|CS2002

(1) Workshop of Computer Systems
(2) Title: The Design of Asynchronous Processor
(3) Abstract

Asynchronous processors have become a hew aspect of modern computer architecture
research in these years. An asynchronous processor is by no means synchronized by global
clock. However, it employs communication protocols doing synchronization instead.
Basically, in contrast with synchronous processors, asynchronous processors possess
certain advantages while definitely encounter new challenges. Therefore, we were
interested in asynchronous processor, and we desired to design it thus.

In this paper we design an asynchronous processor based on the MIPS R2000
instruction set architecture. Specifically, we accomplish the design of an asynchronous
processor named Asynchronous MIPS (AMIPS), and it is implemented by SystemC. The
SystemC is a hardware description language like Verilog, which contains C++
object-oriented featuresin it.

Finally, we check the AMIPS by each and almost every instruction, and also test it by
several programs coded by us. All of the results of these checks and tests match the
expected functionality.

(4) Authors. Chang-Jiu Chen, Chih-Chiang Shiu and MenShu Wu

Department of Computer Science and Information Engineering

National Chiao Tung University

1001 Ta Hsueh Road, Hsinchu City

{ cichen,jcsheu,mswu@csie.nctu.edu.tw}

(03)573-1922, (0939)881-362, fax: (03)572-4176
(5) Contact author: Chang-Jiu Chen, (03)573-1922, (0939)881-362, fax: (03)572-4176
(6) Keywords: asynchronous circuit, asynchronous processor, AMIPS

The Design of Asynchronous Processor
Chang-Jiu Chen, Chih-Chiang Shiu and M en-Shu Wu

Department of Computer Science and | nformation Engineering
National Chiao Tung University

Abstract

Asynchronous processors have become a new aspect of modern computer architecture
research in these years. An asynchronous processor is by no means synchronized by global
clock. However, it employs communication protocols doing synchronization instead.
Basically, in contrast with synchronous processors, asynchronous processors possess
certain advantages while definitely encounter new challenges. Therefore, we were
interested in asynchronous processor, and we desired to design it thus.

In this paper we design an asynchronous processor based on the MIPS R2000
instruction set architecture. Specifically, we accomplish the design of an asynchronous
processor named Asynchronous MIPS (AMIPS), and it is implemented by SystemC. The
SystemC is a hardware description language like Verilog, which contains C++
object-oriented featuresin it.

Finally, we check the AMIPS by each and almost every instruction, and also test it by
several programs coded by us. All of the results of these checks and tests match the
expected functionality.

Keywor ds: asynchronous circuit, asynchronous processor, AMIPS

1. Introduction

The goal of this paper is to design an asynchronous processor. Firstly, the motivation
of designing the asynchronous processor is depicted in this section. Then we introduce
asynchronous processor by contradicting it with synchronous processor. Finaly, it is the

related work.

1-1 Motivations

Asynchronous architecture is a new research topic in computer architecture[4,7].
There are several asynchronous processor prototypes announced in the past years. Recently
asynchronous architecture develops quickly and it solves the global clock and power
dissipation problems. Asynchronous processor has the better performance and power
dissipation in real world today. However, in the past, if we want to design the real chip, we
must design the simulator first. Recently the design flow is changed by the Hardware
Description Language (HDL) based on high-level language, like the SystemC[1,2].

SystemC is a high-level language based on C/C++. It provides the fast design flow
and object-oriented HDL, which is useful to integrate the simulator and real chip design
flow. SystemC is a C++ class library and a methodology that we can use to effectively
create a cycle-accurate model of software algorithms and hardware architecture[1]. We can
use SystemC and standard C++ development tools to create a systemlevel model, quickly
simulate to validate and optimize the design, explore various algorithms, and provide the
hardware and software development team with an executable specification of the system.
SystemC supports hardware-software codesign and the description of the architecture of

complex systems consisting of both hardware and software components. It supports the

2

description of hardware, software, and interfaces in a C++ environment.
So we try to design an asynchronous processor based on the MIPS R2000[8]

processor by using SystemC.

