
 1

Submit to: Workshop on Computer Networks

An Integrated MAC IP Design for
IEEE 1394 and Ethernet

Yu-Chia Chen, Yeu-Horng Shiau, Shiann-Rong Kuang, and Jer-Min Jou

Abstract

In the future digitalized life, both of IEEE 1394 and IEEE 802.3 protocols will be very

important and widely applied. The former is adopted by all kinds of digital multimedia devices to

obtain high-speed transmissions. The later has been often adapted to construct LANs, and will be

popularized to construct WANs. Thus, it is an important issue to simplify the design flow and

reduce the time-to-market for integrating these two protocols into the whole system (e.g. SoC).

In this paper, we present a new MAC IP, which meets the both specifications of IEEE 1394

Link Layer and IEEE 802.3 MAC Layer. The proposed MAC IP accepts different input parameters,

and cooperates with different IEEE 1394 or IEEE 802.3 physical layer to transmit data through the

same MAC layer by the communication procedure of IEEE 1394 or IEEE 802.3 mode.

Key words: IEEE 1394, IEEE 802.3, Ethernet, MAC IP

 2

Yu-Chia Chen, (the contact author)

Current affiliation: Department of Electrical Engineering, National Cheng Kung University, Tainan,

Taiwan, R. O. C.

Postal address: ASIC LAB, EE 10F, NCKU, NO.1, Ta-Hsueh Road, Tainan, 701 Taiwan

E-mail address: pett@j92a21.ee.ncku.edu.tw

Telephone number: 06-2757575-62431-821

Yeu-Horng Shiau,

Current affiliation: Department of Electrical Engineering, National Cheng Kung University, Tainan,

Taiwan, R. O. C.

Postal address: ASIC LAB, EE 10F, NCKU, NO.1, Ta-Hsueh Road, Tainan, 701 Taiwan

E-mail address: huh@j92a21.ee.ncku.edu.tw

Telephone number: 06-2757575-62431-821

Shiann-Rong Kuang,

Current affiliation: Department of Electronic Engineering, Southern Taiwan University of

Technology, Tainan, Taiwan, ROC

Postal address: as above

E-mail address: kuangsr@mail.stut.edu.tw

Telephone number: 06-2533131-3131-232

Jer-Min Jou

Current affiliation: Department of Electrical Engineering, National Cheng Kung University, Tainan,

Taiwan, R. O. C.

Postal address: ASIC LAB, EE 10F, NCKU, NO.1, Ta-Hsueh Road, Tainan, 701 Taiwan

E-mail address: jou@j92a21.ee.ncku.edu.tw

Telephone number: 06-2757575-62365

 3

1.Introduction

IEEE 802.3 [1] is a comprehensive Internet Standard for Local Area Networks (LANs)

employing CSMA/CD as the access method. It typically offers users reasonable end-to-end

performance whenever a certain network physical layer (Ethernet, FDDI, IEEE 802.11b, etc.) is

cooperated with the IEEE 802.3 MAC layer. Thanks to Ethernet LAN, the communications

between all types of computers are already well established in the office environment. But with the

research and development of cheap and affordable electrical communication products and the trend

of broadband network, it is natural to extend the network into home. Besides, due to the great

performance of MPEG-series and the DSP technologies, the consumer electrical products are

digitized and have high-speed communication functions. Thus, the home network seems like a

network between all Information Appliances (IAs) at home.

IEEE 1394 [2] is another possible architecture of home network. It is defined as serial bus

architecture and well known as FireWire that is originally proposed by Apple Computer. The

original requirements for this interface were to have a competitive performance and a low-cost

interface in order to replace exciting buses (e.g. SCSI bus). Today IEEE 1394 bus can operate at the

speed up to 400Mbps (3.2Gbps in the future).

Compared to a traditional bus like SCSI, IEEE 1394 bus allows a great flexibility of topology

and a scalable architecture, so the user does not need to concern with the inter-connection protocol.

These features make IEEE 1349 be an ideal choice to connect multimedia digital devices to

 4

computers or IAs with high-speed transmission at home or local area.

