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Abstract

Acharya et al. have proposed the use of a periodic dissemination architecture in the context
of mobile systems, called Broadcast Disks. However, based on Acharya et al.’s algorithm,
some broadcast slots may be unused, which resulting in the waste of bandwidth and the
increase of access time. Chang and Yang have presented a complementary approach to
solve the empty slots problem. The basic idea of the complementary approach is to move
some pages which are located near the end of a broadcast cycle to those empty slots which
occur before those pages. However, based on the complementary approach, the distances
between slots containing the same page may not be a constant, resulting in an increase
of the mean access time. In this paper, we propose an efficient broadcast program, an
improvement of the complementary approach, not only to mitigate the above phenomenon
but also to solve the empty slots problem. The basic idea of the improvement of the
complementary approach is try to move some ”good” pages to those empty slots, as more
as possible, where ”good” pages are those pages which have relative request frequency = 1.
From the simulation results, our improvement of the complementary approach generates a
smaller number of slots in a broadcast cycle than Acharya’s algorithm and needs shorter
mean access time than Acharya’s algorithm and the complementary approach.

(Key Words: bandwidth, broadcast disks, broadcast schedule, data broadcast, mobile
databases, mobile information systems.)
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1 Introduction

Wireless computing is more and more popular in recent years, because it can satisfy people’s
information needs at any time and any place. Wireless networks have five different char-
acters from traditional fixed wired networks, including narrow bandwidth, an asymmetric
communication environment, limited power, and portable units with very small screens [9].
These characteristics provide many new challenges for traditional techniques of a wired
information system.

In wireless networks, servers can deliver data to clients in two modes: broadcasting
mode and on-demand mode. Under the broadcasting mode, the server must construct a
broadcast ”program” to meet the needs of the client population [1]. The amount of time
a client has to wait for an information item that it needs is called access time. A good
broadcast program can minimize the mean access time. For example, data pages required
by clients are A, B, and C'. The required frequency of each data is 0.5, 0.25, and 0.25
respectively. The schedule in one broadcast cycle of the flat broadcast program is 7 ABC”.
In contrast, in the regular broadcast program, ” ABAC”, there is no variance in the inter-
arrival time for each page. The performance characteristics of the regular program are the
same as if page A was stored on a disk that is spinning twice as fast as the disk containing
pages B and C. Thus we refer to the regular program as a Multi-disk broadcast, which
was proposed in Acharya et al.’s Broadcast Disks [1].

There have been many strategies proposed for efficient broadcast delivery. In [3, 4], they
presented real-time, fault-tolerant, secure broadcast organization technique. In [10, 11],
they presented new algorithms to generate broadcast programs that facilitate range queries
for multiple-disk broadcast programs. In [9, 12], they focused on the issue of scheduling
the broadcast data on multiple wireless channels. In [5, 7, 9], they presented algorithms to
consider the case that an MC may access more than one data page in one query.

Among those strategies for efficient broadcast delivery, Acharya et al.’s Broadcast Disks
[2, 8] is one of well-known algorithms. Using Broadcast Disks can construct a memory
hierarchy in which the highest level contains a few items and broadcasts them with high
frequency while subsequent levels contain more and more items and broadcast them with

less and less frequency. In this way, one can establish a trade-off between access time for



high-priority data and that of the low-priority items. However, based on Acharya et al.’s
approach, some broadcast slots may be unused, which results in the waste of bandwidth and
the increase of access time. Chang and Yang have presented a complementary approach to
solve the empty slot problem [6]. The basic idea of the complementary approach is to move
some pages which are located near the end of a broadcast cycle to those empty slots which
occur before those pages. However, based on the complementary approach, the distances
between slots containing the same page may not be a constant, resulting in an increase of
the mean access time.

