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Abstract

Centroids and medians are very important in dis-

cussing location problems. There are very few pa-

pers proposed for finding centroids and medians on

various graphs. In some graphs, centroids and me-

dians are the same. It was shown that the centroids

are also the medians in a tree graph. In this paper,

we shall prove the identity of centriods and medi-

ans in a discrete set according to the Manhattan

metric on Z2.
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1 Introduction

Location on networks is a topic of great impor-

tance in fields such as transportation, communi-

cation, service areas and computer sciences. His-

torically, the center and median have been proved

useful as solutions for the locations of emergency

and service facilities, respectively, such as a hospi-

tal, a police station, a post office, shopping mall,

bank or power station. It was for telecommunica-

tion networks that Hakimi originally proposed me-

dian and center objectives for location of switching

centers[5]. In [12], Slater introduced the competi-

tive facility location problem in graphs. For exam-

ple, each vertex in a graph G represents a customer

and a store can be created in any vertex of G. As-

sume that every customer will shop at the closest

store and that there is only one store in G before

you want to create a new one to compete with it.

Which vertex will be chosen as the location of your

store so that you will have as many customers as

possible? The solution of this problem is called a

centroid.

Location problems in graphs and networks are

studied wildly in operations research[3, 4, 8, 10, 12,

13, 14]. Most of researchers are focus on designing

efficient algorithms for finding the centers, medians,

and centroids of a graph. See [14] for a summary of

early history. Very few papers discussed the iden-

tity of centers, medians, and centroids. However,

Slater proved that, in a tree graph, a point u is a

centroid if and only if u is also a median[12]. More-

over, he also proved that for any connected graph

G, the centroids and medians are in the same block

of G[13]. In this paper, we shall show the identity

of medians and centroids of a discrete set according
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to the Manhattan metric on Z2. A discrete set S

is a subset of Z2 with elements called points. In

[9], Lungo et al. proposed an efficient algorithm for

finding the medians of a discrete set S in O(|R(S)|)
time, where R(S) denotes the smallest rectangle

area containing S and |R(S)| is the cardinality of

R(S) . Chung extended their result to the weighted

case and solved the problem in O(|S|) time [2].

The rest part of this paper is organized as fol-

lows. In Section 2, we define our problem formally

and introduce some notation in detail. Section 3

contains our main result of proving the identity of

medians and centroids on a discrete set. Finally,

concluding remarks are given in Section 4.

2 Preliminaries

We will follow the notation defined in [9]. For clar-

ity, we introduce some of them as follows. Let

R(S) denote the smallest m × n rectangle con-

taining S which is a discrete subset on Z2. The

position of each point p in R(S) is indexed by

(xp, yp), 1 ≤ xp ≤ m and 1 ≤ yp ≤ n, where xp

and yp are the row number and the column num-

ber, respectively. Note that we number the rows

and columns starting from the lower-left corner of

R(S). Using the Manhattan metric, the distance

between two points p = (xp, yp) and q = (xq, yq) is

d(p, q) = |xp − xq|+ |yp − yq|. The total distance of

point p in R(S) is D(p) =
∑
q∈S

d(p, q)[1]. A point p

in R(S) is said to be a median with respect to S if

D(p) is minimum among the total distances of all

points in R(S). Generally, there are more than one

median and some medians are in R(S)−S. We use

M(S) to denote the set of medians with respect to

S. For a pair of points u, v ∈ R(S), let Puv be the

set of points in S which are closer to u than v, in-

cluding u itself if u ∈ S. Let f(u, v) = |Puv|− |Pvu|
and g(u) = min{f(u, v)|v ∈ R(S) − u}. The cen-

troid value of S, denoted by c(S), is defined as

c(S) = max{g(u)|u ∈ R(S)}. Point u is called a

centroid if g(u) = c(S). The set of centroids is de-

noted by C(S).