As stated above, IEEE 1394 and IEEE 802.3 will be very important and widely applied in the

future digital life. Thus, it is an important issue to simplify the design flow and reduce the

time-to-market for integrating these two protocols into a SoC. In this paper, we address the design

of a new MAC IP, which meets the both specifications of IEEE 1394 Link Layer and IEEE 802.3

MAC Layer. The MAC IP accepts different input parameters, and cooperates with different IEEE

1394 or IEEE 802.3 physical layer to transmit data through the same MAC layer by the

communication procedure of IEEE 1394 or IEEE 802.3 mode.

The remainder of this paper is organized as follows. Section 2 describes the system

architecture and functional blocks of the MAC IP and how it works. Section 3 explains the design

of main building blocks and the key features of our MAC IP. The ASIC implementation example

and FPGA demo system are revealed in section 4. Finally, the conclusion is given.

2. System Architecture of MAC IP

The proposed MAC IP accepts the following input parameters:

1. mode: select IEEE 1394 or IEEE 802.3 mode;

2. duplex: select half or full duplex mode in IEEE 802.3 mode;

3. FIFO depth: adjust the FIFO depth.

 5

The MAC IP can be translated into a MAC circuit, which meets two different protocols and

has different sizes of FIFO depth depending on the upper network layer’s processing capability.

Meanwhile, by the aid of Virtual Component Interface (VCI) [3] standard proposed by VSIA, MAC

IP can be easily integrated with other IPs into a SoC design.

By the study of various packet based Medium Access protocols, the most common MAC

protocol for wired networks shows that there are many similar functions in all access protocols.

These functions can be categorized as bit-serial functions, parallel functions, event processing

functions, and control functions. [4]

The bit-serial functions consist of two main groups of functions, functions that change the

serial bit-stream and functions that do not alter the bit-stream information but extract results from

its packet. The parallel functions can either change the content of the parallel data, e.g.

encryption/decryption, or add data in certain positions in the packet format, such as destination

address or CRC32 data.

Besides, in all Medium Access Controllers there are mechanisms that recognize events coming

either from the network side or from control registers, and these mechanisms comprise the event

processing section. The control functions use registers that carry control information which is

written by the microprocessor and read by the rest of the module, status information or

timing/statistics information which is updated periodically depending on events. Fig. 1 shows a

general architecture block diagram for the above functions.

 6

Fig 1: General architecture block diagram for MAC function

By the conclusion of the above research, we illustrate the system architecture of our MAC IP

in Fig. 2. It is composed of Physical Layer interface, Transmitter, Receiver, CRC checker/generator,

Tx/Rx FIFO, Central Controller, and Virtual Component Interface.

If the network upper layer wants to transmit data through the MAC IP, it should write data to

Tx FIFO. Then, the data is read by Transmitter and sent to CRC generator to generate CRC results.

On the other side, Central Controller will analyze the packet data in order to react properly and

communicate with physical layer by Physical Layer Interface. Depending on the selected mode,

error information will be presented and dealt with in the transmission process at proper time.

Bit-Serial
Operations

Parallel
Operations

Parallel
Operations

Bit-Serial
Operations

Buffers Buffers

Control
registers
and State
Machines

DMA
(optional)

Receive D
irection

Tr
an

sm
it

D
ire

ct
io

n

Data Clock Events Data Clock

Physical Layer Interface

Host Interface

Bit-Serial
Operations

Parallel
Operations

Parallel
Operations

Bit-Serial
Operations

Buffers Buffers

Control
registers
and State
Machines

DMA
(optional)

Receive D
irection

Tr
an

sm
it

D
ire

ct
io

n

Data Clock Events Data Clock

Physical Layer Interface

Host Interface

 7

Fig. 2. The system architecture of MAC IP.

At the time of receiving packets, physical layer sends status information to Central Controller

through Physical Layer Interface. Then packets are received from network by the Receiver, and are

checked by the CRC checker. On the other side, information such as Destination Address, Source

Address, and Length of a packet will be extracted simultaneously. Besides, error signals are still

presented by the Physical Layer Interface. If correct, the packets will be stored at Rx FIFO; if

wrong, they will be discard.