Therefore, in this paper, we propose an efficient broadcast program, an improvement
of the complementary approach, not only to mitigate the above phenomenon but also to
solve the empty slots problem. If we want to move some pages on nonempty slots to these
empty slots and expect a better performance for access time, we have to concern about two
things: one is which pages on those nonempty slots are to be moved and the other is to
which empty slots these pages on nonempty slots are to be moved. Basically, where there
are N empty slots, there are N! combinations to assign N pages into those N empty slots.
However, even each of N! combinations has been tried, the resulting performance is still
not guaranteed to the globally optimal. Therefore, a heuristic approach to assign pages to
those empty slots is a good choice between the trade-off of the mean access time and the
computation time of the algorithm. In the improvement of the complementary approach,
the basic idea is try to move some ”good” pages to those empty slots, as more as possible,
where ”good” pages are those pages which have relative request frequency = 1. The reason
for choosing such a good pages is that the locations of them in the broadcast cycle do not
affect the mean access time. From our performance analysis and simulation, we show that
our improvement of the complementary approach generates a smaller number of slots in
one broadcast cycle than Acharya’s algorithm and needs shorter mean access time than
Acharya et al.’s algorithm and the complementary approach.

The rest of paper is organized as follows. In section 2, we give a brief survey of Acharya et
al.’s algorithm and Chang and Yang’s complementary approach. In section 3, we present
our improvement of the complementary approach to solve the empty slot problem. In

section 4, we study the performance of our improvement of the complementary approach,



and make a comparison with Acharya et al.’s algorithm and the complementary approach.

Finally, section 5 gives the conclusion.

2 Background
2.1 Broadcast Disks

In Acharya et al.’s Broadcast Disks strategy [2, 8], the broadcast is created by assigning
data items to different “disks® of various sizes and speeds, and then multiplexing the disks
on the broadcast channel. Figure 1 shows an example of the broadcast program generation.
Assume a list of pages that has been partitioned into three disks, in which Ry = 3, Ry = 2,
and R3 = 1, where R; is the relative broadcast frequency of disk 7. Each disk ¢ is split into
NC; chunks by first calculating L as the LCM (Least Common Multiple) of the relative
frequencies and then being split into NC; = L/R; chunks. That is, L is 6 (=LCM(3, 2,
1)), so NC} = 2, NCy = 3, and NC3 = 6. Finally, we create the broadcast program by
interleaving the chunks of each disk in the following manner, where Cj; denotes the j'th
chunk in disk i

01 for ¢ :=1to L do

02 for j:=1to S do begin

03 k:= ((i - 1) mod NCj) + 1;
04 Broadcast chunk C} x; end.

The resulting broadcast program consists of 6 minor cycles (containing one chunk from
each disk) which is the LCM of the relative frequencies, and has a period of 30 slots with
7 empty slots.

2.2 The Complementary Approach

Chang and Yang have proposed a complementary approach to solve the empty slot problem
occurring in Acharya et al.’s algorithm [6]. For the same example shown in Figure 1, in
the complementary approach, it first computes the total number of slots in a major cycle,
which is 30 in this example. Second, it computes the total number of empty slots in such a
major cycle, which is 7 in this example. Therefore, the algorithm can determine a cutline,
as shown in Figure 2-(b) which is 7 slots away from the end of the major cycle. Third, the

algorithm finds those slots which are not empty after the cutline, which are slots 24 and
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Figure 1: A broadcast program with 7 empty slots based on Acharya et al.’s algorithm

26 containing pages 15 and 2 in this example. Fourth, it finds the empty slot before the
cutline, which are slots 12 and 13 in this example. Finally, the algorithm moves data pages
from slots 24 and 26 to those empty slots 12 and 13, respectively. The final result is shown

“*+ gymbol denotes those moved pages.

in Figure 2-(c), where, the

Although the complementary approach solve the empty slot problem, it may result in the
case in which the distances between slots containing the same page may not be a constant.
For the example shown in Figure 3-(a), S = 3, D = 19 and we let R; = 3, Ry = 2, and R;
= 1. Therefore, L = LCM (3, 2, 1) = 6, NC; = 2, NCy, = 3, and NC3 = 6. In this case,
the total number of slots in a major cycle is 36 and the total number of empty slots in such
a major cycle is 11. Therefore, we can determine a cutline, as shown in Figure 3-(b), which
is 11 slots away from the end of the major cycle. The final result is shown in Figure 3-(c).
By observing the final result of the complementary approach, shown in Figure 3-(c), we
find that both slots 7 and 8 contain the same page, page 4. If some client wants to access
page 4 but misses slots 7 and 8, then the client has to wait for the next cycle to achieve

his goal; i.e. wait for up to 24 slots. From the example, we show that the complementary

approach could induce long access time by the FIFO moving.
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Figure 2: A broadcast program based on the complementary approach: (a) deciding the
cutline; (b) the result after the complementary approach.

