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Abstract 

In the future digitalized life, both of IEEE 1394 and IEEE 802.3 protocols will be very 

important and widely applied. The former is adopted by all kinds of digital multimedia devices to 

obtain high-speed transmissions. The later has been often adapted to construct LANs, and will be 

popularized to construct WANs. Thus, it is an important issue to simplify the design flow and 

reduce the time-to-market for integrating these two protocols into the whole system (e.g. SoC). 

In this paper, we present a new MAC IP, which meets the both specifications of IEEE 1394 

Link Layer and IEEE 802.3 MAC Layer. The proposed MAC IP accepts different input parameters, 

and cooperates with different IEEE 1394 or IEEE 802.3 physical layer to transmit data through the 

same MAC layer by the communication procedure of IEEE 1394 or IEEE 802.3 mode. 
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1.Introduction 

IEEE 802.3 [1] is a comprehensive Internet Standard for Local Area Networks (LANs) 

employing CSMA/CD as the access method. It typically offers users reasonable end-to-end 

performance whenever a certain network physical layer (Ethernet, FDDI, IEEE 802.11b, etc.) is 

cooperated with the IEEE 802.3 MAC layer. Thanks to Ethernet LAN, the communications 

between all types of computers are already well established in the office environment. But with the 

research and development of cheap and affordable electrical communication products and the trend 

of broadband network, it is natural to extend the network into home. Besides, due to the great 

performance of MPEG-series and the DSP technologies, the consumer electrical products are 

digitized and have high-speed communication functions. Thus, the home network seems like a 

network between all Information Appliances (IAs) at home. 

IEEE 1394 [2] is another possible architecture of home network. It is defined as serial bus 

architecture and well known as FireWire that is originally proposed by Apple Computer. The 

original requirements for this interface were to have a competitive performance and a low-cost 

interface in order to replace exciting buses (e.g. SCSI bus). Today IEEE 1394 bus can operate at the 

speed up to 400Mbps (3.2Gbps in the future). 

Compared to a traditional bus like SCSI, IEEE 1394 bus allows a great flexibility of topology 

and a scalable architecture, so the user does not need to concern with the inter-connection protocol. 

These features make IEEE 1349 be an ideal choice to connect multimedia digital devices to 
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computers or IAs with high-speed transmission at home or local area. 

As stated above, IEEE 1394 and IEEE 802.3 will be very important and widely applied in the 

future digital life. Thus, it is an important issue to simplify the design flow and reduce the 

time-to-market for integrating these two protocols into a SoC. In this paper, we address the design 

of a new MAC IP, which meets the both specifications of IEEE 1394 Link Layer and IEEE 802.3 

MAC Layer. The MAC IP accepts different input parameters, and cooperates with different IEEE 

1394 or IEEE 802.3 physical layer to transmit data through the same MAC layer by the 

communication procedure of IEEE 1394 or IEEE 802.3 mode. 

The remainder of this paper is organized as follows. Section 2 describes the system 

architecture and functional blocks of the MAC IP and how it works. Section 3 explains the design 

of main building blocks and the key features of our MAC IP. The ASIC implementation example 

and FPGA demo system are revealed in section 4. Finally, the conclusion is given. 

 

2. System Architecture of MAC IP  

The proposed MAC IP accepts the following input parameters:  

1. mode: select IEEE 1394 or IEEE 802.3 mode; 

2. duplex: select half or full duplex mode in IEEE 802.3 mode; 

3. FIFO depth: adjust the FIFO depth. 
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The MAC IP can be translated into a MAC circuit, which meets two different protocols and 

has different sizes of FIFO depth depending on the upper network layer’s processing capability. 

Meanwhile, by the aid of Virtual Component Interface (VCI) [3] standard proposed by VSIA, MAC 

IP can be easily integrated with other IPs into a SoC design.  

By the study of various packet based Medium Access protocols, the most common MAC 

protocol for wired networks shows that there are many similar functions in all access protocols. 

These functions can be categorized as bit-serial functions, parallel functions, event processing 

functions, and control functions. [4] 

The bit-serial functions consist of two main groups of functions, functions that change the 

serial bit-stream and functions that do not alter the bit-stream information but extract results from 

its packet. The parallel functions can either change the content of the parallel data, e.g. 

encryption/decryption, or add data in certain positions in the packet format, such as destination 

address or CRC32 data.  