1-2 Introduction to Asynchronous Processor s

All present computers are synchronous. They process instructions according to an
internal timing device that regulates processing. The synchronous design way is widely
taught and understood such that most available designs are synchronous. Synchronous
designs indeed provide high performance but have a series of problems can't be solved
easily. As systems grow increasingly large and complex, clock may cause big problems
with clock skew. It means a timing delay between several parts of system and may
introduce logical error. To avoid clock skew, the clock tree should be placed early and
several routing algorithms are needed. It increases the difficult of circuit design and we
need more silicon area in the system so that the cost of each die is increased, too. It also
leads to more power dissipation and overheating, and this kind of processors won't be
suitable for handing devices and mobile computing in the modern applications.

To overcome such limitations, computer architecture researchers are actively
considering asynchronous processor design. Instead of global clock, in an asynchronous
architecture, each stage communicates with each other by some protocol. Without global
clock, asynchronous architecture can permit modular design, exhibits the average
performance of all components rather than worst-case performance of single component,
and reduced power dissipation [11].

On the other hand, asynchronous processor has easier implementation in the design of

System On Chip (SOC) than synchronous has. That's because we must consider the
different clock domain between several components in SOC. For years, industry has many
activities engaged in asynchronous design, and makes important progress. For example,
Intel includes asynchronous design in decoding unit of processor. The asynchronous design

approach is becoming viable and important, even though many efforts remains to be done.

1-3 Related Work

Like synchronous processors, asynchronous processors can execute instructions in
pipeline. “Micropipelines’, proposed by Sutherland[10], is an event-driven elastic pipeline.
In this approach, either rising or falling transition of signal is called an event, which has the
same meaning of circuits. The event control the actions of the whole pipeline, and data
transfer between two stages is using two-phase bundled data interface. Data must be
bundled with the “Request’ control line to avoid errors. Then the receiver accepts the data
by sending back an “ Acknowledge” event.

The conceptual framework of micropipelines is the foundation of asynchronous
architecture research. It demonstrates how to control the pipeline by employing protocol
instead of using traditiona clock. By the way of micropipelines, we can make the pipelines
“elastic”. That means the number of instructions in the pipeline can vary with machine
states when execution. AMIPS supports micropipelines, and it increases ILP.

D. K. Arvind et al. [3] defined a model called Micronets for decentralizing control in
asynchronous processor architectures. An execution unit may have severa function units
such as shifter, multiplier, and ALU. Micronets describes how a control unit controls

distributed functional units and gains the advantage through spatial concurrency in

microagents within one pipeline stage.

Four-phase data bundled communication protocol is developed by the AMULET
research group[5,6,12]. AMULET is a famous implementation of asynchronous ARM
architectures. In 1994 the first release of AMULET is announced. This method proved that
to design an asynchronous processor is possible. Furthermore, it indeed provides the
advantage that the design can be implemented modularly. A series of research of AMULET
is redly inspirationa to the asynchronous designers. Four-phase data-bundied
communication is used by AMIPS.

There are three types of representation of data for asynchronous processor design[9].
They are single-rail, dual-rail and 1-of-N for representation of data. In dual-rail and 1-of-N
design for asynchronous processor, they are data independent (DI) for design. And no

matter which oneit is, they have good points for each other.

Dud-rail codes are the most widely used form of 1-of-N codes for constructing
asynchronous systems. The dual-rail code is a 1-of-2 code, employing two wires to encode
each hit; alogic one is represented by raising one of the two wires high, a logic zero by

raising the other wire high.

In the execution stage of AMIPS, we use the dual-rail to represent data. We must
transmit the data to next stage. If we use the 1-of-N to represent data, we must transfer
them and decode them again. It causes the additional circuitry to decode. If we use the
dual-rail to implementation, we only need to transmit them in 2-bit codeword. We don’ t
need additional circuitry to decode them. So we use the dual-rail to represent our data

communication.

In this paper, we illustrate the design of the AMIPS in section 2. We introduce the

validation of AMIPS in section 3. And finally brief conclusions are discussed in section 4.

2. Design of the Proposed AMIPS

In this section, we will illustrate the detailed design and architecture of the AMIPS.

2-1 Overview of the AMIPS

The overall architecture of the AMIPS is shown in Figure 1. We use the instruction
and memory files instead of thick frames (instruction and data memory). We doni't design
cache for smplicity as well. The format of instruction file is one instruction per line and
the content of the instruction is decimal representation. The format of memory file is one
location per line and the content of the location is “mem_addr=mem vaue’. So we
combine instruction memory and instruction fetching stage to form our real |IF stage. The

dotted line represents the concept.

PC controller

o ./ A A

Me mojr y
Accegss |/
WritpBack
Stape

L]
[}
]
]
1
Il nstf@cllnstfudl nstpfpuc
[3 .