By the design of MAC IP status register, the whole status of MAC IP or even Network can be

saved and be used by different module in the MAC IP. Besides, the network upper layers can also

know the packet or frame’s information by these MAC IP status registers’ help. The MAC IP status

register’s architecture is divided into several blocks according to each block’s function and each of

them is 32-bit data-width. Through VCI, the upper layers can read this MAC IP status registers’

Virtual Com
ponent Interface

TX

FIFOs

RX

FIFO

TX FIFO
Controller

Rx FIFO
Controller

Central
Controller

Transmitter

Receiver

CRC32
Checker/Generator

Timer & Counter
area

Physical Layer Interface

System
 Bus

Physical Layer

IEEE 1394 & Ethernet mode select

MAC IP Status Register

Virtual Com
ponent Interface

TX

FIFOs

RX

FIFO

TX FIFO
Controller

Rx FIFO
Controller

Central
Controller

Transmitter

Receiver

CRC32
Checker/Generator

Timer & Counter
area

Physical Layer Interface

System
 Bus

Physical Layer

IEEE 1394 & Ethernet mode select

MAC IP Status Register

 8

information according to the addresses they access to the MAC IP status registers.

Fig. 3. The I/O Signals of MAC IP.

The I/O signals of MAC IP are shown in Fig. 3. The signals on left side follow the VCI

acknowledge procedures to communicate with network upper layers. Every FIFO and MAC IP

status register is given an address, and upper layers can read/write these FIFOs and status registers

through virtual component interface by address mapping method. The signals on right side are

connected to physical layer. We design a new physical interface that conforms to the acknowledge

procedures established in the Annex J of IEEE 1394 and IEEE 802.3 MII (Media Independent

Interface) protocols at the same time. By this way, we do not need to adjust any FSM or

communication procedures when MAC IP is connected to different physical layer IC (or IP) of

different mode.

SCLK/RX_CLK
CTL[0:1]

D[0:7]/{RXD[3:0], 4`H0}
LREQ

RX_ER
RX_DV

CRS
COL

TX_CLK

TX_ER

TXD[3:0]

TX_EN

CLOCK
CMDACK
CMDVAL
ADDRESS[7:0]
BE
CMD[1:0]
WDATA[31:0]
EOP
CONST
RSPACK
RSPVAL
RDATA[31:0]
REOP
RERROR

To Physical Layer

To B
us W

rapper

RESET

mode duplex

SCLK/RX_CLK
CTL[0:1]

D[0:7]/{RXD[3:0], 4`H0}
LREQ

RX_ER
RX_DV

CRS
COL

TX_CLK

TX_ER

TXD[3:0]

TX_EN

CLOCK
CMDACK
CMDVAL
ADDRESS[7:0]
BE
CMD[1:0]
WDATA[31:0]
EOP
CONST
RSPACK
RSPVAL
RDATA[31:0]
REOP
RERROR

To Physical Layer

To B
us W

rapper

RESET

mode duplex

 9

3. Key features of MAC IP

The design of main building blocks and the key features of the proposed MAC IP will be

described in detail as follows.

� Concurrent central control finite state machine design:

After careful researching and comparing, we discover that IEEE 1394 link layer and IEEE

802.3 MAC layer have many similarities in transmission and control procedures. The main

difference among them is that IEEE 802.3 needs to deal with the collision problem and half/full

duplex mode, and thus has some extra special process statuses. But in IEEE 1394, we only have to

pay attention to the channel access right and don’t need to deal with special status.

The central control finite state machine of the MAC IP resulted from the above observation is

shown in Fig. 4. The similar procedures of IEEE 1394 link layer and IEEE 802.3 MAC layer are

performed in the common states of MAC operation. The detailed common states in the common

control flow are shown in Fig. 5. When running up against the problems like errors in IEEE 1394

mode or collision in IEEE 802.3, the state is transferred from common control flow to these

exception states to deal with them. The exception states are shown in Fig. 6.

Besides, the Tx/Rx FIFO controller is concurrently operated with the common states of MAC

operation. It sends control signals to notify the common states to arbitrate bus and transmit packets.

Also, it accepts the control signals from the common states to receive data. During transmission

and reception process, the common states also provide network status information to Tx/Rx FIFO

 10

controller.

Fig. 4. The Concurrent Finite State Machine of the MAC IP.

Fig. 5. The detailed common states of MAC operation.