We use an example to illustrate the above no-

tation. In Figure 1, R(S) is a 3 × 4 rectangle of

12 points, where S contains the points p1, p4, p6,

p8, p10, and p12. The distances between point p1

and points p1, p4, p6, p8, p10, and p12 are 0, 3,

2, 4, 3, and 5, respectively. The total distance

D(p1) = 0 + 3 + 2 + 4 + 3 + 5 = 17. Similarly,

the distances between point p2 and points p1, p4,

p6, p8, p10, and p12 are 1, 2, 1, 3, 2, and 4, re-

spectively, and D(p2) = 1 + 2 + 1 + 3 + 2 + 4 =

13. For all points pi, i = 3, 4, · · · , 12, the values

of D(pi) are 13, 13, 15, 11, 11, 11, 17, 13, 13,

and 13, respectively. Therefore, the median set

M(S) = {p6, p7, p8}. Note that p7 is not in S.

Points p6, p8, p10, and p12 are closer to p6 than

p1, thus |Pp6p1 | = 4. Since no point is closer to

p1 than p6 except p1 itself, |Pp1p6 | = 1. There-

fore, f(p6, p1) = |Pp6p1 | − |Pp1p6 | = 4 − 1 = 3.

Similarly, f(p6, p2) = 2, f(p6, p3) = 1, f(p6, p4) =

0, f(p6, p5) = 4, f(p6, p7) = 0, f(p6, p8) = 0,

f(p6, p9) = 2, f(p6, p10) = 2, f(p6, p11) = 0, and

f(p6, p12) = 0. The value of g(p6) is 0. Using the

same computation for each point in R(S), the val-

ues of g(pi), i = 1, 2, · · · , 12, are -4, -2, -1, -2, -4, 0,

0, 0, -4, -2, -2, and -2, respectively. By the defini-

tion of centroids, C(S) contains points p6, p7, and

p8 which are also the medians with respect to S.

The ith row projection (respectively, jth column

projection) of S is the number of points of S in the

ith row (respectively, jth column). We denote the

ith row projection by hi, 1 ≤ i ≤ m and the jth

column projection by vj , 1 ≤ j ≤ n. The vectors

H = (h1, h2, · · · , hm) and V = (v1, v2, · · · , vn) are

called the horizontal and vertical projections, re-

spectively, of S. The prefix sums of vectors H and
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Figure 1: The Manhattan metric.

V are defined as follows:

H0 = 0 and Hk =
k∑

i=1

hi, k = 1, 2, ...,m

V0 = 0 and Vk =
k∑

j=1

vj , k = 1, 2, ..., n

and A =
m∑

i=1

hi =
n∑

j=1

vj .

The ith row (respectively, jth column) of R(S) is

called a median row (respectively, median column)

if Hi−1 ≤ A
2 ≤ Hi (respectively, Vj−1 ≤ A

2 ≤ Vj).

In [9], Lungo et al. proved that a point m belongs

to M(S) if and only if m is an intersection of a

median row and a median column of R(S). For

example, in Figure 1, H = (h1, h2, h3) = (2, 2, 2),

V = (v1, v2, v3, v4) = (1, 2, 0, 3), (H1,H2,H3) =

(2, 4, 6), (V1, V2, V3, V4) = (1, 3, 3, 6) and the value

of A is 6. It is easy to find that row 2 and columns

2, 3, and 4 are the median row and the median

columns, respectively. The medians of R(S), p6, p7,

and p8 are indeed the intersections of row 2 and

columns 2, 3, and 4, respectively.

According to the result that a point m belongs to

M(S) if and only if m is an intersection of a median

row and a median column of R(S), the medians of

S will form a rectangle. We denote it by R(M).

With respect to R(M), we have the following ob-

servations:

Observation 1 If m is a median and m ∈ M(S),

then m must be at one of the four corners of R(M).

Observation 2 If there are more than two me-

dian rows (respectively, columns), then no point of

S is in the intermediate median rows (respectively,

columns).

Observation 3 If there are more than one me-

dian column (respectively, row) and m is a me-

dian at one of the left (respectively, lower) cor-

ners of R(M), then Vym
= A

2 (respectively, Hxm
=

A
2 ). Furthermore, if m is a median at one of

the right (respectively, upper) corners of R(M),

then Vym−1 = A
2 (respectively, Hxm−1 = A

2 ) and

Vym
> A

2 (respectively, Hxm
> A

2 ).