CFetc-h-u-bFDecod-i-bFExecru—t-b
St ap Stape Stape

[]

[]

[]

[]

[]

]

! Il nst
[]

H Me mojr y
[]

[]

[]

[]

[]

[]

[]

]
]
[
)
)
)
’
'

Dat

Register Fil qe— MUXd€— Me m

Figurel: Theoveral architecture of the AMIPS,

ry

2-2 Design of the | F Stage

The detailed interfaces of the IF stage are shown in Figure 2. It has the PC for
fetching instruction from instruction file. The IF stage fetches instruction from instruction
file by the value of PC in common, but when the i nstr_val i dis ‘true’, the IF stage
must change the value of PC to i nstr _addr and fetch the instruction from instruction
file by the new value of PC. The situation occurs when the prior instruction is a branch or
jump instruction which is taken. After the IF stage fetched the instruction, the IF stage
sends the instruction and PC to the ID stage by using next req, i nstruction, pc
and next _ack ports. Ther eset port lets the IF stage return to the initial circumstance

and it is low-enabled.

o

control |l ¢r

—
—
PIEA 1SUl [——
boi Jsul j——| O

= >3
i EBE,
§§: l nstrujcti on
Decodilng

IF neXt_—r—e—q» Stage
St agel nstrw

pcC <ﬂ

next |k

Figure2: Theinterfaces of the IF stage and the interconnections between the | F stage, the PC controller and
the ID stage.

2-3 Design of the ID Stage

The design of the ID dage is shown in Figure 3. The ID stage (decode module) is

divided into three sub-modules. decode |atch, decode stage and

decode_conpl et e.

After fetching one instruction and sends the data to the ID stage, the decode latch
sub-module checksthevalue of | ast _req and st art ports. If both of them are *true’,
the decode _latch sub-module latches data, at the same time, it also sends data and control
signal (end = ‘true’) to the decode stage sub-module and also sends control signal
(I ast _ack = ‘true’) to the IF stage. This indicates the data had latched and the IF stage
can reset the communication protocol signals and the IF stage can start the next
transaction.

After the decode latch sub-module sends the data and control signal (end) to
decode_stage sub-module, the decode stage sub-module performs the decoding action by
using data from decode latch sub-module and sends decoded results to the
decode_complete sub-module. The decode_stage sub-module also sends the control signal
(start = ‘fase’) to the decode latch sub-module. This indicates the ID stage is in
working so that the decode _latch sub-module can't latch data from the | F stage.

The decode_stage sub-module also sends the control signal (ho_zer o = ‘true’) to
decode_complete sub-module. The signal can combine the next _ack and ot her _ack
signals to determine the control signal (sel f _reset =‘true’ orsel f _reset ='fase’)
and sends decoded data to the EXE stage and the PC controller. We use the value
(low-enabled) of sel f _reset to reset the decode |atch and decode_stage sub-modules.

And then we get another instruction from the IF stage and next iteration starts.

PC controllfr
PO
g
Al y 1 1y
8 o S 9)
g jodecodq st a@l%g g
g g modulle “lg I
§_ (decode_stagge’*l) 8
o
l% st g start
Q
Q
=
e dat g nNo_Z2e+=opl no_zemeX t——epy
2 > dat &
] "
daj&xedut e
|% ") Stape
% en » end Vv
=0
=
| F |l ast _rpq nextlaask
St a T -
PR § &5 & decode_dompl—et=
V] g Sy S modul g
< last_apk * 8% 8 (decode_kdgmpletel)
‘' Nd
| D Stage(dé ’S‘e"gdU'E)
|

Figure3: The brief interfaces of the ID stage and the interconnections between the IF stage, the ID stage, the
PC controller, the EXE stage and the register file.

After explaining the communications in the sub-modules, we show the detailed
interfaces of the ID stage and interconnections of the IF stage, the ID stage, the PC
controller, the register file and the EXE stage. It is shown in Figure 4. If it has to read the
values of register, it usesther eg_* and val _* ports to get the values from register file.
The br anch port indicates the instruction whether it is a branch instruction. The j unp
port indicates the instruction whether it is ajump instruction. The pc_out port equals to
the pc_i n that is from the IF stage. The t ar get port indicates the target address if the
instruction is taken. The above ports are available when the instruction is ajump or branch
instruction.