Tx/Rx
Ready

Bus
Arbitration &
Load header

data
Tx Packet &

CRC
generating

Waiting
Acknowledge

Pkt.

Rx Pkt.
Header &

CRC
checking

Analyzing
Header
Info.

Rx Pkt.
Data &
CRC

checking

Bus
Arbitration &

Load Ack.
data

Sending
Ack.
Pkt.

Waiting for
Response

Reset
Bus Info. &

Status

data
request

arbitration
lost

arbitration
won

broadcast
Pkt. sent

Non-broadcast
Pkt. sent

Ack received

bus flag reset

done

receive data_prefix

invalid packet
received

valid packet received

CRC checking failed
or no ack need to be

sent

CRC checking success

receive ack. data

arbitration
won

ack. sent

data concatenate & hold bus

Hold Bus.

Terminate
Tx

Operations

Data On

Terminate
Rx

Operations

Sending
Error

Signals

require bus
services

finish bus
services

time expired

exception happened
exception
happened

exception happened

errors

exception happened

exception
happened

time
expired

report
exception
situations

report exception situations

to exception
state

Tx/Rx
Ready

Bus
Arbitration &
Load header

data
Tx Packet &

CRC
generating

Waiting
Acknowledge

Pkt.

Rx Pkt.
Header &

CRC
checking

Analyzing
Header
Info.

Rx Pkt.
Data &
CRC

checking

Bus
Arbitration &

Load Ack.
data

Sending
Ack.
Pkt.

Waiting for
Response

Reset
Bus Info. &

Status

data
request

arbitration
lost

arbitration
won

broadcast
Pkt. sent

Non-broadcast
Pkt. sent

Ack received

bus flag reset

done

receive data_prefix

invalid packet
received

valid packet received

CRC checking failed
or no ack need to be

sent

CRC checking success

receive ack. data

arbitration
won

ack. sent

data concatenate & hold bus

Hold Bus.

Terminate
Tx

Operations

Data On

Terminate
Rx

Operations

Sending
Error

Signals

require bus
services

finish bus
services

time expired

exception happened
exception
happened

exception happened

errors

exception happened

exception
happened

time
expired

report
exception
situations

report exception situations

to exception
state

The initial state &&
Waiting bus signals

From the physical layer
interface

The common states of
MAC operation

Exception
state

Need to do bus
operations

done

Need to deal
with exceptions

done

Need to deal
with exceptions

The FSM of
Tx/Rx FIFO
Controller

The control
signal to load
data

The packet
& operation
status info.

reset

The control
signal to Tx
data

The initial state &&
Waiting bus signals

From the physical layer
interface

The common states of
MAC operation

Exception
state

Need to do bus
operations

done

Need to deal
with exceptions

done

Need to deal
with exceptions

The FSM of
Tx/Rx FIFO
Controller

The control
signal to load
data

The packet
& operation
status info.

reset

The control
signal to Tx
data

 11

Fig 6: The exception states of MAC operation

Fig. 7: The FSM of Tx/Rx FIFO controller

� The pipeline architecture of finite state machine:

By Fig. 4, 5, 6 and Fig. 7, we know that MAC IP is composed of many finite state machines.

Verify the
Operation

Mode

Count
Interframe

Gap

Send Jam
Data

Increment
Attempt
number Compute the

Backoff time
Count the

Backoff time

IEEE 1394
Link Layer

Require bus
Reset

IEEE 1394
Bus Reset & ID

Identify

Be requested to
reset bus

Done

Attempt
number

Too Many
Attempt

Done

Go to the initial state &
wait bus signals

Go to the initial state &
wait bus signals

Need to deal with the
exceptionsA frame

finishes its
transmission on
the network

A collision
detected

Done

Finish sending
Jam data

Verify the
Operation

Mode

Count
Interframe

Gap

Send Jam
Data

Increment
Attempt
number Compute the

Backoff time
Count the

Backoff time

IEEE 1394
Link Layer

Require bus
Reset

IEEE 1394
Bus Reset & ID

Identify

Be requested to
reset bus

Done

Attempt
number

Too Many
Attempt

Done

Go to the initial state &
wait bus signals

Go to the initial state &
wait bus signals

Need to deal with the
exceptionsA frame

finishes its
transmission on
the network

A collision
detected

Done

Finish sending
Jam data

The control
signal to
inform the
central
controller to
send
packets

idle Transmission
initial
state

Load
IEEE 1394

Pkts
to Transmitter

Load
IEEE 1394
Ack. Info.

