verification performance, the future 

work will focus on the development of compensation 

techniques for background noise and channel variations. 
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Table 2 Experimental results (EERs) with 30 true speakers and 10 impostors. 

0 km/hr 50 km/hr 90 km/hr 
Training data 

 
Test data 

T10 T20 T30 T10 T20 T30 T10 T20 T30 

0 km/hr 0.1395 0.0947 0.0860 0.1597 0.1173 0.1011 0.1630 0.1372 0.1114 

50 km/hr 0.1483 0.1154 0.0942 0.1367 0.1082 0.0889 0.1571 0.1335 0.1090 

90 km/hr 0.1486 0.1162 0.0984 0.1561 0.1148 0.0978 0.1470 0.1151 0.0948 

 
 
 

Table 3 Experimental results (EERs) with male speakers. 

0 km/hr 50 km/hr 90 km/hr 
Training data 

 
Test data 

T10 T20 T30 T10 T20 T30 T10 T20 T30 

0 km/hr 0.1104 0.0759 0.0654 0.1437 0.1083 0.0980 0.1508 0.1173 0.1054 

50 km/hr 0.1283 0.0953 0.0732 0.1336 0.0892 0.0797 0.1435 0.1035 0.0990 

90 km/hr 0.1302 0.1022 0.0794 0.1391 0.1014 0.0935 0.1343 0.0928 0.0829 

 
 
 

Table 4 Experimental results (EERs) with female speakers. 

0 km/hr 50 km/hr 90 km/hr 
Training data 

 
Test data 

T10 T20 T30 T10 T20 T30 T10 T20 T30 

0 km/hr 0.1453 0.1157 0.0902 0.1787 0.1398 0.1171 0.1830 0.1427 0.1249 

50 km/hr 0.1526 0.1273 0.1004 0.1526 0.1203 0.0972 0.1791 0.1405 0.1297 

90 km/hr 0.1603 0.1309 0.1036 0.1760 0.1337 0.1058 0.1650 0.1256 0.1131 
 

 