3 Main Result

In this section, we shall prove the identity of medi-

ans and centroids on a discrete set under the Man-

hattan metric. For ease of description, in Lemmas 1

and 2, all positions of the discrete set S are mapped

into the coordinate system and a specific median is

mapped to the origin. That is, if m = (xm, ym) is

the specific median, then for any point u = (xu, yu),

the abscissa and ordinate of u in the coordinate sys-

tem are yu − ym and xu − xm, respectively. Notice

that the row number xu is mapped to an ordinate

and the column number yu is mapped to an ab-

scissa. We use x̂u and ŷu to denote the mapped

abscissa and ordinate, respectively, of point u in

the coordinate system. That is, x̂u = yu − ym and

ŷu = xu − xm.

Lemma 1 Let m = (xm, ym) and u = (xu, yu)

be two points in R(S), where m ∈ M(S) and

u ∈ R(S) − M(S). If xm = xu or ym = yu, then

f(m,u) ≥ 0. Moreover, if m is the closest median

to u, then f(m,u) > 0.

Proof: Since m is at the origin, the coordinate of

u is either (0, k) or (k, 0), where k is an integer. We

only consider the case where (x̂u, ŷu) = (k, 0) and



k > 0. The other cases can be handled similarly.

Let v = (xv, yv) be a point in R(S) with x̂v ≤ 0.

It can be obtained that d(m, v) < d(u, v) by the

following derivation:

d(m, v)

= |0− x̂v|+ |0− ŷv|

= |x̂v|+ |ŷv|

< |k − x̂v|+ |0− ŷv|

= d(u, v).

Since Vym
≥ A

2 , there are at least A
2 points in

S whose column numbers are less than or equal to

ym. Thus, there are at least A
2 points in S which

are closer to m than u. It implies that f(m,u) ≥ 0.

Now we prove that if m is the closest median to

u, then f(m,u) > 0. Let m be the closest median

to u. If Vym
= A

2 , then column ym + 1 will be

a median column and point (xm, ym + 1) is also a

median which is closer to u. It contradicts that m

is the closest median to u. Therefore, f(m,u) > 0.

Q. E. D.

Let Ni contain the points of S in Quadrant i,

i = I, II, III, IV . Note that the points in x-axis or

y-axis are not in any quadrant. Let O be the origin

and u be a point in S with (x̂u, ŷu) = (k, k), where

k is a positive integer. The Voronoi diagram[7, 11]

of points u and O, under Manhattan metric, sepa-

rates the plane into three regions: region Au con-

tains the points of S closer to u than O; region

Am contains the points of S closer to O than u; the

third region contains the points of S which have the

equal distance to u and O[7]. The points of S on

x-axis and y-axis are separated into four segments

L0, R0, D0, and U0: L0 contains the points u of S

with x̂u ≤ 0 and ŷu = 0; R0 contains the points u of

S with x̂u > 0 and ŷu = 0; D0 contains the points

of S with x̂u = 0 and ŷu < 0; and U0 contains the

points of S with x̂u = 0 and ŷu > 0. See Figure 2

for an illustration.

Figure 2: A Voronoi diagram under the Manhattan
metric.

Lemma 2 Let m = (xm, ym) and u = (xu, yu)

be two points in R(S), where m ∈ M(S) and

u ∈ R(S) − M(S). If xm 6= xu and ym 6= yu, then

f(m,u) ≥ 0. Moreover, if m is the closest median

to u, then f(m,u) > 0.

Proof: We only consider the case where point u

is in Quadrant I. With a similar reasoning, we

can prove the other cases in which the points are

in other quadrants. Consider the following three

cases.

Case 1. x̂u > ŷu.

In this case, we shall prove that d(m, v) < d(u, v)

for any point v = (xv, yv) in S with x̂v ≤ 0. Let

w be a point in R(S) whose coordinate is (0, ŷu).

Then,

d(u, v)

= d(u, w) + d(w, v)

= |x̂u − 0|+ |ŷu − ŷu|+ d(w, v)

= |x̂u|+ d(w, v)

> |ŷu|+ d(w, v)



= d(m,w) + d(w, v)

≥ d(m, v).

Since Vym
≥ A

2 , there are at least A
2 points in S

whose column numbers are less than or equal to

ym. Thus, there are at least A
2 points in S which

are closer to m than u. It implies that f(m,u) ≥ 0.

Case 2. x̂u < ŷu.

Similar to Case 1, it can be proved that there are

at least A
2 points in S whose row numbers are less

than or equal to xm and f(m,u) ≥ 0.

Case 3. x̂u = ŷu.