to Transmitter

Load
IEEE 802.3

Frames
to Transmitter

Save
IEEE 802.3

Frames
from

Receiver

Save
IEEE 1394

Pkts.
from

Receiver

Save
IEEE 1394
Ack. Info.

from
Receiver

Save
PHY Info.

from
Receiver

Save
initial
state

FIFO has
data

1394 ack FIFO
wins the
arbitration

802.3 FIFO
wins the
arbitration

1394 FIFO
wins the
arbitration

Concatenated
subaction
happened

Concatenated
subaction
happened

Data
prefix

Invalid
packet data

PHY info.

Frame
data

1394 Pkt
data

1394 Ack
data

Data empty or exception
happened

Data empty or
exception happened

Data empty or
exception happened

Data empty or exception
happened

Data empty or
exception happened

Data empty or exception
happened

Data empty or exception
happened

reset
The packet & operation
status info. From the
Central Controller

The control
signal of
loading data
from
Receiver

The control
signal to
inform the
central
controller to
send
packets

idle Transmission
initial
state

Load
IEEE 1394

Pkts
to Transmitter

Load
IEEE 1394
Ack. Info.

to Transmitter

Load
IEEE 802.3

Frames
to Transmitter

Save
IEEE 802.3

Frames
from

Receiver

Save
IEEE 1394

Pkts.
from

Receiver

Save
IEEE 1394
Ack. Info.

from
Receiver

Save
PHY Info.

from
Receiver

Save
initial
state

FIFO has
data

1394 ack FIFO
wins the
arbitration

802.3 FIFO
wins the
arbitration

1394 FIFO
wins the
arbitration

Concatenated
subaction
happened

Concatenated
subaction
happened

Data
prefix

Invalid
packet data

PHY info.

Frame
data

1394 Pkt
data

1394 Ack
data

Data empty or exception
happened

Data empty or
exception happened

Data empty or
exception happened

Data empty or exception
happened

Data empty or
exception happened

Data empty or exception
happened

Data empty or exception
happened

reset
The packet & operation
status info. From the
Central Controller

The control
signal of
loading data
from
Receiver

idle Transmission
initial
state

Load
IEEE 1394

Pkts
to Transmitter

Load
IEEE 1394
Ack. Info.

to Transmitter

Load
IEEE 802.3

Frames
to Transmitter

Save
IEEE 802.3

Frames
from

Receiver

Save
IEEE 1394

Pkts.
from

Receiver

Save
IEEE 1394
Ack. Info.

from
Receiver

Save
PHY Info.

from
Receiver

Save
initial
state

FIFO has
data

1394 ack FIFO
wins the
arbitration

802.3 FIFO
wins the
arbitration

1394 FIFO
wins the
arbitration

Concatenated
subaction
happened

Concatenated
subaction
happened

Data
prefix

Invalid
packet data

PHY info.

Frame
data

1394 Pkt
data

1394 Ack
data

Data empty or exception
happened

Data empty or
exception happened

Data empty or
exception happened

Data empty or exception
happened

Data empty or
exception happened

Data empty or exception
happened

Data empty or exception
happened

reset
The packet & operation
status info. From the
Central Controller

The control
signal of
loading data
from
Receiver

 12

Therefore, the longest circuit paths are not in the data paths of these finite state machines

traditionally, but in the control paths. To ensure that MAC IP can be operated at higher speed, we

adopt the pipelining technique to shorten the longest path of the combinational logic circuits in

these FSMs. As shown in Fig. 8, we add several registers in the combinational circuits to store the

predicted states predicted by the state predictors. The longest path becomes shorter when more

registers are added.

Fig. 8. The Pipeline Architecture of Finite State Machine.

� The CRC with different input data width:

Cyclic Redundancy Check is a well-know technique to check transmission errors in serial data

transmission or mass storage devices. IEEE 1394 and IEEE 802.3 both use the following generating

polynomial of CRC32:

G(x) = x32 + x26 + x23 + x22 + x16 + x12 + x11 + x10 + x8 + x7 + x5 + x4 + x2 + x + 1.