3 The Improvement of the Complementary Approach
3.1 Assumptions

This paper focus on wireless broadcast environment. Some assumptions should be restricted
in order to make our work feasible [5]. These assumptions include: (1) The client population
and their access patterns do not change. (2) Data is read-only. (3) Clients retrieve data
items from the broadcast on demand. (4) Clients are simple and without a great amount of
memory. (5) Clients make no use of their upstream communications capability. (6) When
a client switches to the public channel, it can retrieve data pages immediately. (7) A query
result contains only one page. (8) The server broadcasts pages over a single channel. (9)
The broadcast infrastructure is reliable. (10) The length of each page is fixed. (11) The

relative frequency of the last disk is one.

3.2 The algorithm

Now, we present the proposed algorithm which partitions D pages into S broadcast disks
such that no empty slots occurs. In the proposed algorithm, the following variables are

used:
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Figure 3: A broadcast program based on the complementary approach: (a) the input data;
(b) deciding the cutline; (c) the result after the complementary approach.



10.
11.

12.

13.

14.
15.

D : the number of pages;

P; : the ith page in a decreasing order of demand frequency, 1 <1 < D;

S : the number of disks;

R; : the relative frequency of disk 7z, 1 <7 < S; note that Rg must be one;

. L : the least common multiple of R;, 1 <i < S, i.e., L = LCM (R4, Ry, ..., Rs);

K; : the number of pages in disk i, 1 <4 < S, and 5, K; = D;
NC; : the number of chunks in disk ¢, and NC; =L / R;, 1 <i < S

NS, : the number of slots in a chunk of disk ¢, 1 <7 < S| i.e.,
NS: =[] = [25] = [5);

NC; L/R; L

Cyj + the jth chunk in disk 7, 1 <17 < S
Oiji, = the kth slot of the jth chunk in disk 7, 1 <¢ < S.

HES (Hot Empty Slots) : the total number of empty slots with R; > 1, i.e.,
HES =Y /(NC, x NS, — K,) X R,.

NTS (Nonempty Total Slots) : the total slots in a major cycle without empty slots,
ie., NTS=Y7 K;x R;.

Wait : an array which stores the pages with frequency = 1 and are ready to wait (or
support) for complementing empty slots.

Moved : an array which stores the pages that occur after the cutline.

Disk[k][d] : the dth page in disk k.

Note that variables HES, NTS, Wait and Moved are new added, as compared to the

complementary approach [6].

For the example shown in Figure 4-(a), we have S = 3 and D = 19. First, we order the

pages from the hottest one to the coldest one. Second, we partition these 19 pages into 3
disks and let K; =1, Ky = 4, and K3 = 14. Third, we let Ry = 3, Ry = 2, and R3 = 1
and compute L = LCM (3, 2, 1) = 6. Fourth, we compute NT'S = Y7 | K; x R; = 25.
Fifth, we compute NC| = 2, NCy = 3, NC3 =6, NS; =1, NSy = 2, and NS; = 6. We

can imagine the situation which partitions the pages on each disk into chunks, as shown in

Figure 4-(a). For disk 1, K1 =1, NCy, = 2, and NS; =1, so there will be (2x1—-1) =1

empty slot which is denoted as

7|7

and the empty slot occurs three times in a major cycle.
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complementary approach.



For disk 2, Ky = 4, NCy = 3, and NSy = 2, so there will be (3 x 2 — 4) = 2 empty slots
which are denoted as ”?” and these two empty slots occur two times in a major cycle. For
disk 3, K3 = 14, NC3 = 6, and NS3 = 3, so there will be (6 x 3 — 14) = 4 empty slots
and these four empty slots occur once in a major cycle. Since we want to keep the relative
distance of the same page with relative request frequency > 1 as a constant as possible, we
have to use those ”good” pages to complement the empty slots occurring in the hot disks
as possible as we can, where a hot disk 7 means R; > 1. That’s why we need to compute
the number of empty slots in the hot disks in a major cycle, which is denoted as HE'S, and
reserve HE'S good pages as possible as we can. In this example, HES =1x3+2x2=171.
Since the number of ”"good” pages in this example is 14, it is enough to reserve HES =7
pages in the Wait array.

