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1. Introduction 

The goal of this paper is to design an asynchronous processor. Firstly, the motivation 

of designing the asynchronous processor is depicted in this section. Then we introduce 

asynchronous processor by contradicting it with synchronous processor. Finally, it is the 

related work. 

1-1 Motivations 

Asynchronous architecture is a new research topic in computer architecture[4,7]. 

There are several asynchronous processor prototypes announced in the past years. Recently 

asynchronous architecture develops quickly and it solves the global clock and power 

dissipation problems. Asynchronous processor has the better performance and power 

dissipation in real world today. However, in the past, if we want to design the real chip, we 

must design the simulator first. Recently the design flow is changed by the Hardware 

Description Language (HDL) based on high-level language, like the SystemC[1,2].  

SystemC is a high-level language based on C/C++. It provides the fast design flow 

and object-oriented HDL, which is useful to integrate the simulator and real chip design 

flow. SystemC is a C++ class library and a methodology that we can use to effectively 

create a cycle-accurate model of software algorithms and hardware architecture[1]. We can 

use SystemC and standard C++ development tools to create a system-level model, quickly 

simulate to validate and optimize the design, explore various algorithms, and provide the 

hardware and software development team with an executable specification of the system.  

SystemC supports hardware-software codesign and the description of the architecture of 

complex systems consisting of both hardware and software components. It supports the 
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description of hardware, software, and interfaces in a C++ environment. 

So we try to design an asynchronous processor based on the MIPS R2000[8] 

processor by using SystemC. 

1-2 Introduction to Asynchronous Processors 

All present computers are synchronous. They process instructions according to an 

internal timing device that regulates processing. The synchronous design way is widely 

taught and understood such that most available designs are synchronous. Synchronous 

designs indeed provide high performance but have a series of problems can’t be solved 

easily. As systems grow increasingly large and complex, clock may cause big problems 

with clock skew. It means a timing delay between several parts of system and may 

introduce logical error. To avoid clock skew, the clock tree should be placed early and 

several routing algorithms are needed. It increases the difficult of circuit design and we 

need more silicon area in the system so that the cost of each die is increased, too. It also 

leads to more power dissipation and overheating, and this kind of processors won’t be 

suitable for handing devices and mobile computing in the modern applications. 

To overcome such limitations, computer architecture researchers are actively 

considering asynchronous processor design. Instead of global clock, in an asynchronous 

architecture, each stage communicates with each other by some protocol. Without global 

clock, asynchronous architecture can permit modular design, exhibits the average 

performance of all components rather than worst-case performance of single component, 

and reduced power dissipation [11]. 

On the other hand, asynchronous processor has easier implementation in the design of 
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System On Chip (SOC) than synchronous has. That’s because we must consider the 

different clock domain between several components in SOC. For years, industry has many 

activities engaged in asynchronous design, and makes important progress. For example, 

Intel includes asynchronous design in decoding unit of processor. The asynchronous design 

approach is becoming viable and important, even though many efforts remains to be done. 

1-3 Related Work 

Like synchronous processors, asynchronous processors can execute instructions in 

pipeline. “Micropipelines”, proposed by Sutherland[10], is an event-driven elastic pipeline. 

In this approach, either rising or falling transition of signal is called an event, which has the 

same meaning of circuits. The event control the actions of the whole pipeline, and data 

transfer between two stages is using two-phase bundled data interface. Data must be 

bundled with the “Request” control line to avoid errors. Then the receiver accepts the data 

by sending back an “Acknowledge” event.  

The conceptual framework of micropipelines is the foundation of asynchronous 

architecture research. It demonstrates how to control the pipeline by employing protocol 

instead of using traditional clock. By the way of micropipelines, we can make the pipelines 

“elastic”. That means the number of instructions in the pipeline can vary with machine 

states when execution. AMIPS supports micropipelines, and it increases ILP. 

 D. K. Arvind et al. [3] defined a model called Micronets for decentralizing control in 

asynchronous processor architectures. An execution unit may have several function units 

such as shifter, multiplier, and ALU. Micronets describes how a control unit controls 

distributed functional units and gains the advantage through spatial concurrency in 
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microagents within one pipeline stage. 

