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Abstract

The star graph is an attractive alternative to the
hypercube graph. It possess many nice topological
properties. Edge fault tolerance is an important
issue for a network since the edges in the network
may fail sometimes. In this paper, we show that
the n-dimensional star graph is (n — 3)-edge fault
tolerant hamiltonian laceable, (n — 3)-edge fault
tolerant strongly hamiltonian laceable, and (n —
4)-edge fault tolerant hyper hamiltonian laceable.
All these results are optimal in a sense described
in this paper.

Keywords: star graph, hamiltonian laceable,
strongly hamiltonian laceable, hyper hamiltonian

laceable, fault tolerant.

1 Introduction

Network topology is a crucial factor for a network
since it determines the performance of the net-
work. For convenience of discussing their proper-
ties, networks are usually represented by graphs.

In this paper, a network topology is represented

*This work was supported in part by the National Sci-
ence Council of the Republic of China under Contract NSC
89-2213-E-009-209.

by a simple undirected graph, which is loopless
and without multiple edges. For the graph defi-
nition and notation we follow [5]. G = (V, E) is
a graph if V is a finite set and E is a subset of
{(a,b) | a,b € V and a # b}, where (a,b) denotes
an unordered pair. We call V' the verter set and
E the edge set. Vertices a and b are adjacent if
and only if (a,b) € E. A path is a sequence of
adjacent vertices, denoted by (vo,v1,---,vk), in
which vg, vy, -+, v, are distinct except that pos-
sibly vg = vg. The length of the path is k. For
ease of description, we may use P or (vg, P, vg) to
denote the path. A hamiltonian path of G is a
path which crosses all vertices of G. A graph G

is hamiltonian connected if there exists a hamilto-

nian path joining any two vertices of G.

Hypercubes [14] and stars [1] are bipartite
graphs. A graph G = (Vp U Vi, E) is bipartite if
VoNnVi=0and E C {(a,b) |a € Vo and b € V; }.
Given vertices z and y, we say that = and y are
in the same partite set if z,y € V; or in dif-
ferent partite sets if x € V; and y € V;_; for
i € {0,1}. However, the concept of hamiltonian
connectivity does not apply to bipartite graphs

because bipartite graphs are definitely not hamil-



tonian connected except for a few exceptions such
as Ky or Ki. As such a property is important,
Wong [22] introduced the concept of hamiltonian
laceability on bipartite graphs. A bipartite graph
G = (Vp U V1, E) is hamiltonian laceable if there
is a hamiltonian path between any two vertices
z and y which are in different partite sets. It is
trivial that |Vp| must be equal to |Vi]. On the
condition of |V| = [V1|, Hsieh et al. [11] extended
this concept and proposed the concept of strongly
hamiltonian laceability. G is strongly hamiltonian
laceable if it is hamiltonian laceable and there is
a path of length |Vy| + [Vi| — 2 between any two
vertices in the same partite set. Lewinter et al.
[15] introduced another concept, hyper hamilto-
nian laceability. G is hyper hamiltonian laceable
if it is hamiltonian laceable and for any vertex
v € V;, there is a hamiltonian path of G — v be-
tween any two vertices in V;_;. So hyper hamil-
tonian laceability is definitely also strongly hamil-

tonian laceability.

Fault tolerance is an important property of net-
work performance. Hsieh, Chen, and Ho [10] pro-
posed the edge fault-tolerant hamiltonicity to mea-
sure the performance of the hamiltonian prop-
erty in the faulty networks. A graph G is k-
edge-fault tolerant hamiltonian if G — F remains
hamiltonian for every F' C E(G) with |F| < k.
Extending this concept, we introduce the follow-
ing indicators. The edge fault tolerant hamilto-
nian laceability of the graph G is the integer value
f such that for any FF C E(G) with |F| < f,
G — F is still hamiltonian laceable and there exits
F' C E(G) with |F'| = f + 1 such that G — F'
is not hamiltonian laceable. We use eftHL(G)
to denote this capacity. Similarly, we can define