Now, after moving out 7 pages, there are still remaining 7 pages (K3 = 14 — 7 = 7),
pages 6 to 12 in disk 3, as shown in Figure 4-(b). Then, we have to recompute NS3 =
[K3/NC5] = [7/6] = 2. Sixth, we partition pages on each disk into chunks and the result
is shown in Figure 4-(b). Seventh, let NT'S be the cutline. Eighth, we find that there are
only empty slots after the cutline, so no page has to be recorded in the Moved array. In
other words, the complement candidates will only come from the Wait array. In Figure
4-(c), we find that 7 slots before the cutline are empty. Finally, we move 7 data pages in
the Wait array to those empty slots. The final result is shown in Figure 4-(d), where, the
"x” or 7#” symbols denote those moved pages. The ”x” symbol denotes the empty slot
which do not belong to disk 3. The "#” symbol denotes the empty slot which belong to
disk 3.

Figure 4 is one of the best case since (1) only empty slots occur after the cutline, and
(2) there are enough good pages to be reserved. In this case, for all the pages with relative
request frequency > 1, the relative distance of the same page is guaranteed to be a constant
except the distance between the last occurrence and the first occurrence of the same page.
However, if (1) there are pages with frequencies > 1 occurring after the cutline or (2) there
are not enough good pages, the decision about to which empty slots a page should be
moved such that it can provide good performance is not an easy problem. For the first

concern, we will put all the pages after the cutline into an array Moved. For the second



concern, we then have to choose some pages from those pages which have frequency > 1

after the cutline and are recorded in the Moved array. Therefore, in our approach, we

will prepare two arrays: Wait and Moved. However, since we want to keep the relative

distance of the same page with relative request frequency > 1 as a constant as possible,

we apply the following policies to fill the empty slots: (1) For a hot empty slot, we prefer

the pages stored in the Wait array to the Moved array, where a hot slot means that its

relative frequency > 1. (2) For a cold empty slot, we prefer the pages stored in the Moved

array to the Wait array, where a cold slot means that its relative frequency = 1.

The complete algorithm is described as follows:

1.
2.

Order the pages from the hottest one (most popular) to the coldest one.

Partition the list of pages into multiple disks (= S disks), where each range contains
pages with similar access probabilities.

Choose the relative frequency R; of broadcast for each disk ¢ (i = {0...S}), and
calculate L as the LCM of the relative frequencies.

Calculate the total slots in a major cycle without empty slots and denote it as NT'S.

Call procedure Partition to decide the values of NC;, NS; and HES first. Next, we
move at most HES pages from disk S to the Wait array. Then, update Ks and NSg
if necessary.

Partition each disk ¢ into NC; chunks, and the number slots of NC; is N .S;.
Let NT'S be the cutline.

Call procedure FindNFE to check whether there are nonempty slots after the cutline.
If there are nonempty slots after the cutline, then record them in an array M oved.

Let’s use a sequence number to denote the sequence of those slots in a major cycle
as 1, 2,..., TS. Create a broadcast program consisting of those slots with sequence
number 1 to NT'S.
for a:=1 to NT'S do
begin

if the corresponding O;ji, is not empty then broadcast corresponding O;j

else broadcast a data page from the Wait array or from the Moved array

under some rules
end.

In the above algorithm, what we do from Step 1 to Step 3 is to decide the values of K,

R; and L. In Step 4, we have to know how to compute the total number of slots in a major

cycle without empty slots (NT'S), NTS = Y7, K; x R;.
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01 Procedure Partition;

02 begin

03 HES := 0;

04 forp:=1to S do (* Phase 1: compute NC; and NS;. *)
05 begin NC,:=L/R,; NS, :=[K,/NCp|; end;

06 forp:=1toS—1do (* Phase 2: compute HES. x*)

07 HES :=HES + (NC, x NS, — K,)) X Ry;

(* Phase 3: reserve at most HES pages in the Wait array,
and recalculate Kg and NSg. x)