The operati on port tells the EXE stage to perform a kind of actions. The

oper andl and oper and2 are the operands of the action that the EXE stage performs.

The wb_reg port is the register specifier which writes back to register file. The
| wsw ct| port is the 5-bit control word for load and store instructions. The

st or e_dat a port is only available when the instruction is a store instruction.

£ a
g2
EU)
IYYWYY YY)
Y
- = ™ = - o
T EEEEEEEIE
branch JEEERSSE g o
- taken E22EFELEE 2 =
taken & o 8 2% B, E
R pe_out - E= E
= |- target Eaos g 58 8585 S8 5
£ > s e e —oog e 8 L E o
= other_ack 2o 829 B éﬂ 5 g =] 3
5 =2 = 8 5 = |
= 1f_reset 5 5 % S‘ g g' §§ EoE _q;_; 2
55 8 = Iz 3
E R - = g8 & 8 E = % —
IYYYWYIYY) .lan
- 1 1 B
S © 5 2 232398 Ewg S val_req
2.5 FEIEEREE S5 09 vavahel @ o
5% 5552 S g8 € g valvame [=
2E 2 = val_ack > =
§ - s g reg_req - n’:"
S = = &
p{self. o g reg_idx1 >
o [5 B = B reg_idx2 |
g B - = reg_ack [~
A A
—
L
2
Y
=]
=] g R - B =
= 2% = 5 al g
=
= 5 2
B {sel = €8 |2
Psclf_reset 83533
I —— decode_latch module (decode_latchl) Z E] go
Y Y Y

-
<

IF
Stage

Figure4: Theinterfaces of the ID stage and the interconnections between the | F stage, the ID stage, the PC
controller, the EXE stage and the register file.

2-4 Design of the PC controller

The PC controller gets the necessary information from the ID stage and EXE stage
and sends the correct value of PC to the IF stage. The PC controller is used to handle the
branch and jump instructions. The detailed interfaces of the PC controller are shown in
Figure 5. The PC controller (pc_control |l er module) has three sub-modules:
pc_decode_| atch,pc_exe_latchandpc_sel ector.

The behavior of the pc_decode latch and pc_exe latch sub-modules is the same as

10

the decode_latch sub-module introduced in section 2-3. After pc_decode_latch sub-module
latches the information from the ID stage, the pc_selector sub-module gets the information
(is_branch,is_junp,taken, pc andtarget address) through port interfaces
and sets the signal correct _address_ready to ‘true’. After pc_exe laich
sub-module latches the information from the EXE stage, the pc_selector sub-module gets
the information (i szer o) through port interfaces and now it has enough information
(is_branch,is_junp,takenandi szer o) tosetthevaluesof i nstr_val i d and
i nstr_addr ports. After sendingthei nstr_val i d andi nstr_addr to the IF stage,
the pc_selector sub-module resets the signal correct _addr ess_r eady to ‘false’ for

the next instruction.

pc_controller modul e
. pc_selelcpor
plinstr_ack modul e
-t instr _v id | ¢ 1
SltFﬂ instr_-g_odr B (pc_se qrert)
a< instr _®& &q Q'Sv’| =
P ¢ £EBQ 2es
-§%g_%‘%5|§ i S5 2
g8gesoeg = T
AAAA AL ? Al‘l
Y v
: T Es0a 7 358
& %fﬁi?g‘;-'gﬁ B 288
. B 3
5 %i 2 pc_exe]llatch
BB modul
%liol 5 (pc_exg_|[latchil)
-8-8 @ c £
888 35 _<=50¢
% o R T ?EI ¥ 58
8 8 8483 3%¢% -
= 2N éw‘:ﬂ 5§ o
g & 208 T Y s
A AAAAL A A
Y y
I'D Stage EXE St @§ge

Figureb5: Theinterfaces of the PC controller and the interconnections between the | F stage, the ID stage, the
PC controllers and the EXE stage.

11

2-5 Design of the Register File

The register file consists of 32 general-purpose 32-bit registers (rO ~r31) and two
32-hit registers (LO and HI) that hold the results of integer multiply and divide operations.
The detailed interfaces of the register file are shown in Figure 6. The register file

(reg_fil e module) hastwo sub-modules.reg wt | atchandreg_rdw _acti on.