 Four-phase data bundled communication protocol is developed by the AMULET 

research group[5,6,12]. AMULET is a famous implementation of asynchronous ARM 

architectures. In 1994 the first release of AMULET is announced. This method proved that 

to design an asynchronous processor is possible. Furthermore, it indeed provides the 

advantage that the design can be implemented modularly. A series of research of AMULET 

is really inspirational to the asynchronous designers. Four-phase data-bundled 

communication is used by AMIPS. 

There are three types of representation of data for asynchronous processor design[9]. 

They are single-rail, dual-rail and 1-of-N for representation of data. In dual-rail and 1-of-N 

design for asynchronous processor, they are data independent (DI) for design. And no 

matter which one it is, they have good points for each other. 

Dual-rail codes are the most widely used form of 1-of-N codes for constructing 

asynchronous systems. The dual-rail code is a 1-of-2 code, employing two wires to encode 

each bit; a logic one is represented by raising one of the two wires high, a logic zero by 

raising the other wire high. 

 In the execution stage of AMIPS, we use the dual-rail to represent data. We must 

transmit the data to next stage. If we use the 1-of-N to represent data, we must transfer 

them and decode them again. It causes the additional circuitry to decode. If we use the 

dual-rail to implementation, we only need to transmit them in 2-bit codeword. We don’t 

need additional circuitry to decode them. So we use the dual-rail to represent our data 

communication. 
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In this paper, we illustrate the design of the AMIPS in section 2. We introduce the 

validation of AMIPS in section 3. And finally brief conclusions are discussed in section 4. 

2. Design of the Proposed AMIPS 

In this section, we will illustrate the detailed design and architecture of the AMIPS.  

2-1 Overview of the AMIPS 

The overall architecture of the AMIPS is shown in Figure 1. We use the instruction 

and memory files instead of thick frames (instruction and data memory). We don’t design 

cache for simplicity as well. The format of instruction file is one instruction per line and 

the content of the instruction is decimal representation. The format of memory file is one 

location per line and the content of the location is “mem_addr=mem_value”. So we 

combine instruction memory and instruction fetching stage to form our real IF stage. The 

dotted line represents the concept. 

Instruction
Memory

Instruction
Fetching
Stage

Instruction
Decoding
Stage

Instruction
Executing
Stage

Memory
Access /
WriteBack
Stage

Data
Memory

PC controller

Register File MUX

 

Figure 1: The overall architecture of the AMIPS. 
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2-2 Design of the IF Stage 

The detailed interfaces of the IF stage are shown in Figure 2. It has the PC for 

fetching instruction from instruction file. The IF stage fetches instruction from instruction 

file by the value of PC in common, but when the instr_valid is ‘true’, the IF stage 

must change the value of PC to instr_addr and fetch the instruction from instruction 

file by the new value of PC. The situation occurs when the prior instruction is a branch or 

jump instruction which is taken. After the IF stage fetched the instruction, the IF stage 

sends the instruction and PC to the ID stage by using next_req, instruction, pc 

and next_ack ports. The reset port lets the IF stage return to the initial circumstance 

and it is low-enabled. 

instr_req

next_req

pc
instruction

next_ack

instr_valid

instr_addr

instr_ack

reset

Instruction
Decoding
Stage

PC controller

IF
Stage

 

Figure 2: The interfaces of the IF stage and the interconnections between the IF stage, the PC controller and 

the ID stage. 

2-3 Design of the ID Stage 

The design of the ID stage is shown in Figure 3. The ID stage (decode module) is 

divided into three sub-modules: decode_latch, decode_stage and 
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decode_complete. 

After fetching one instruction and sends the data to the ID stage, the decode_latch 

sub-module checks the value of last_req and start ports. If both of them are ‘true’, 

the decode_latch sub-module latches data, at the same time, it also sends data and control 

signal (end = ‘true’) to the decode_stage sub-module and also sends control signal 

(last_ack = ‘true’) to the IF stage. This indicates the data had latched and the IF stage 

can reset the communication protocol signals and the IF stage can start the next 

transaction. 

After the decode_latch sub-module sends the data and control signal (end) to 

decode_stage sub-module, the decode_stage sub-module performs the decoding action by 

using data from decode_latch sub-module and sends decoded results to the 

decode_complete sub-module. The decode_stage sub-module also sends the control signal 

(start = ‘false’) to the decode_latch sub-module. This indicates the ID stage is in 

working so that the decode_latch sub-module can’t latch data from the IF stage. 