the edge fault tolerant strongly hamiltonian lace-

ability of G, denoted by eftSHL(G), and the edge

fault tolerant hyper hamiltonian laceability of G,
denoted by eftHHL(G). eftSHL(G) is the inte-
ger f such that for any F' C E(G) with |F| < f,
G — F is still strongly hamiltonian laceable and
there exits F' C E(G) with |F'| = f + 1 such
that G — F"' is not strongly hamiltonian laceable.
eftHHL(G) is the integer f such that for any
F C E(G) with |F| < f, G — F is still hyper
hamiltonian laceable and there exits F' C E(G)
with |F'| = f + 1 such that G — F’ is not hyper
hamiltonian laceable. We say a graph G is optimal
with respect to eftHL (eftSHL, eftHHL, re-
spectively) if for a fixed number of vertices, G con-
tains the least number of edges among all graphs
G' with eftHL(G') = eftHL(G) (eftSHL(G") =
eftSHL(G), eftHHL(G') = eftHHL(Q)).

This paper is to study these three indicators of
the star graphs. The star graphs [2] are Cayley
graphs. They have many nice properties such as
recursiveness, vertex and edge symmetry, maximal
fault tolerance, sublogarithmic degree and diam-
eter [2]. These properties are important for de-
signing interconnection topologies for parallel and
distributed systems. Star graphs are able to em-
bed cycles, grids [12], trees [3], and hypercubes
[18]. Many efficient communication algorithms for
shortest-path routing [19], multiple-path routing
[6], broadcasting [17], gossiping [4], and scattering
[8] were proposed. And many efficient algorithms
designed for sorting and merging [16], selection
[19], Fourier transform [7], and computational ge-
ometry [20] have been proposed. As a result, star
graphs are recognized as an attractive alternative

to the hypercubes.

In this paper, we show that the n-dimensional
star graphs are optimal with respect to the edge

fault tolerant hamiltonian laceability, the edge



fault tolerant strongly hamiltonian laceability, and
the edge fault tolerant hyper hamiltonian laceabil-
ity. In the next section, we introduce the definition
of star graphs. And then in Section 3, we show
our main result. Finally, we make our conclusion

in Section 4.

2 Definition and Basic Prop-
erties

In this section, we introduce the definition and

some properties of the star graph.

Definition 1 The n-dimensional star graph is
denoted by Sy. The vertex set V of Sy, is {ai---
an | ai---a, is a permutation of 1,2,---,n}
and the edge set E is {(a1as - - a;i—10;Gi41 - Qn,
@iy - A;—101Gi41 - Gy) | a1 ---an €V and 2 <

i<n}.

By definition, S, contains n! vertices and each
vertex is of degree (n — 1). For example, vertex
1234 in S; connects to 2134, 3214, and 4231. Si,
So, and S3 are a vertex, an edge, and a cycle of
length 6, respectively. We show Sy in Fig. 1. It is
easy to observe that there are four vertex-disjoint
S3’s embedded in S;. The following proposition
states this property.

Proposition 1 There are Z—: vertex-disjoint Sy ’s

embedded in S, for k > 1.

Proof. Let B = {bgy1---by | bry1--- by is a per-
mutation of any (n — k) elements of 1,2,---,n}.
So |B] = .
SPe+1t denote the induced subgraph of S, with

For any bgy1---b, € B, let

vertex set {ay - -an | @gt1 - an = bpy1 - -bp}.

Obviously, SP*+"" and SZ;““'"V" are vertex-

disjoint for by ---bp # by, ---b, and V(S,) =
U vispee.

bry1--bn€EB

1234 4231

3214 2431
2314 p 3421
4312 ¢ 1423
1342 D 4123

Figure 1: 4-dimensional star graph.