I D Stage
A AbA
YVv v L
- = S s reg_wt|_ Illat|ch
= = <22< = -
E8Ea 22 § modul
Bggg gl ° | h1
X X cc r e W a Cc
ANBEE A Em st fr—t—p st.:-grt V\Igr—lt Leq Datg

Iglemory

e

e

reg_rdwt _alkytieqgeret-leyt e _drydlel et

modul e wb _rlelg=——| wb_r egb_r|lee ME M/ W&
bt

(reg_rdwt ,adti pet3— data dat Stage
@
enpg—— end ™ writ

Bl b

reg_file|lmodule A

Figure6: Theinterfaces of the register file and the interconnections between the ID stage, the PC controller
and the data memory (or the MEM/WB stage).

After designing the IF stage, the ID stage, the PC controller and the register file, we

must put it all together and it is shown in Figure 7.

12

pc_controller modul e

) pc_selec¢tor
»li nstr_ack modul 6
instr_agdr » (pc_sellelctor1)
instrovalid B
instrorgeq Q§g| g -
[5Eh o] o
=] 1]
frazaag ¢ g8
IYYYWY L A
v vy (v
= § 8o, = o a
B oagssczd |[E 248
3
R
5 % % pc_exdg [l atch
BB modulfe
‘§|§8| £ (pc_exle| 1l atch1)
BE§ 48 50w
— <
(' f§~5|5'§°“| xS g
& g Bgugsts Bof
85 208 I
IYYYYY AL
/
V* y 1y
8 8 “0'-"3’—'—0'9.
g - g—~decod¢_st|p pogcs
B s _stgegatass g
® 2 modul| e gy Bs Bz
Qm m(decode sta%El)
g_ . r ap-e=h—p| branch_in
I(.D st o start i unt > i ump in
2 takfer—®] taken_in
S ¢ . ; pct_ =P pCc_out _in
glns ‘LH.G»IFIS I’UCarI‘On targetiir
E No_f-et—age| NO_zenex f—ia Execut bk
il operpes=epploper andie Pi Stage
\ AR g‘ pc > pc oOpe iRl oper anadpRe fumdauigp
- =5 = Q 0P € Mudmbuip D P ET ATA [DE (i
g 3 BE3 12 Wb _ fmemgeppl Wb 1 e gwb njmetep
lélﬂilil: g en P end | g] | WS W Clt WS Veiomiph
QE.'-g g St OF (Guumipfsd O € _SOt 80t I fmuimiiih-
] | t nex tla-p-st
PP ost8ge > 2t - 1 55 decode bdm
(fetchi myd uv'”S““«"Ong@&Qa -fF9qme
pc pc_in g'a'—«_, 'g%%'-‘ modul 4
nextlea last _afck JXKEE XRRE (decode _|cpmy
ID Stage (dkklddehdbodul e)
YYvy y
~=o - <5% . reg_wt|_lIfat
BEEd Ty g modulle
== IS& S ol re
RRRE Scood (reg_wt |l a
N St pr—t—P|startwrit|qgde Dat al
reg_rdwt ot b femeslbyt e_byak |jdnres Mgfr“‘”y
modul e Wb _r[eg=——| wb_rewb rder—| L
(reg_rdwtg{adan data dat || st agl
(g en end ™ wri te—a-ak
g g
reg_filel module A

Figure7: The complete interconnections of the | F stage, the ID stage, the PC controller and the register file.

13

2-6 Design of the Execution Stage

Last req . start Zero'_req
Data Data Zero_ack
EC latch : EXE : Tran Next req
- Next_ack

Last ack end No_ zero

Figure 8 The protocol in execution stage.

We can see the pseudo-code in the latch unit shown below :

In Latch Unit :
Initial : end =0, last_ack =0,
When last_reg=1 then
if (start=1) ...EXE Unit hasfinished previous operation {
transmit the data to EXE Unit;
last ack = 1;
end=1; }
else
don't do any operation,wait for EXE Unit finish.
When last_req = 0 then
last_ ack=0;

Thelast two linesin the pseudo-code is used for four-phase data-bundled communication.
Thetran unit is used to communicate with next-stage and PC Controller and waits for

the acknowledge signals (next_ack and zero_ack) from them. As soon as the tran unit

receives the two control signals, it will send the self reset control signal to reset the latch

unit and exe unit. The pseudo-code in the tran unit is shown below :

14

In Tran Unit :
Initial : next_req =0, zero_req=0, self_reset = 1,
If (last_ack=1&& zero_ack=1)
self_reset =0; (EXE block : start set 1)
doinitial operation except for self reset;
Elsif (last_ack =0 && zero_ack =0)
if (no_zero=1){
do transmit operation;

last_req=1,
zero req =1,
}
self reset =1,
Elsif
self reset =1,
End if;

' Control signasfor L
— | MEM&WB Stage
e NETIE S e
— St |

[

Figure 9 The exe unit in AMIPS architecture.