However, the bit-serial approach of CRC32 lacks efficiency for processing a parallel data

State
Register

C.C. #1 C.C. #2 C.C. #n
R
egister

R
egister

inputs

Traditional Combinational
circuits

State
Register

C.C. #1 C.C. #2 C.C. #n
R
egister

R
egister

inputs

Traditional Combinational
circuits

 13

stream, since every n-bit data word needs n clock cycles to calculate checksum. In MAC IP, we

demand a good parallel CRC circuit.

First, we view the CRC polynomials as a special finite state machine composed of

combinatorial networks and state registers [5]. State S holds the checksum bits. The data message is

fed to the input I and the combinatorial network calculates the next state Snext by the current state

and the new input. The state machine calculates a new checksum every clock cycle. State S also

represents the FSM’s output. Then we analyze the state changes of the serial circuit as following:

By the above equations, we can derive any m-bit fast parallel CRC circuit as shown in Fig. 9.

Fig. 9. The m-bit parallel CRC circuit.

Though the MII protocol of IEEE 802.3 has a fixed data width with physical layers, the

physical interface in the Annex J of IEEE 1394 has a variable data width depending on the data

transmission speed. The data width is 2, 4, and 8 bits when the bus is operated at the speed of 100,

200, and 400 Mbps relatively. We need to modify the architecture in Fig. 9 to meet these

) ...]),S(I, ... f(I,f[I f S

)),S(I,f(I f) ,S(I f S
),S(I f S

n n CRC m - n CRC mn CRC mn

nnCRC n CRC n n CRC n

n n CRC n

11

12122

11

++++

+++++

++

=

==
=

M

Sn

Sn Sn+1 Sn+2 Sn+m-1

Sn+m

In+1 In+2 In+m

),S(If nnCRC 1+),S(If nnCRC 12 ++),S(If mnmnCRC 1−++

Combinatorial Network

State Register

Sn

Sn Sn+1 Sn+2 Sn+m-1

Sn+m

In+1 In+2 In+m

),S(If nnCRC 1+),S(If nnCRC 12 ++),S(If mnmnCRC 1−++

Combinatorial Network

State Register

 14

requirements. Fig. 10 shows the CRC32 architecture with variable input data width.

Fig. 10. The CRC32 architecture with variable input data width.

� The special design of FIFOs:

In our architecture, there are three kinds of Tx FIFOs, Ack. FIFO, 1394 packet FIFO, and

802.3 frame FIFO. When one of Tx FIFO is not empty, the FIFO controller pass “FIFO nonempty”

signal to central controller and get ready to get data from one of Tx FIFOs to the Transmitter. But

when exception is happened during transmission, the Tx FIFO controller has to reset the FIFO’s

address pointer to the old start address in order to restore the original packet data and waits the next

transmission period.

And during receiving, the central controller tells the Rx FIFO controller that there is a packet

in the Receiver. Besides, the Rx FIFO controller also records the starting address of the receiving

packet data in the Rx FIFO. In a similar way, the Rx FIFO controller resets the Rx FIFO’s pointer

to this address record when CRC checking is failed, or there are errors happened on the network.

MUX
State

Registers

I1 I2 I3 I4 I5 I6 I7

I0
),S(IfCRC 10 −

S-1
),S(IfCRC 01),S(IfCRC 12),S(IfCRC 23),S(IfCRC 34),S(IfCRC 45),S(IfCRC 56),S(IfCRC 67

S1
S3 S7

speed code
from the central
controller

CRC Enable
To the
Central
Controller

CRC Result

System CLK *I[0:7] are the data from
Transmitter or Receiver

MUX
State

Registers

I1 I2 I3 I4 I5 I6 I7

I0
),S(IfCRC 10 −

S-1
),S(IfCRC 01),S(IfCRC 12),S(IfCRC 23),S(IfCRC 34),S(IfCRC 45),S(IfCRC 56),S(IfCRC 67

S1
S3 S7

speed code
from the central
controller

CRC Enable
To the
Central
Controller

CRC Result

System CLK *I[0:7] are the data from
Transmitter or Receiver

 15

Except for the job of communicating with MAC IP central controller, these FIFO controller

and FIFOs are in charge of resynchronizing the data and clock signals from VCI to local clock rate.