Next, we construct an isomorphism mapping

b1

. b .
vertices in each S, to verticesin Sy. Let u =

Uy - Upbpy1 - - by be some vertex in SZ’““mb".
For each vertex a = aj---agbgy1 -+ by, define
fE(ay - agbgyr -+ -by) =iy -+ if, where a; = g
and 1 < j <k, e.g., if the first digit of a is equal
to the Ith digit of u, then the first digit of f¥(a) is
[. For example, let u = 54123 be a vertex in S323.
Then f2(54123) = 12 and f2(45123) = 21. We
can easily check that {f*(v) | v € V(Szk“mb")} =
V(Sk) and (f¥(v1), f¥(vq)) is an edge if and only
if (v1,v9) is an edge. So Sz’““'"b" >~ G, and the

proposition follows. O

In the following discussion, we will frequently use
the notation Sz’““"'b" defined in the proof above.
We call S;**'"" a substar of S, or specifically,
a k-dimensional substar of S,,. Let u be a ver-

b1+

tex not in S, b We say that u is adjacent to

i1 bn brg1bn
Skk+1 k41 )

if u is adjacent to a vertex in S},
And we call Sz'““mb" an adjacent substar of wu.
The following proposition and corollary are con-

cerning adjacent substars:



Proposition 2 Given k with 1 <k <n —1 and
b1 by, a vertex u = uy -+ uy is adjacent to
SZ'““'"b" if and only
if Upgr - Ui 1UIWig1 - Uy = bpg1bpyn - - by for

some i with k+1<1i <n.

brg1--bn

Proof. As u is not in S}, y Upgl " Uy F

b1+ by However, there is a mneighbor
. b coobn
Wil -+ Uim1 Ui Uiq1 - Uy Of w in SPFH! for

2 <t < n Thus, E4+1 < ¢ < n and

Ukt1 " Wim UL U1 -~ Up = bpprbpyo -2 by O

Corollary 1 There are (k — 1)! edges between
Sz'““mb" and Sz'““mb" if there is exactly one dif-

ferent bit between byy1 -+ by and by -+ b),.

n

Proof. Without loss of generality, assume that
bgy1 # by and bpyo---by = by o ---b,. The

[

first bit of all vertices in SZ b being adjacent

’

b’ S
to S,"*' " must be bj1- So the number of these

vertices is (k — 1)!. And the corollary follows. O

For example, there are (n—2)! edges between S |
and S7 | for 1 <i# j <n. We use E™(S,) to
denote the set of these edges. And we call these
edges outgoing edges of S{_; (or 53;71)- Par-
ticularly, we say (u,v) an outgoing edge of u if

(u,v) € E%I(S,) for some 1 <i # j < n.

It has been shown that the star graphs are
edge symmetric [2], i.e., for any two edges
(z,y), (u,v) € E(Sy), there is an automorphism
of S, mapping z, y into u, v, respectively. For ease
of description, we use 7(F') to denote the edge set
{(m(u),7(v)) | (u,v) € F} if 7 is an automor-
phism of S,, and F' C S,,. Thus, we have following

proposition.

Proposition 3 Let F C E(S,). Then there is

an edge set F' C E(Sy) and an automorphism ©

of Sp such that ©(F) = F' and |F' N E(S!_,)| <
|F| — 1 for each 1 <i <n.

Proof. If |[F N E(S:_,)| < |F| —1 for each
1 <i < mn,let F! be F and 7 be the identity
mapping. Then the statement follows. Other-
wise, choose an arbitrary edge (z,y) € F. With
the edge symmetric property, there is an automor-
phism 7 of S, such that n(z) = 123---(n — 1)n
and 7(y) = n23---(n — 1)1. Let F' = n(F).
So (123---(n — 1)n,n23---(n —1)1) € F'. But
(123---(n — 1)n,n23---(n — 1)1) ¢ E(S._,) for
all 1 <i <mn. Thus, [F'NE(S{_,)| <|F|—1 for
each 1 <i<mn. |

By this proposition, given any edge set F C
E(S,), we may assume that |[FNE(S. )| < |F|-
1 for each 1 < i < n. This property will help us
simplify the proof a lot.