The main function of the exe unit is to execute instructions. The details of the exe unit
can be seen in Figure 9. The exe unit receives dual-rail data and the control signals from
the latch unit. There are four kinds of functional units within the exe unit: integer ALU,
integer multiplier, shifter and integer divider.

We have one advantage in the AMIPS design. There is one bottleneck in most
processor no matter it is synchronous processor or asynchronous processor. That is because
it has slowest process in execution stage. But in the AMIPS design, it uses delay

insensitive (D1) method to implement. So AMIPS has good performance.

15

2-7 Design of the Memory Accessand Writeback stage

In this stage, our intertion is to combine the Memory Access stage with Writeback
stage together. Although the two stages are separated in synchronous processor which will
load the data to Register Bank through Writeback stage, the design assumes that Memory
will communicate with Register Bank directly. To prove this, we first examine the protocol

of Memory Access and WriteBack stage (MEM&WB stage).

Part | : For Register Bank.

start N A—

— { [Next_req |
—— Data |
—— WB

Data

|:> +— Next_ack

MEM&WB Mem_req
{ [Load/Store !
——— WB |
— Addr
—— Data

— «~—— Mem ack |
end
Part Il : For Memory.

Figure 10 The details of MEM&WB unit.

In Figure 10, two parts are included in the MEM&WB unit. Part | is register-type
instructions which directly write the data calculated in the execution stage to Register Bank.
Thus, only two signals, data and WB, are sent to Register Bank.

Part Il is memory-type instructions in which control signals, load and store, are used
to communicate with memory. Besides, load and store include the “byte enable”
information for memory, which is used for Register Bank. If the instruction to be processed
isaload instruction, data of addressin memory will be loaded to Register Bank. If itisa
store instruction, the given datawill be stored in memory. The detail architecture of

MEM&WB stage is shownin Figure 11.

16

LatchUnit MEM&WB Unit
Last req
— <—
Start next_req
| ddriz2 addr [32] data[64] Register
data [64] data [64] whb[§] Bank
— - >
‘__
Execution next_ack
sta‘;e Control [5] Control [5] mem req
T — — =p
wh (8] wh [8]
-4 5 > Load/Store[5] L,
Wil L, | Memory
addr[3] | | File
Data[32]
- — T
Last_ack 2 end Y mem_ack
reset T Self_resetl

Figure 11 The details architecture of MEM&WB stage.

2-8 Design of the Memory File

The MIPS R2000/3000 processors have a physical addressing range of 4 Ghytes (32

bits) and provide a full-featured memory management (MMU) unit that uses an on-chip

Trandation Lookaside Buffer (TLB). MMU can provide very fast virtual memory accesses.

However, we don’ t design the MMU in our AMIPS and instead, we use a“Memory File’

to replace the MMU and virtual memory.

However, the Register Bank receives only one request sent either from the

MEM&WB stage or from the Memory File when an instruction is given at a time

according to the MUX component in Figure 1.

MEM&WB
stage

last_req
>

Load/Store [5]
—_—
wb[8]
addr [32]

Data[32]

—
last_ack

Memory
File

Figure 12 The details architecture of memory file.

next_req
_—
Byte enable [4]
—_

whb [8]

data[32]

—
next_ack

Register
Bank

17

In real world, we don't have the asynchronous memory but it doesn’t matter. Because
of processor and memory have different clock domain in asynchronous design. So we use
the asynchronous memory to replace the synchronous memory in our AMIPS design.

After understanding the architecture of AMIPS processor, we can see the details of

execution stage and MEM& WB stage in Figure 13.