For the purpose of contradiction, we assume that

f(m,u) < 0. That is |Pum| > |Pmu| and |Au| >

|Am|. Since Au is a subset of NI and Am contains

NIII

⋃
L0

⋃
D0, |NI | ≥ |Au| > |Am| = |NIII | +

|L0|+ |D0|. Therefore,

|NI | > |NIII |+ |L0|+ |D0|

|NI |+ |NIV |+ |R0| > |NIII |+ |L0|+ |D0|

+|NIV |+ |R0|

|NI |+ |NIV |+ |R0| > |NIII |+ |NIV |+ hxm

+|D0|

|NI |+ |NIV |+ |R0| >
A

2
.

It implies that Vym < A
2 and contradicts that m is

a median. Thus, f(m,u) ≥ 0.

For the case where m is the closest median to u,

we assume to the contrary that f(m,u) ≤ 0. That

is |Pum| ≥ |Pmu| and |Au| ≥ |Am|. Since Au is

a subset of NI and Am contains NIII

⋃
L0

⋃
D0,

|NI | ≥ |Au| ≥ |Am| = |NIII | + |L0| + |D0|. More-

over, m must be the upper-right corners of R(M)

since m is the closest median to u and u is in Quad-

rant I with xm 6= xu and ym 6= yu. By Observation

3, Hxm
= |NIII |+ |NIV |+hxm

+ |D0| > A
2 . There-

fore,

|NI | ≥ |NIII |+ |L0|+ |D0|

|NI |+ |NIV |+ |R0| ≥ |NIII |+ |L0|+ |D0|

+|NIV |+ |R0|

|NI |+ |NIV |+ |R0| ≥ |NIII |+ |NIV |+ hxm

+|D0|

|NI |+ |NIV |+ |R0| >
A

2
.

It implies that Vym
< A

2 and contradicts that m is

a median. Thus, f(m,u) > 0.

Q. E. D.

Corollary 3 If u ∈ R(S)−M(S), then there exists

a point w in M(S) such that f(w, u) > 0.

Lemma 4 If |M(S)| > 1 and m, u belong to

M(S), then f(m,u) = 0.

Proof: By Observations 1 and 2, the positions of

m and u in R(S) must be in one of the following

cases:

1. m and u are at the same row,

2. m and u are at the same column, and

3. m and u are at the opposite corners of R(M).

Suppose that m and u are at the same row, where

ym < yu. By Observation 3, there are A
2 points

closer to m than u since Vym = A
2 . Moreover, since

Vyu−1 = A
2 , the number of points on column yu

and on the right hand side of u is A
2 ; that is, the

number of points closer to u than m is A
2 . We

have |Pmu| = |Pum| = A
2 and f(m,u) = 0. With a

similar reasoning, the same result for the latter two

cases can be obtained.

Q. E. D

Lemma 5 If point m is a median of S, then m is

a centroid of S.

Proof: By Lemmas 1 and 2 and the definition of

g(u) = min{f(u, v)|v ∈ R(S)−u}, if u is a median,

then g(u) ≥ 0; otherwise, g(u) ≤ 0. The definition

of a centroid u is g(u) = c(S) = max{g(v)|v ∈
R(S)}. By Lemma 4, therefore, a median must be

a centroid.

Q. E. D



Lemma 6 If u = (xu, yu) ∈ G is a centroid under

the Manhattan metric, then u is a median.

Proof: Assume to the contrary that u is a centroid

but not a median. Let point m be the closest me-

dian to u. By Lemmas 1 and 2 and Corollary 3, we

know that g(m) ≥ 0 and g(u) < 0. It contradicts

the definition of a centroid g(u) = max{g(v)|v ∈
G}. It completes the proof.

Q. E. D.

We summarize Lemmas 5 and 6 as the following

theorem.

Theorem 7 Under the Manhattan metric, point u

is a centroid of G if and only if it is a median of

G.

4 Concluding Remarks

In this paper, we prove the identity of medians and

centroids of a discrete set under Manhattan met-

ric. Thus, an algorithm which finds the medians of

a graph can also be applied to find the centroids

of the graph and vice versa. By using the algo-

rithm proposed by Chung[2], the centroids of a dis-

crete set can be found in O(|S|) time. In general

graphs, a median may not be a centroid. It is worth

to study the identity of medians and centroids on

other graphs.
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