The decode_stage sub-module also sends the control signal (no_zero = ‘true’) to 

decode_complete sub-module. The signal can combine the next_ack and other_ack 

signals to determine the control signal (self_reset = ‘true’ or self_reset = ‘false’) 

and sends decoded data to the EXE stage and the PC controller. We use the value 

(low-enabled) of self_reset to reset the decode_latch and decode_stage sub-modules. 

And then we get another instruction from the IF stage and next iteration starts. 
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Figure 3: The brief interfaces of the ID stage and the interconnections between the IF stage, the ID stage, the 

PC controller, the EXE stage and the register file. 

After explaining the communications in the sub-modules, we show the detailed 

interfaces of the ID stage and interconnections of the IF stage, the ID stage, the PC 

controller, the register file and the EXE stage. It is shown in Figure 4. If it has to read the 

values of register, it uses the reg_* and val_* ports to get the values from register file. 

The branch port indicates the instruction whether it is a branch instruction. The jump 

port indicates the instruction whether it is a jump instruction. The pc_out port equals to 

the pc_in that is from the IF stage. The target port indicates the target address if the 

instruction is taken. The above ports are available when the instruction is a jump or branch 

instruction. 

The operation port tells the EXE stage to perform a kind of actions. The 

operand1 and operand2 are the operands of the action that the EXE stage performs. 
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The wb_reg port is the register specifier which writes back to register file. The 

lwsw_ctl port is the 5-bit control word for load and store instructions. The 

store_data port is only available when the instruction is a store instruction. 

 

Figure 4: The interfaces of the ID stage and the interconnections between the IF stage, the ID stage, the PC 

controller, the EXE stage and the register file. 

2-4 Design of the PC controller 

The PC controller gets the necessary information from the ID stage and EXE stage 

and sends the correct value of PC to the IF stage. The PC controller is used to handle the 

branch and jump instructions. The detailed interfaces of the PC controller are shown in 

Figure 5. The PC controller (pc_controller module) has three sub-modules: 

pc_decode_latch, pc_exe_latch and pc_selector. 

The behavior of the pc_decode_latch and pc_exe_latch sub-modules is the same as 
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the decode_latch sub-module introduced in section 2-3. After pc_decode_latch sub-module 

latches the information from the ID stage, the pc_selector sub-module gets the information 

(is_branch, is_jump, taken, pc and target_address) through port interfaces 

and sets the signal correct_address_ready to ‘true’. After pc_exe_latch 

sub-module latches the information from the EXE stage, the pc_selector sub-module gets 

the information (iszero) through port interfaces and now it has enough information 

(is_branch, is_jump, taken and iszero) to set the values of instr_valid and 

instr_addr ports. After sending the instr_valid and instr_addr to the IF stage, 

the pc_selector sub-module resets the signal correct_address_ready to ‘false’ for 

the next instruction. 
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Figure 5: The interfaces of the PC controller and the interconnections between the IF stage, the ID stage, the 

PC controllers and the EXE stage. 
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2-5 Design of the Register File 

The register file consists of 32 general-purpose 32-bit registers (r0 ~ r31) and two 

32-bit registers (LO and HI) that hold the results of integer multiply and divide operations. 

The detailed interfaces of the register file are shown in Figure 6. The register file 

(reg_file module) has two sub-modules: reg_wt_latch and reg_rdwt_action. 

ID Stage
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data
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data
wb_reg
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Figure 6: The interfaces of the register file and the interconnections between the ID stage, the PC controller 

and the data memory (or the MEM/WB stage). 

After designing the IF stage, the ID stage, the PC controller and the register file, we 

must put it all together and it is shown in Figure 7. 
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Figure 7: The complete interconnections of the IF stage, the ID stage, the PC controller and the register file. 
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2-6 Design of the Execution Stage 

latch TranEXE

Last_req

Last_ack

start

end No_zero

Data

Next_req

Next_ack

Data

Zero_req

Zero_ack

 

Figure 8 The protocol in execution stage. 

We can see the pseudo-code in the latch unit shown below : 

In Latch Unit :
Initial : end = 0, last_ack = 0,
When last_req=1 then

if (start=1) … EXE Unit has finished previous operation {
transmit the data to EXE Unit;
last_ack = 1;
end =1;  }

else 
don’t do any operation,wait for EXE Unit finish.