08 if HES > 0 then (% empty slots with R; # 1 occur %)
09 beign
10 W aitcount := 0;
11 if K¢ > HES then (* have enough pages with R; = 1x)
12 Waitcount :== HES
12 else (* don’t have enough pages with R; = 1x)
12 Waitcount := Kg;
13 Kgs = Kg — Waitcount;  (x recalculate Kg and NSg %)
14 NSs =[Ks/NCs)|; w:=1;d:= Kg + 1;
(* start to move Waitcount pages to the Wait array *)
15 for p:=1 to Waitcount
16 begin Wait[w] := Disk[S][d]; w:=w+1; d:=d+1; end;
17 end;
18 end;

Figure 5: The Partition procedure: Step 5

In Step 5, we call procedure Partition as shown in Figire 5. In procedure Partition, it
contains three phases: the first phase is to decide the values of NC;, NS; and HES, the
second phase is to calculate HES and the third phase is to move at most H E'S pages from
disk S to the Wait array and update Kg and NSg. For the first phase, NC; = L/R; and
NS; = [K;/NS;]. For the second phase, HES represents the number of hot empty slots
which will occur in a major cycle, so we just need to accumulate the number of the empty
slots except those from the last disk as follows: HES = Y7 "(NC; x NS; — K;) x R;. For
the third phase, we try to reserve HES good pages in the Wait array. There are two cases
to be considered: (1) K¢ > HES, and (2) Kg < HES. (Note that Case 1 denotes that we
have enough good pages.) Here, we use Waitcount to record the size of the Wait array.

Lines 14 and 15 are the process for Case 1, and lines 16 and 17 are the process for
Case 2. In Case 2, we will move all the pages from disk S to the Wait array such that
Waitcount equals to Kg later. Lines 18 and 19 are the process to recalculate the value of

Kg and NSg. From lines 22 to 27, we start to move Waitcount pages from disk S to the

11



Input: A schedule created from improved Acharya et al.’s Algorithm, which contains

a sequence of pages p; in one major cycle, 1 < i <T'S.
Output: An array called Moved records the nonempty slot after the cutline and the size of the array, called
count.

01 Procedure FindNE (NT'S: integer);
02 begin
03 TS :=0;
04 forp:=1to S do
05 TS :=T8S + [Budi];
06 TS :=LxTS;
07 for p:= (NTS+1) toTS do
08 begin
09 Call FindChunk(p,i,j,k);
(* find the corresponding O,y for slot p *)
10 if (Not FindEmpty(i, j, k)) then (* a nonempty slot *)
11 begin
12 M ovedecount := Movedcount + 1;
13 Moved[M ovedcount] := Ojg;
14 end;
15 end;
16 end.

Figure 6: The FindNFE procedure: find nonempty slots after the cutline (Step 8)

Wait array. Here, we use Disk[S][d] to represent the dth page in disk S. After getting the
values of NC; and N.S; from Step 5, in Step 6, we can partition the pages in each disk ¢
into NC; chunks, and the number slots of NC; is NS;. In Step 7, we have to decide where
the cutline is. We let NT'S to be the cutline.

In Step 8, to check whether there are nonempty slots after the cutline, we call procedure
FindNE as shown in Figure 6, which calls Procedure FindChunk and Function Find Empty
as shown in Figure 7 and Figure 8, respectively. These procedures have been presented
in details in Chang and Yang’s complementary approach [6]. The purpose of procedure
FindChunk is to map a sequence number SN into the corresponding O;j;, which denotes
the kth slot of the jth chunk in disk . The purpose of the boolean function FindEmpty
is to check whether the input O;j; is an empty slot or not.

The purpose of procedure FindNE is to find nonempty slots after the cutline, then
record them in the Moved array to wait for complementing empty slots. In the procedure,
we have to calculate the total number slots in a broadcast cycle, denoted as T'S, first.

TS =L x ¥y [Bf] = L x Y7, NS;. Since we let NTS be the cutline, we have to

12



Input: SN is the sequence number of Ojjy.