Besides, in all Medium Access Controllers there are mechanisms that recognize events coming 

either from the network side or from control registers, and these mechanisms comprise the event 

processing section. The control functions use registers that carry control information which is 

written by the microprocessor and read by the rest of the module, status information or 

timing/statistics information which is updated periodically depending on events. Fig. 1 shows a 

general architecture block diagram for the above functions.  
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Fig 1: General architecture block diagram for MAC function 

 

By the conclusion of the above research, we illustrate the system architecture of our MAC IP 

in Fig. 2. It is composed of Physical Layer interface, Transmitter, Receiver, CRC checker/generator, 

Tx/Rx FIFO, Central Controller, and Virtual Component Interface. 

If the network upper layer wants to transmit data through the MAC IP, it should write data to 

Tx FIFO. Then, the data is read by Transmitter and sent to CRC generator to generate CRC results. 

On the other side, Central Controller will analyze the packet data in order to react properly and 

communicate with physical layer by Physical Layer Interface. Depending on the selected mode, 

error information will be presented and dealt with in the transmission process at proper time. 
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Fig. 2. The system architecture of MAC IP. 

At the time of receiving packets, physical layer sends status information to Central Controller 
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information according to the addresses they access to the MAC IP status registers. 

 

 

 

 

 

 

 

Fig. 3. The I/O Signals of MAC IP.  

The I/O signals of MAC IP are shown in Fig. 3. The signals on left side follow the VCI 

acknowledge procedures to communicate with network upper layers. Every FIFO and MAC IP 

status register is given an address, and upper layers can read/write these FIFOs and status registers 

through virtual component interface by address mapping method. The signals on right side are 

connected to physical layer. We design a new physical interface that conforms to the acknowledge 

procedures established in the Annex J of IEEE 1394 and IEEE 802.3 MII (Media Independent 

Interface) protocols at the same time. By this way, we do not need to adjust any FSM or 

communication procedures when MAC IP is connected to different physical layer IC (or IP) of 

different mode. 
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3. Key features of MAC IP 

The design of main building blocks and the key features of the proposed MAC IP will be 

described in detail as follows. 

� Concurrent central control finite state machine design: 

After careful researching and comparing, we discover that IEEE 1394 link layer and IEEE 

802.3 MAC layer have many similarities in transmission and control procedures. The main 

difference among them is that IEEE 802.3 needs to deal with the collision problem and half/full 

duplex mode, and thus has some extra special process statuses. But in IEEE 1394, we only have to 

pay attention to the channel access right and don’t need to deal with special status. 

The central control finite state machine of the MAC IP resulted from the above observation is 

shown in Fig. 4. The similar procedures of IEEE 1394 link layer and IEEE 802.3 MAC layer are 

performed in the common states of MAC operation. The detailed common states in the common 

control flow are shown in Fig. 5. When running up against the problems like errors in IEEE 1394 

mode or collision in IEEE 802.3, the state is transferred from common control flow to these 

exception states to deal with them. The exception states are shown in Fig. 6. 

Besides, the Tx/Rx FIFO controller is concurrently operated with the common states of MAC 

operation. It sends control signals to notify the common states to arbitrate bus and transmit packets. 

Also, it accepts the control signals from the common states to receive data. During transmission 

and reception process, the common states also provide network status information to Tx/Rx FIFO 
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controller. 

 

 

 

 

 

 

Fig. 4. The Concurrent Finite State Machine of the MAC IP. 

 

 

 

 

 

 

 

 

 

 

Fig. 5. The detailed common states of MAC operation. 
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Fig 6: The exception states of MAC operation 

 

Fig. 7: The FSM of Tx/Rx FIFO controller 
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Therefore, the longest circuit paths are not in the data paths of these finite state machines 

traditionally, but in the control paths. To ensure that MAC IP can be operated at higher speed, we 

adopt the pipelining technique to shorten the longest path of the combinational logic circuits in 

these FSMs. As shown in Fig. 8, we add several registers in the combinational circuits to store the 

predicted states predicted by the state predictors. The longest path becomes shorter when more 

registers are added. 

 

 

 

 

 

Fig. 8. The Pipeline Architecture of Finite State Machine. 
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stream, since every n-bit data word needs n clock cycles to calculate checksum. In MAC IP, we 

demand a good parallel CRC circuit. 

First, we view the CRC polynomials as a special finite state machine composed of 

combinatorial networks and state registers [5]. State S holds the checksum bits. The data message is 

fed to the input I and the combinatorial network calculates the next state Snext by the current state 

and the new input. The state machine calculates a new checksum every clock cycle. State S also 

represents the FSM’s output. Then we analyze the state changes of the serial circuit as following: 

By the above equations, we can derive any m-bit fast parallel CRC circuit as shown in Fig. 9. 

 

 

 

 

Fig. 9. The m-bit parallel CRC circuit. 
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requirements. Fig. 10 shows the CRC32 architecture with variable input data width. 