When last_req = 0 then 
last_ack = 0 ;  

The last two lines in the pseudo-code is used for four-phase data-bundled communication. 

 The tran unit is used to communicate with next-stage and PC Controller and waits for 

the acknowledge signals (next_ack and zero_ack) from them. As soon as the tran unit 

receives the two control signals, it will send the self_reset control signal to reset the latch 

unit and exe unit. The pseudo-code in the tran unit is shown below : 
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In Tran Unit :
Initial : next_req = 0, zero_req=0, self_reset = 1,
If ( last_ack = 1 && zero_ack = 1 )

self_reset = 0; ( EXE block : start set 1 )
do initial operation except for self_reset;

Elsif ( last_ack = 0 && zero_ack = 0)
if ( no_zero = 1 ) {

do transmit operation;
last_req = 1;
zero_req = 1;

}
self_reset = 1;

Elsif
self_reset = 1;

End if;  

ALU

Shifter

MUL

DIV

Data

start

end no_zero

Data

Control signals for 
MEM&WB stage

 

Figure 9 The exe unit in AMIPS architecture. 

The main function of the exe unit is to execute instructions. The details of the exe unit 

can be seen in Figure 9. The exe unit receives dual-rail data and the control signals from 

the latch unit. There are four kinds of functional units within the exe unit: integer ALU, 

integer multiplier, shifter and integer divider. 

 We have one advantage in the AMIPS design. There is one bottleneck in most 

processor no matter it is synchronous processor or asynchronous processor. That is because 

it has slowest process in execution stage. But in the AMIPS design, it uses delay 

insensitive (DI) method to implement. So AMIPS has good performance. 
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2-7 Design of the Memory Access and Writeback stage 

In this stage, our intention is to combine the Memory Access stage with Writeback 

stage together. Although the two stages are separated in synchronous processor which will 

load the data to Register Bank through Writeback stage, the design assumes that Memory 

will communicate with Register Bank directly. To prove this, we first examine the protocol 

of Memory Access and WriteBack stage (MEM&WB stage). 

MEM&WB

start

end

Data

Next_req

Next_ack

Data
WB

Mem_req

Mem_ack

Load/Store 
WB
Addr
Data

Part I : For Register Bank.

Part II : For Memory.  

Figure 10 The details of MEM&WB unit. 

 In Figure 10, two parts are included in the MEM&WB unit. Part I is register-type 

instructions which directly write the data calculated in the execution stage to Register Bank. 

Thus, only two signals, data and WB, are sent to Register Bank.  

 Part II is memory-type instructions in which control signals, load and store, are used 

to communicate with memory. Besides, load and store include the “byte enable” 

information for memory, which is used for Register Bank. If the instruction to be processed 

is a load instruction, data of address in memory will be loaded to Register Bank. If it is a 

store instruction, the given data will be stored in memory. The detail architecture of 

MEM&WB stage is shown in Figure 11. 
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Figure 11 The details architecture of MEM&WB stage. 

2-8 Design of the Memory File 

 The MIPS R2000/3000 processors have a physical addressing range of 4 Gbytes (32 

bits) and provide a full-featured memory management (MMU) unit that uses an on-chip 

Translation Lookaside Buffer (TLB). MMU can provide very fast virtual memory accesses.  

However, we don’t design the MMU in our AMIPS and instead, we use a “Memory File” 

to replace the MMU and virtual memory. 

However, the Register Bank receives only one request sent either from the 

MEM&WB stage or from the Memory File when an instruction is given at a time 

according to the MUX component in Figure 1. 

last_ack

last_req

addr [32]

Load/Store [5]

wb [8]

Data [32]

Memory
File

Register
Bank

MEM&WB
stage

next_req

next_ack

data [32]
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Figure 12 The details architecture of memory file. 
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 In real world, we don’t have the asynchronous memory but it doesn’t matter. Because 

of processor and memory have different clock domain in asynchronous design. So we use 

the asynchronous memory to replace the synchronous memory in our AMIPS design. 