Output: 4,7, k.
01 Procedure FindChunk(SN: integer; var i, j, k: integer);
02 begin
03 1 :=0; y:=0;
04 for z := 1to S do
05 y:=y+ NS,; (* y is the length of a minor cycle, y = Zle NS; *)
06 a:=SNdivy; b:=SN mod y; (* Step A *)
(Fa=@G—1) + (cdivy) + (NC;x2),c =S NS, +k %)
08 if (b = 0) then (* Step B *)
Fe=y,i=85,k=NS; ¥
09 begin a:=a-1; b:=y; end;
10 while (b > 0) do (*b=S""" NS, +k ¥
11 begin i: =1+ 1; k:=b; b:=b—NS;; end;
(*if (b < 0) then SN € disk i *)
(* @ means the number of minor cycles which occurs before Oy, *)
12 j:=(a+1) mod NCy; (* Step C' *)
13 if (j = 0) then j := NC; (* Step D *)
14 end;

Figure 7: The FindChunk procedure

check whether the pages from slot (NT'S + 1) to slot T'S are empty or not. Then, we will
move those nonempty pages after the cutline to the Moved array. In the case that the size
of the Wait array is less than HES, we are sure that there must be pages after the cutline.

In Step 9, we call the Broadcast procedure as shown in Figure 9, which calls Procedure
FindChunk and Function Find Empty as shown in Figure 7 and Figure 8, respectively, to
construct the final broadcast program. In the Broadcast procedure, if O;;;, is not empty,
we broadcast the corresponding page, which O;;, denotes the kth slot of the jth chunk in
disk 7. On the other hand, if O, is empty, we have to choose where the complement page
comes from and broadcast the slot using the complement page. The complement page can
come from two places: one is the Wait array and the other is the Moved array. Since we
want to keep the relative distance of the same page with relative request frequency > 1 as
a constant as possible, we prefer to moving good pages which have been reserved in the
Wait array to those hot empty slots. Therefore, we have to check whether the frequency
of the empty slot is one or not. There are two cases to be considered: (1) The frequency of
the empty slot O, is not one, i.e. R; # 1 and i # S. (2) The frequency of the empty slot
Oiji is one, i.e., R; = Rg = 1. For Case 1, we will check the Wait array first. If there are

13



Input: 4,4,k (* Ojjx is the chunk corresponding to the sequence number SN *)
Output: return T'rue when O;ji is an empty slot.

01 Function FindEmpty(i, j, k: integer): Boolean;

02 begin

03 FindEmpty := False;

04 FW; := NC; - [&1;

05 PW; =[] — &1

06 if (FW; >=1) then (* a fully wasted chunk *)
07 begin

08 if (NC; — FW; +1) < j) and (j < NC;)) then

09 FindEmpty = True; (* Oyjk is an empty slot *)
10 end

11 if (PW; = 1) then (* a partially wasted chunk *)

12 begin

13 if (] = (NCZ - FWZ)) then

14 begin

16 it ((NS; —num +1) <k) and (k < NS;)) then

17 FindEmpty := True; (* Oijk is an empty slot *)
18 end;

19 end;

20 end;

Figure 8: The FindEmpty function

pages in the Wait array, we will move one page to the empty slot (Case 1-(a)). However,
if there is no page in the Wait array, we will move one page from the Moved array to
the empty slot (Case 1-(b)). The reason is that we want to move good pages to those hot
empty slots.

For Case 2, we will check the Moved array first. If there are pages in the Moved array,
we will move one page from the Moved array to the empty slot (Case 2-(a)). However, if
there is no page in the Moved array, we will move one page from the Wait array to the
empty slot (Case 2-(b)). The reason is that good pages are reserved to be the complement
candidates for those hot empty slots.

In the Broadcast procedure, we use Waitcount and Movedcount to represent the size
of Wait and Mowved array, respectively. In the meanwhile, we use Windex and Mindex
to record the location after which the pages in the array have not been used. If Windex
equals to Waitcount, it means that all the pages in the Wait array have been chosen to be

candidates. Similarly, Mindex equals to Movedcount, it means that all the pages in the
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Input: A schedule created from improved Acharya et al.’s Algorithm, which contains

a sequence of pages p; in one major cycle, 1 < <T'S.

Output: One major cycle without empty slots and the length = NT'S.