Fig. 10. The CRC32 architecture with variable input data width. 
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Except for the job of communicating with MAC IP central controller, these FIFO controller 

and FIFOs are in charge of resynchronizing the data and clock signals from VCI to local clock rate. 

Because VCI may not use the same clock rate as MAC IP, these FIFOs must be able to operated 

under two speeds of clock rate at the same time when FIFO controller passes data from MAC IP to 

upper layers or from upper layers to MAC IP. 

In Fig. 11, we illustrate the architecture of FIFOs. 

Fig. 11: The architecture of FIFOs 
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802.3 have something in common as shown below:  

1. The longest data length of both headers is the same. 

2. We can save the header data in several 32-bit registers and that would not impact on the 

completion of the information in the header (e.g. destination address). 

3. Some header information that is usually used is in the same position of each header field. 

From the above conclusions, we only need to have one set of header buffers for these two 

protocols and can easily extract the header information like destination address, source address, and 

data length without consuming much effort. 

 

� An easily integrated interface: 

As mentioned before, either IEEE 1394 or IEEE 802.3 will be popular in any kind of 

multimedia equipments in the future. For this reason, MAC IP must be easy to be integrated with 

any system. Thus, we follow the VCI standard proposed by VSIA (Virtual Socket Interface Alliance) 

to design the interface between MAC IP and upper network layers. 

When MAC IP collocates with different bus wrappers, it could easily connect to different 

system buses to access data. When upper layer circuits also follow the VCI standard, the MAC IP 

can do peer-to-peer communication with upper layer circuits. Currently, we have successfully 

developed ARM AHB Bus wrapper and PCI Bus wrapper to connect MAC IP to AHB Bus and PCI 

Bus. 
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4. System Integration 

4.1 Application method 

When designers adopt our MAC IP to design their systems, they will have different 

requirements for MAC IP at the different circuit description level. As the following, we introduce 

the MAC IP’s application method at different circuit description level. 

 

� Behavior Description Level 

When designers start to design the system with our MAC IP, they must decide the parameters 

of the MAC IP, like mode, duplex, and FIFO depth, and also can simulate the whole system’s 

functions with the MAC IP’s behavior model to reduce the simulation time. 

Besides, designers must design or choose a bus wrapper for this IP to connect MAC IP to a 

system bus. Note that the different choice or design of bus wrappers will have influence on the 

performance of MAC IP in the system. 

 

� Register Transition Level 

After behavior simulation of the system, we can use the RTL code of MAC IP to pursue a 

better performance and report the precise system timing. We provide the RTL code of MAC IP for 

both of the ASIC and Xilinx FPGA design flow. This IP has been simulated alone and the result 

shows that it can be operated at 60 MHz at least, which exceeds the clock speed standard in IEEE 
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1394 and IEEE 802.3.  

 

� Xilinx FPGA bit-stream file 

By the aid of Xilinx Foundation 4.1i, we have finished the Placement & Routing procedure of 

MAC IP on Xilinx FPGAs and produced a bit-stream file that can be downloaded into a FPGA. 

After the file is downloaded, the FPGA becomes a stand-alone IC and we still need to choose a bus 

wrapper to complete the integration of a PCB. 

 

4.2 Application Example 

� IEEE 1394 Interface card 

We first set the IP’s parameters, and then get the control circuit of IEEE 1394 Link Layer. We 

chose a PCI bus wrapper developed by our lab to let MAC IP communicate with system through 

PCI bus. After downloading this IP design to Xilinx xc2v6000-4 FPGA, we chose the IEEE 1394 

physical layer from TI Company to cooperate with MAC IP [6][7]. This interface card has three 

IEEE 1394 ports and its function blocks are shown in Fig 12. 
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Fig. 12. The MAC IP validation board. 

5. Conclusion 

With the development of multimedia and network consumer electric products, they have entered 

to our family life step by step. Under the demand of Internet and high quality images of equipments, 

it is possible to appear a product having the functions of IEEE 1394 and Ethernet. For this reason, 

we have developed the MAC IP and attempted to provide a very flexible network/communication 

interface of future’s equipments or IA products in different environments. 

In the future, we may consider and design a Media Access Protocol using a general 

parameterized architecture. In this architecture, we have a microprocessor and dedicated hardware 

which are parametric functional blocks. By a microprocessor, we can use it to process random 

procedures of any Media Access protocol, like arbitrating bus control rights, or packets data 

combination or extraction. As for routine works, such as CRC checker/generator, or de/encryption, 

we can design application-specific hardware to deal with these functions. 
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