3 Main result

In this section, we present our main result on the
three indicators, which are the edge fault tolerant
hamiltonian laceability (eftHL), edge fault tol-
erant strongly hamiltonian laceability (eftSHL),
and edge fault tolerant hyper hamiltonian lace-
ability (eftHHL) of the star graphs. We provide
alemma to give three upper bounds for the general
graphs and then three theorems to give the exact
values for the three indicators on the star graphs.
We will see that all the values match the upper
bounds. So the star graphs are optimal with re-
spect to these properties. Now we show the upper

bounds.

Lemma 1 Let G = (Vo U V1, E) be a bipartite
graph with |Vo| = |Vi| and let § be the mini-
mum degree of G among all vertices. We have
eftHL(G) <d0—2,eftSHL(G) < §—2 for d > 2,
and eftHHL(G) < 6 — 3 for § > 3.



Figure 2: Upper bound for eftHL(G).

Figure 3: Upper bound for eftH HL(G).

Proof. Assume that the degree of vertex u is 4.
Removing (6 — 1) edges connecting to u results in
the isolation of u. Suppose that v is the remainder
vertex connecting to u and v’ is a neighbor of v
which is not u (see Fig. 2). Then it is easy to check
that there is no hamiltonian path from v to v’. So
G is at most (§—2)-edge fault tolerant hamiltonian
laceable and obviously, at most (§ — 2)-edge fault

tolerant strongly hamiltonian laceable.

Then consider removing (§ —2) edges which con-
nect to u. Suppose that v; and vy are the remain-
der vertices connecting to u and let u' be a vertex
connecting to v; which is not u (see Fig. 3). Then
it is easy to check that there is no hamiltonian
path of G — «' from vy to vo. So G is at most
(6 — 3)-edge fault tolerant hyper hamiltonian lace-
able.

Hence, the lemma follows. a

Next, we show the capacity of star graphs on
these three indicators. First, we use a computer
program to check the base case Sy (see Fig. 1)
and the case indeed holds for S4. So we state the
results in the following lemma. Then we prove our

results by induction.

Lemma 2 Sy is 1-edge fault tolerant hamiltonian
laceable, 1-edge fault tolerant strongly hamiltonian

laceable, and hyper hamiltonian laceable.

To make the proofs clear, we introduce the fol-

lowing transform:

Definition 2 Given a fixed n, let V C
{1,2---,n} and F C E(S,). Then STG,(V,F)
is the graph G(V, E) such that E = {(i,j) | i,j €
V and EH(S,) N F < @} (STG means to

transmit a star graph to another graph.)

In fact, STG,, maps the substar S:_, in (S,, —
F) into the vertex ¢ in G for all i € V. And for
i #j €V,ifi and j are adjacent in G, there is
a vertex in each partite set of S!_, adjacent to

S/ in (S, — F). So we have following lemma:

Lemma 3 Let G = STG,(V,F) for V. C
{1,2,---,n} with |V]| > 2 and F C E(Sy,). And
let x € S7' | andy € S | with j, # j» € V such
that x,y are in different partite sets. Assume that

i
n—1

— F is hamiltonian laceable for each i € V.
Then there is a path from x to y crossing all ver-
tices in all SL_| for i € V without crossing edges
in F if there is a hamiltonian path from ji to jo

in G.

Proof. Let |V] = h. And let

(j1,J3,74," -, Jn,Jj2) be a hamiltonian path from
j1 to jo in G. Since j; and js are adjacent in

G, we can find a vertex v' € V(S

7' 1) adjacent

to S/ | such that o',z are in different partite



Figure 4: Remaining path.

sets and the outgoing edge, say (v',u?), of v!
not in F (see Fig. 4)

tices v3 € 72

Similarly, we can find ver-

€ G4 SJ" . ad-

n—1"V n—1>"""
jacent to §7* | §45 ... §F respectlvely, such
that v, v%,v*, -+, v" are in the same partite set

and the outgoing edges of these vertices are not in
F. Assume that the outgoing edges of these ver-
tices are (v®,u?), (v, u®),---, (v",v?). Then by
assumption that each S)_; — F is hamiltonian
laceable, we can construct a path from z to y

crossing all vertices in all S)_; for i € V as fol-

lows:

1,3 3 .4 ho,2
(Z’, UL, U, yU U yrmmmeme e U, u, 7y>
Hence, the lemma follows. a

Now we can show our first result:

Theorem 1 S, is (n — 3)-edge fault tolerant

hamiltonian laceable for n > 4.