Because VCI may not use the same clock rate as MAC IP, these FIFOs must be able to operated

under two speeds of clock rate at the same time when FIFO controller passes data from MAC IP to

upper layers or from upper layers to MAC IP.

In Fig. 11, we illustrate the architecture of FIFOs.

Fig. 11: The architecture of FIFOs

� The share of header buffers:

In any kind of communication protocol, the header information is the most important and

should be carefully treated. After researching, we discover that the header of IEEE 1394 and IEEE

Sync.
Control FIFO Controller

System clk

The Central Sync.
Control

The Central
Controller

To the MAC
IP status
Register

FIFOsVCI clk

To VCI
data

Tx Ack
FIFO

Tx 1394
Packet

FIFO

Tx 802.3
frame
FIFO

General
Rx FIFO

FIFOs

Record
Address

Reset
Address

data

VCI Read/Write
control signals
to each FIFO

Full/Empty

M
U

X Starting
Address
Pointer
register

M
U

X

M
U

X

VCI address decode

Read/Write
Contro

a

a. Full/Empty
b. Reset Address
c. Read/Write Contro
d. Record Address
e. data
f. Start address pointer

b

1. VCI Read/Write
control signals

2. data
3. Old Starting Address

Pointer

c
e

f

a

a

a

b

b

b

c

c

c

e

e

e

f

f

f

Tx Ack
FIFO

Tx 1394
Packet
FIFO

Tx 802.3
frame
FIFO

General
Rx FIFO

1
2
3

1

2

3

1

2

3

1

2

3

d
d

Sync.
Control FIFO Controller

System clk

The Central Sync.
Control

The Central
Controller

To the MAC
IP status
Register

FIFOsVCI clk

To VCI
data

Tx Ack
FIFO

Tx 1394
Packet

FIFO

Tx 802.3
frame
FIFO

General
Rx FIFO

FIFOs

Record
Address

Reset
Address

data

VCI Read/Write
control signals
to each FIFO

Full/Empty

M
U

X Starting
Address
Pointer
register

M
U

X

M
U

X

VCI address decode

Read/Write
Contro

a

a. Full/Empty
b. Reset Address
c. Read/Write Contro
d. Record Address
e. data
f. Start address pointer

b

1. VCI Read/Write
control signals

2. data
3. Old Starting Address

Pointer

c
e

f

a

a

a

b

b

b

c

c

c

e

e

e

f

f

f

Tx Ack
FIFO

Tx 1394
Packet
FIFO

Tx 802.3
frame
FIFO

General
Rx FIFO

1
2
3

1

2

3

1

2

3

1

2

3

d
d

 16

802.3 have something in common as shown below:

1. The longest data length of both headers is the same.

2. We can save the header data in several 32-bit registers and that would not impact on the

completion of the information in the header (e.g. destination address).

3. Some header information that is usually used is in the same position of each header field.

From the above conclusions, we only need to have one set of header buffers for these two

protocols and can easily extract the header information like destination address, source address, and

data length without consuming much effort.

� An easily integrated interface:

As mentioned before, either IEEE 1394 or IEEE 802.3 will be popular in any kind of

multimedia equipments in the future. For this reason, MAC IP must be easy to be integrated with

any system. Thus, we follow the VCI standard proposed by VSIA (Virtual Socket Interface Alliance)

to design the interface between MAC IP and upper network layers.

When MAC IP collocates with different bus wrappers, it could easily connect to different

system buses to access data. When upper layer circuits also follow the VCI standard, the MAC IP

can do peer-to-peer communication with upper layer circuits. Currently, we have successfully

developed ARM AHB Bus wrapper and PCI Bus wrapper to connect MAC IP to AHB Bus and PCI

Bus.

 17

4. System Integration

4.1 Application method

When designers adopt our MAC IP to design their systems, they will have different

requirements for MAC IP at the different circuit description level. As the following, we introduce

the MAC IP’s application method at different circuit description level.

� Behavior Description Level

When designers start to design the system with our MAC IP, they must decide the parameters

of the MAC IP, like mode, duplex, and FIFO depth, and also can simulate the whole system’s

functions with the MAC IP’s behavior model to reduce the simulation time.