After understanding the architecture of AMIPS processor, we can see the details of 

execution stage and MEM&WB stage in Figure 13. 
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Figure 13 The details of Execution stage and MEM&WB stage 
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3. Validation of the AMIPS 

In this section, firstly,  we validate the AMIPS at stage level, that is, check the 

correctness of each stage individually. Secondly, we validate the AMIPS at instruction 

level, that is, check the correctness of the instruction one by one. Finally,  we validate the 

AMIPS at program level with some restrictions. 

3-1 Validation at Instruction Level 

The validation result at instruction level is summarized in Table 1. The number of 

special instructions is zero because we ignore the exception handling. All of the results of 

these checks and tests match the expected functionality.  

Name Instruction Format Number Percentage (%) 
MIPS 

AMIPS R-type instructions. 28 
26 92.85% 

MIPS 
AMIPS I-type instructions. 28 

28 100% 

MIPS 
AMIPS J-type instructions. 2 

2 100% 

Table 1: Compare with MIPS and AMIPS. The table is categorized by instruction format. 

3-2 Validation at Program Level 

The format of our instruction file is one instruction per line ( in decimal machine code) 

and it is a pure text file. How do we get this kind of instruction file? The method that we 

use is shown in Figure 14. We use the complier, assembler and linker to generate the 

executable file and the S-record file. Then we use a program (rdsrec) of pmon toolset to 

generate the disassembled file. The goal of the rdsrec program is to read a Motorola 

S-record file and then it disassembles the file to standard output or a file. The disassembled 

file contains the format that we need. Finally, we use filter to generate the wanted 
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instruction file. Finally, we can feed the AMIPS with instruction file. 

test program
*.c

Complier

Assembler

LinkerLibraries

S-Record
*.rec

Executable
File

pmon toolset
(rdsrec)

Disassembled 
code
*.txt

Filter

Instruction File
instruction.txt

Memory File
memory.txt

AMIPS

 

Figure 14: The generation method of the instruction file. 

We write a sort program to validate the correctness of the AMIPS. We put unsorted 

data in memory file and also write the sorted result to memory file. And then we can check 

the sorted result to validate the correctness of the AMIPS. 

We also count the number of instructions that AMIPS executed when we run the sort 

program by choosing different numbers of unsorted data, which are 20, 50 and 100. And 

the results accord with our expectation. It is summarized in Table 2. We also write two 

small programs: one is binary searching program and the other is Fibonacci program. We 

run the binary searching program by choosing different numbers of unsorted data, which 

are 20, 50 and 100. And the results accord with our expectation. It is summarized in Table 

3. We run the Fibonacci program by choosing different numbers of unsorted data, which 

are 5, 20 and 40. And the results accord with our expectation. It is summarized in Table 4. 

Number of Unsorted Data Instruction Count Sorted Result 
20 4365 Correct 
50 28867 Correct 
100 116244 Correct 
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Table 2: The number of unsorted data and its corresponding instruction count. (sort program) 

Number of sorted Data Instruction Count Searched Result 
5 32 Correct 
20 56 Correct 
100 80 Correct 

Table 3: The number of sorted data and its corresponding instruction count. (binary searching program) 

Number of Fibonacci Series Instruction Count Result 
5 47 Correct 
20 167 Correct 
40 327 Correct 

Table 4: The number of Fibonacci series and its corresponding instruction count. (Fibonacci program) 

The above validation methodology is not good enough and it has some disadvantages. 

For example, the AMIPS cannot run big programs like benchmarks. It is because that the 

benchmarks always use the OS services (like File I/O). The solution of this problem is that 

the AMIPS should provide the interfaces for detection of the OS services. And the OS 

services can be done by C++ language. It is shown in Figure 15. We don’t implement the 

interfaces yet. However, after implementing the interfaces, the AMIPS will be more 

complete. 

Instruction File
instruction.txt

AMIPS
OS Services 
Input

OS Services 
Output

interfaceinterface

 

Figure 15: The solution of the OS services problems. 

4. Conclusions 

In this paper, we design a proposed asynchronous processor AMIPS by using 
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SystemC HDL. We validate the correctness of each component locally. We also validate 

the correctness of the AMIPS at the instruction level and program level.  

The AMIPS is the first prototype so we have some more things to do in the future. For 

example, we do not do the RTL synthesis yet since we do not have tools. Also, we have to 

design the asynchronous multiplier and divider. However, with this design, we can study 

some issues about the asynchronous architecture. 
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