Proof. We prove it by induction. By Lemma 2,
we know that Sy is 1-edge fault tolerant hamilto-
nian laceable. In the induction step, we assume
that Sp_1 is (n — 4)-edge fault tolerant hamilto-

nian laceable for n > 5. Then consider S,.

Let F' C E(S,,) be arbitrary faulty edge set such
that |F'| < n—3. By Proposition 3, we may assume
that |[FNE(S!, ;)| <n—4foreach 1<i <n.
So S¢
1<i<n Letze V(S

n—1

— I is still hamiltonian laceable for each
) and y € V(Sff_l)

such that z,y are in different partite sets. We

shall construct a fault-free hamiltonian path from

z to y. Consider the following two cases:

Case 1. j; # j2. Let V = {1,2,-,
IFl<n—-3< @2 forn >5 EW(S,)NF <
(”2 foranyi #j € V. So G =STG,(V,F) is

a complete graph. It is easy to find a hamiltonian

n}. Since

path of G from j; to jo. By Lemma 3, there is a

hamiltonian path of S, from z to y.

Case 2. j; = j» = j. There is a hamilto-
nian path P of S7 | from = to y. The length of
Pis (n—1)! = 1. So we can find an edge, say
(u,v), on path P such that the outgoing edges
(If such (u,v) does
not exist, |F| > % >n—3forn > 5)

Let P = {(z, P;,u,v, P2,y) and (u,

of v and v are fault-free.

v'), (v,u) are
the outgoing edges of u and v, where v’ € Sf;il
and o' € S* | (see Fig. 5). ' and ' are in
different partite sets of S, and jz3 # js. Let
= {1,2,---,n} — j. Then G = STG,(V,F)
is a complete graph with (n — 1) vertices since
(21 > |F| for n > 5. Thus, there is a hamilto-
nian path of G from jz to j4. By Lemma 3, there
is a path P; crossing all vertices of all S%_, for
i € V from v' to u'. So a hamiltonian path of S,

from x to y can be constructed as follows:
<$,P1,U,’UI,P3,’LL,,’U,P2,y>

Hence, the theorem follows. a

Since S, is (n — 1) regular, by Lemma 1, S,, is
optimal with respect to edge fault tolerant hamil-

tonian laceability and eftHL(Sy,) =n — 3.

Theorem 2 S,, is (n — 3)-edge fault tolerant

strongly hamiltonian laceable for n > 4.

Proof. We also prove it by induction. Sy is
shown to be 1-edge fault tolerant strongly hamil-

tonian laceable in Lemma 2. So we need only to



Figure 5: z and y are in the same substar.

consider the induction step. Assume that S,_1
is (n —4)-edge fault tolerant strongly hamiltonian

laceable for n > 5 and consider S,,.

Given any fault edge set F in S,, with |F| <
n — 3, by Proposition 3, we can assume that |F' N
E(Si_ )| <n—4foreach1<i<n.SoS, ,—F
is still strongly hamiltonian laceable for each 1 <
i <n. Letz € V(S ) and y € V(57 ) such
that = and y are in the same partite set. Consider

the following two cases:

Case 1. j1 # j2. Let V, be the number of
vertices which are in the different partite set from
z and which are not adjacent to S7> |. Then V,
is equal to @ — @ which is strictly greater
than |F|. So there is a fault-free edge (u!,v?), i.e.,
not in F, such that u' € V(S7* ), v® € V(5% )

! are in the same par-

for js ¢ {j1,Jj2}, and z,y,u
tite set of S, (see Fig. 6). By the induction hy-
pothesis, there is a path Py of length (n—1)!—2in
Sﬁ;l_l from z to u'. Then consider the remainder
subgraphs. Let V = {1,2,---,n} — {j1}. Thus,
V| > 2and G = STG,(V, F) is a complete graph.
There is a hamiltonian path of G from j3 to js.