01
02
03
04
04
05
06
07
08
09
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38

Procedure Broadcast (NT'S, Waitcount, Movedcount: integer);

begin

Windex := Mindex := 0;
Mindex := 0;
for p :=1to NTS do
begin
Call FindChunk(p,i,j,k);
if FindEmpty(i,j, k) then (* an empty slot *)
begin
if i # S then
begin (*Case 1: Ojjp=empty and R; > 1%)
if Windex < Waitcount then
begin (*Case 1-a: fill with O;;, #empty and R; = Rg = 1*)
Windex := Windex + 1;
Broadcast Wait[Windez];
end
else if Mindex < Movedcount then
begin (*Case 1-b: fill with O;jk # empty after cutline*)
Mindex := Mindex + 1;
Broadcast Moved[Mindez];

end;
end  (*end of Case 1*)
else
begin (*Case 2: O;;p=empty and R; = 1*)
if Mindexr < Movedcount then
begin (*Case 2-a: fill with O;;;, #empty after cutline *)

Mindex := Mindex + 1;
Broadcast Moved[Mindex];

end
else if Windex < Waitcount then
begin (*Case 2-b: fill with O;; # empty and R; = Rg = 1*)

Windex := Windex + 1;
Broadcast Wait[Windez];
end; (*end of case 2%)

end;
end (*end of if FindEmpty (i,j.k)*)
else Broadcast O;jy; (*non-empty slot™*)

end; (*end of for p := 1 to NT'S*)

end.

Figure 9: The Broadcast procedure (Step 9)
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Table 1: Parameters used in the simulation

the number of disks

the number of distinct pages to be broadcast
the number of pages in disk ¢

the relative frequency of disk i

the broadcast shape parameter

the Zipf factor for partition size

the Zipf factor for frequency of access

2 ||| 2| F S| »

Moved array have been chosen to be candidates.

4 Performance Study
4.1 The Simulation Model

The parameters used in the model are shown in Table 1. When we simulate the process of
Acharya et al.’s algorithm, we need to decide the values of R;’s, which can be dependent on
A. Using A, the frequency of broadcast R; of each disk i, can be computed relative to Ryg,
the broadcast frequency of the slowest disk (disk S) as follows [2, 8, 11]: % =(S—i)A+1,
and Rg = 1,1 < < §. For example, for a 3-disk broadcast, when A = 3, the relative
frequencies are 7, 4, and 1 for disks 1, 2, and 3, respectively.

Moreover, when we simulate the process of Acharya et al.’s algorithm, we need to decide
the values of K;’s, which can be decided based on the Zipf distribution [2, 8, 10, 11]. The
Zipf distribution is typically used to model nonuniform access patterns [2, 8]. The Zipf
distribution can be expressed as p; = %, 1 <i < M, where # is a parameter named
access skew coefficient or Zipf factor and M € N. For example, when M = 3, § = 1,

1—31, and p3 = % Therefore, K; in Acharya et al.’s algorithm can
1 6
be decided based on the Zipf-like distribution as follows [2, 8, 11]: K; = D X ﬁ
j=1

Here, K has the fewest pages, K5 has the next fewest pages, and K has the most number

_ 6 _
we have p; = 77, p2 =

of pages.
When we consider the demand frequency of data access for page i (denoted as DF P;),

we also apply the Zipf distribution with a Zipf factor v. Here, we partition the pages into
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regions (= number of disks) of K; pages each, where 1 < i < S, and we assume that the
probability of accessing any page within a region is uniform; that is, the Zipf distribution
is applied to these regions [2, 8]. Therefore, we model the demand frequency of access of
the ith disk (DF D;) using the Zipf distribution as follows: DFD; = %, where ~
is the Zipf factor of the Zipf distribution. In this case, the first disk (&), which has the
least number of records, is the most frequently accessed, the second disk (K3) is next, and
so on. Since each page w in disk ¢ has the same demand frequency DF P,,, we have DF P,
=DFP,1<i<S8S.

Two performance measures are considered in this comparison: (1) The total number of
slots in one broadcast cycle. (2) The mean access time (denote as AccessT') which equals to
multiply the probability of access for each page i (DF P;) with the expected delay for that
page (EDP;) and sum the results, where FDP; denotes the average expected delay time for

page i in disk k with the relative frequency = Ry. That is, AccessT = Y2, EDP; x DFP;.

4.2 Performance Analysis

Let SP; denote the distance (i.e., the number of slots) between the same page ¢ in disk k
occurring in a major cycle, where SP, = T'S/Ry. For the mean access time (EDPFP;) for
page ¢ in disk k in Acharya et al.’s algorithm, it can be computed as follows: EDP; =
(1/SP) x ((SP,—0.5) + (SP,—1—-0.5)4+ ...+ (SP,— (SP,— 1) — 0.5)) = SP;/2

For the complementary approach, when Ry = 1, EDP, = (TS —-TWS) /2= CL /2.
When Ry, # 1, there are two cases to be considered: (1) VYa € D, a ¢ Moved, i.e., page a
does not need to be moved. (2) Va € D, a € Moved, i.e., page a must be moved.