Besides, designers must design or choose a bus wrapper for this IP to connect MAC IP to a

system bus. Note that the different choice or design of bus wrappers will have influence on the

performance of MAC IP in the system.

� Register Transition Level

After behavior simulation of the system, we can use the RTL code of MAC IP to pursue a

better performance and report the precise system timing. We provide the RTL code of MAC IP for

both of the ASIC and Xilinx FPGA design flow. This IP has been simulated alone and the result

shows that it can be operated at 60 MHz at least, which exceeds the clock speed standard in IEEE

 18

1394 and IEEE 802.3.

� Xilinx FPGA bit-stream file

By the aid of Xilinx Foundation 4.1i, we have finished the Placement & Routing procedure of

MAC IP on Xilinx FPGAs and produced a bit-stream file that can be downloaded into a FPGA.

After the file is downloaded, the FPGA becomes a stand-alone IC and we still need to choose a bus

wrapper to complete the integration of a PCB.

4.2 Application Example

� IEEE 1394 Interface card

We first set the IP’s parameters, and then get the control circuit of IEEE 1394 Link Layer. We

chose a PCI bus wrapper developed by our lab to let MAC IP communicate with system through

PCI bus. After downloading this IP design to Xilinx xc2v6000-4 FPGA, we chose the IEEE 1394

physical layer from TI Company to cooperate with MAC IP [6][7]. This interface card has three

IEEE 1394 ports and its function blocks are shown in Fig 12.

 19

Fig. 12. The MAC IP validation board.

5. Conclusion

With the development of multimedia and network consumer electric products, they have entered

to our family life step by step. Under the demand of Internet and high quality images of equipments,

it is possible to appear a product having the functions of IEEE 1394 and Ethernet. For this reason,

we have developed the MAC IP and attempted to provide a very flexible network/communication

interface of future’s equipments or IA products in different environments.

In the future, we may consider and design a Media Access Protocol using a general

parameterized architecture. In this architecture, we have a microprocessor and dedicated hardware

which are parametric functional blocks. By a microprocessor, we can use it to process random

procedures of any Media Access protocol, like arbitrating bus control rights, or packets data

combination or extraction. As for routine works, such as CRC checker/generator, or de/encryption,

we can design application-specific hardware to deal with these functions.

PHY

Port1

Port2

Port3

PCI
Socket

MAC IP Validation Board

MAC coreFIFO
PCI
Bus

Wrapper
VCI

MAC_FPGA

PHY
Inter-
face

PROM RAM

Xilinx VertexII xc2v6000-4
TI

TSB41AB3
PCI 33

3.3V

PHY

Port1

Port2

Port3

PCI
Socket

MAC IP Validation Board

MAC coreFIFO
PCI
Bus

Wrapper
VCI

MAC_FPGA

PHY
Inter-
face

MAC coreFIFO
PCI
Bus

Wrapper
VCI

MAC_FPGA

PHY
Inter-
face

PROM RAM

Xilinx VertexII xc2v6000-4
TI

TSB41AB3
PCI 33

3.3V

MAC IP

 20

6.Reference

[1] IEEE Std 1394-1995, IEEE Standard for a High Performance Serial Bus, December 1995.

[2] IEEE Std 802.3, 2000 Edition, 2000.

[3] Virtual Socket Interface Alliance, “Virtual Component Interface Standard Version 2”, April

2001.

[4] Iliopoulos, M.; Antonakopoulos, T., ”A Methodology of Implementing Medium Access

Protocols using A General Parameterized Architecture”, Rapid System Prototyping, 2000. RSP

2000. Proceedings. 11th International Workshop on , 2000 , Page(s): 2 –7

[5] Michael Sprachmann, “Automatic Generation of Parallel CRC Circuits”, IEEE Design & Test of

Computers, Vol. 18, No. 3, pp. 108-114, May/June 2001.

[6] Prasad P. G., “Validation of a Link Layer Synthesizable Core - a prototyping case studying”, 11th

International Workshop on Rapid System Prototyping, pp. 208-213, 2000.

[7] TSB12LV01B/TSB41AB3 Reference Schematic (Rev. A), Texas Instrument Company, America.