Since u' and y are in the same partite set, y and v*

are in different partite sets. So there is a path P

i is iz
St S St

|p,| =(n-1)(n-1)! -1

Figure 6: = and y are in different substars.

crossing all vertices of all S? | for i € V from v?

to y. The length of this path is (n—1)(n —1)! —1.

We can construct a path from z to y as follows:
(z,Pr,u',v®, Py, y)

The length of this path is

[(n=—1)=2]+1+[n—-1)(n-1)=-1]=nl-2

So the theorem follows in this case.

Case 2. j; = j» = j. The proof of this case
is similar to that of case 2 in Theorem 1 except
that the path in 7 | from z to y is of length
(n—1)!-2.

Hence, the theorem follows. O

Since S, is (n — 1) regular, by Lemma 1, S,, is
also optimal with respect to the edge fault tolerant

strongly hamiltonian laceability.

Theorem 3 S, is (n—4)-edge fault tolerant hyper

hamiltonian laceable for n > 4.

Proof. The proof is a little more complex than
the previous two theorems. Again, Sy is hyper
hamiltonian laceable by Lemma 2. So we show
that the statement is true for n > 5. Assume that
Sn—1 is (n — 5)-edge fault tolerant hyper hamilto-

nian laceable for n > 5.

Let F be a faulty edge set in S, with |F| <

n — 4. By Proposition 3, we may assume that



|[FNE(S: ;)] <n-—5foreach 1 <i <n. So

i _, — F is still hyper hamiltonian laceable and
obviously, strongly hamiltonian laceable for each
1 <i < n. Given a vertex v, in the following we
will construct a hamiltonian path of (S, — F) — v
between any two vertices in the partite set which

v is not in. Let z and y be two such vertices.

Consider the following four cases:

Case 1. v,z,y are in the same substar, say
S/ | (see Fig. 7(a)). By the induction hypothe-
sis, there is a hamiltonian path P of (S7' |, — F)—v
from z to y. The length of Pis (n—1)! -2 > 2|F|

for n > 5. !

So there is an edge (u',v') on
P such that the outgoing edges of u' and v',

say (u!,v?) and (v',u?), are fault-free. (z,u

1
are not necessary in the same partite set.) Let

P = (ZU,PI,’U,l,’U2,P2,y>- 2

Clearly, v?> and u?®
are in different partite sets of S,. Assume that
v?2 € §”  and u? € S . So jo # js. Let
V={1,2,---,n} — {j1}. Then STG,(V,F) is a
complete graph. There is a hamiltonian path from
j2 to j3 and so a path P3 from v? to u® crossing
all vertices of S!_,; for all i € V. Therefore, we
can construct a hamiltonian path of (S, — F) — v

. 1,2 3 ,,1
as: (x,Pl,u U ,P3,U U 7P27y>'

Case 2. v,z € S| and y € S, with

Jj1 # Jj2 (see Fig. 7(b)).

—(n;2)! —1 > |F| for n > 5, we can easily find

Let j3 # j2. Since

and z are in

a vertex u' # x € SJ'| such that u
the same partite set and the outgoing edge of u',
say (u',v?), is fault-free. (Note that since u' # x,
there are @ — 1 choices for u! in Sfbl_l.) By
the induction hypothesis, there is a hamiltonian
path P, of (S | — F) — v from z to u'. Let
V={12---,n} — {j1}. Then STG,(V,F) is a
complete graph. Note that v* and y are in differ-

ent partite sets. So there is a hamiltonian path

{
Sk sk, S St

(c)

Figure 7: Edge fault tolerant hyper hamiltonian
laceability of the star.

from js to j» and a path P, from v® to y cross-
ing all vertices of all S{_, for i € V. Hence,
we have a hamiltonian path (z, P;,u',v?, P, y) of
(Sn, — F) —v.