Let newS Nij denote the new sequence number of the jth occurrence of page ¢ in disk &
after executing procedure Complementary, 1 < j < R;. For Case (1), EDP; = (1/CL) x
((Ry—1)x SP?/2+(SP,—TW S)?/2)). For Case (2), EDP; = (1/CL)x (X% " (newSN{ ™' —
newSN?)?/2 + (CL — newSN™ + newSN})?/2).

For the improvement of the complementary approach, when R, = 1, we have FDP; =
NTS /2. When Ry # 1, similar to the complementary approach, there are two cases to be
considered. Let orgSNg denote the original sequence number of the jth occurrence of page

¢ in disk k£ and let newSNij denote the new sequence number of the jth occurrence of page
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Table 2: The parameters and their default settings

Parameter | Default value
S 3,4
D 4000 .. 5000
A 4,5
0 0.8
ol 0.9

i in disk k after executing procedure Broadcast, 1 < j < R;. For Case (1), we have EDP,
= (1/NTS) x ((Ry, — 1) x (orgSN? — orgSN}?/2 4+ (NTS — orgSN{* + orgSN})?/2)).
For Case (2), we have EDP, = (1/NTS) x (X% " (newSN/*" — newSN/)?/2 + (NTS —
newSN/™ + newSN})?/2).

4.3 Simulation Results

In this simulation, we let # = 0.8, v = 0.9. We consider 4 test samples which include the
combinations of S = 3 and 4 and A = 4 and 5, respectively, for a fixed D that is a random
value between 4000 and 5000. For each test sample, we compute the average result for 1000
values of D. The parameters and their default settings are shown in Table 2.

The total number of slots in the improvement of the complementary approach is equal to
(the total number of slots - the wasted slots) in Acharya’s algorithm, and is equal to that in
the complementary approach. Therefore, obviously, the improvement of the complementary
approach generates a smaller number of slots in a broadcast cycle than Acharya’s algorithm,
as shown in Tables 3 and 4, respectively. As A (or S) is increased, the total number of
slots is increased in both the improvement of the complementary approach and Acharya et
al.’s algorithm.

A comparison of the mean access time (in terms of the time units) is shown in Ta-
ble 5. From this result, we show that the mean access time in our improvement of the
complementary approach is always smaller than that in Acharya et al.’s algorithm and
the complementary approach. As S is increased, the access time is decreased in all three

algorithms. As A is increased, the access time is increased in all three algorithms.
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Table 3: A=4 R, =(S—i)x4+1,1<i<S

S| IC BD | TWS of BD | Maximum TW S
3| 17197 | 17257 | 59 (0.34%) 115 (0.67%)
4 | 23098 | 24338 | 1239 (5.09%) 1943 (7.98%)

IC': the total number of slots in the improvement of the complementary approach.
BD: the total number of slots in Acharya et al.’s broadcast disk approach.
TWS of BD: the total number of wasted slots in Acharya et al.’s broadcast disk approach.

Maximum TW S: the maximum number of wasted slots in Acharya et al.’s broadcast disk approach.

Table 4: A =5 R, =(S—i) x5+1,1<i<S

S| IC BD | TWS of BD | Maximum TW S
3120372 | 20463 | 90 (0.44%) 180 (0.88%)
4 | 27746 | 28751 | 1004 (3.49%) 1597 (5.55%)

5 Conclusion

The main advantage of broadcast delivery is its scalability: it is independent of the num-
ber of users the system is serving. In this paper, we have proposed an efficient broadcast
program, the improvement of the complementary approach, which solves the empty slots
problem and provides a good performance. From our performance analysis and simulation,
we have shown that our improvement of the complementary approach generates a smaller
number of slots in one broadcast cycle than Acharaya et al.’s algorithm. Moreover, our im-
provement of the complementary approach requires shorter mean access time than Acharya
et al.’s algorithm and the complementary approach. How to design efficient broadcast pro-
grams for the case of broadcasting over multiple channels is one of the possible future

research directions.
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