Case 3. v € S | and z,y € S, with
J1 # ja (see Fig. 7(c)). Since @ > |F|, there

is a vertex v’ € V(S% ) adjacent to S7' | such

n—1
that the outgoing edge of v, say (v',ut), is fault-
free and v',v are in the same partite set. By
the induction hypothesis, there is a hamiltonian
path P of ($2 | — F) — o' from z to y. Since
there are (n — 2) neighbors of v’ in $7 | and
|F| < (n — 2), there exists an edge (u?,v?) on
P such that u? is adjacent to v’ and the outgo-
ing edge of v2, say (v?,u?), is fault-free. Clearly,

20" are neighbors of u? but

js ¢ {Jj1,J2} since v
v2 £ 0. Let P = (z, P,u?,v%, Ps,y). (Note that
P may be (z, Py,v?,u?, Ps,y) and the argument
of this case is similar to the following discussion.)
Let ji ¢ {ji,jo,j3}. Since @S2 — 1 > |F| for

n > 5, there is a vertex w!' € S/', adjacent



to S7* | such that w',u' are in the same partite
set and the outgoing edge of w', say (w!,v?), is
fault-free. So v* € V(87 ) and v*,u?® are in dif-
ferent partite sets. By the induction hypothesis,
there is a hamiltonian path P; of (S7* | — F) — v
from u' to wl. Let V = {1,2,---,n} — {j1,j2}-
Then STG,(V, F) is a complete graph. There is
a hamiltonian path from j,; to j3 and so a path
Py crossing all vertices of Si_, for all i € V from

3

v* to u®. Thus, we have a hamiltonian path of

(Sp, — F') — v as follows:

2 .1 1 1,4 3,2
<€17,P1,’U, yUL,U ,P3,’IU , U ,P4,’U, , U 7P27y>‘

Case 4. v € S |,z € 87 andy € S,

n—1
for distinct ji, jo, and js (see Fig. 7(d)). Since
@ > |F|, there is a vertex u?> € V(7))
adjacent to S7' | such that u? z are in differ-
ent partite sets and the outgoing edge of u?, say
(u?,v'), is fault-free. By the induction hypothe-
sis, there is a hamiltonian path P, of (S/* | — F)
from = to u. Let jy ¢ {j1,j2,43}. In SI* |,
(n—2)!

since “5== — 1 > |F|, there is a vertex w' #

L are in the

! adjacent to S7* | such that w',v
same partite set and the outgoing edge of w',
say (w',u%), is fault-free. By the induction hy-
pothesis, there is also a hamiltonian path P, of
(S | — F) —v from v' to w'. For the remaining
substars, let V' = {1,2,---,n} — {j1,j2}. Then
G = STG,(V,F) is a complete graph. So there is
a hamiltonian path of G from j4 to j3 and thus, a
path P; from u?* to y crossing all vertices of S%_,

for all 4 € V. Finally, we have a hamiltonian path

(x, Pr,u?, vt Py, wh, u*, Ps,y) of (S, — F) —wv.
Hence, the theorem follows. a

Since S, is (n — 1) regular, by Lemma 1, S,
is optimal with respect to the edge fault tolerant

hyper hamiltonian laceability.

4 Conclusion

Fault tolerance is an important research subject of
the multi-process computer systems. Graphs are
usually used to represent the interconnection ar-
chitecture of these systems, where vertices repre-
sent processors and edges represent links between
processors. Many researches concerned the vertex-
fault tolerant or edge-fault tolerant properties of
some specific graphs. In this paper, we study some
fault tolerant results of the star graphs. We show
that the n-dimensional star graph is (n — 3)-edge
fault tolerant hamiltonian laceable, (n — 3)-edge
fault tolerant strongly hamiltonian laceable, and
(n—4)-edge fault tolerant hyper hamiltonian lace-

able

In particular, we use computer programs to
check the base cases. It not only gives us some
preliminary intuition but also simplifies our proof.
If we did such check by theoretical proof, we would
have spent too much effort since there would have
been too many subcases to deal with. Appar-
ently, such a method may be applied in other cases
nowadays, especially, for those facts which can be

proved by induction.
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