18

queg
Insideyg

-—
[Py wep
-—
gl 9
-—
[f] areus a4g

XNN

,ﬂtm&u:um [_
ﬁﬁﬁu Y

8591

o' Jxou Jor jse] o waw
—_— > > ¢
. T olmlema | [zleea
[zg] emp < -
—| lzg] v lzs] wpe
Bl | frowopy | « .
— [8] g HES =
[] 21qema 23dg 4 o bitud iy |
[g] aseigppeoT [c] arigppeoT *
_ > _ o [g] qm
barxsu baijsey bar wow -—
[¢] feuopy (] g
or o OB Jx0u R EE—
» [Sl1enmop
— S
. [g]aa [a] g [p9] erep [15] erep
o e . Lk FAETE fz¢] wpe
R AN
[y arqps ifg bar pxau oS
+ —_— —
barjxau barjse
U MBI U goRe]

3B M BPINAN

TATIOTO.)
od

4

10581 08 wsar
e yxon oz 0N y pua Jor 58]
» «— «—
Beff ong -— +
— 8] s 18]
bai onz [8] am
— [¢] apoado [c] apoads
OB JxaU [¢] rommon [S —
—> l¢] pawer) [T oue)y
—
[8] g (€] wrepaseng
I, e
(€] oo [ze) 14714]
[ze] e o103
deff onz [z€] 1970do 5
— —
fec erep aioig [es v s [2€] 07 10 e
[y e [pglapsa lecl 0d ode feclode
- — +——
barjxou 1E)S baryseq
) weI] TNAXE WUN PR

a3e1S UoNNoAXy

a3e8
Bmpo2a(|

Figure 13 The details of Execution stage and MEM& WB stage

19

3. Validation of the AMIPS

In this section, firstly, we validate the AMIPS at stage level, that is, check the
correctness of each stage individually. Secondly, we validate the AMIPS at instruction
level, that is, check the correctness of the instruction one by one. Finaly, we vdidate the

AMIPS at program level with some restrictions.

3-1 Validation at Instruction Level
The validation result at instruction level is summarized in Table 1. The number of
special instructionsis zero because we ignore the exception handling. All of the results of

these checks and tests match the expected functionality.

Name Instruction Format Number |Percentage (%)
AMI\/II IIDF?S R-type instructions. gg 92.85%
AMI\/II IIDF?S I-type instructions. gg 100%
AMI\/II IIDF?S J-type instructions. g 100%

Table 1: Compare with MIPS and AMIPS. Thetableis categorized by instruction format.

3-2 Validation at Program L evel

The format of our instruction file is one instruction per line (in decimal machine code)
and it is a pure text file. How do we get this kind of instruction file? The method that we
use is shown in Figure 14. We use the complier, assembler and linker to generate the
executable file and the Srecord file. Then we use a program (rdsrec) of pmon toolset to
generate the disassembled file. The goa of the rdsrec program is to read a Motorola
S-record file and then it disassembles the file to standard output or afile. The disassembled

file contains the format that we need. Finally, we use filter to generate the wanted

20

instruction file. Finally, we can feed the AMIPS with instruction file.

test pgrogram

Complij er

-

Execu
——> Fil e

—

Figure 14: The generation method of the instruction file.

Di sasslem AMI P S
S- Reclor code
. refc * Ot x|t

Assemle\f—\ D

Li br alri.s Linkd

ction
ction.

Me mo r Fil e

abl memor .t xt

We write a sort program to validate the correctness of the AMIPS. We put unsorted

datain memory file and also write the sorted result to memory file. And then we can check

the sorted result to validate the correctness of the AMIPS.

We also count the number of instructions that AMIPS executed when we run the sort

program by choosing different numbers of unsorted data, which are 20, 50 and 100. And

the results accord with our expectation. It is summarized in Table 2. We aso write two

small programs. one is binary searching program and the other is Fibonacci program. We

run the binary searching program by choosing different numbers of unsorted data, which

are 20, 50 and 100. And the results accord with our expectation. It is summarized in Table

3. We run the Fibonacci program by choosing different numbers of unsorted data, which

are5, 20 and 40. And the results accord with our expectation. It is summarized in Table 4.

Number of Unsorted Data | Instruction Count Sorted Result
20 4365 Correct
50 28867 Correct
100 116244 Correct

21

Fil e
t xt

Table 2: The number of unsorted data and its corresponding instruction count. (sort program)

Number of sorted Data Instruction Count | Searched Result
5 32 Correct
20 56 Correct
100 80 Correct

Table 3: The number of sorted data and its corresponding instruction count. (binary searching program)

Number of Fibonacci Series| Instruction Count Result
5 47 Correct
20 167 Correct
40 327 Correct

Table 4: The number of Fibonacci series and its corresponding instruction count. (Fibonacci program)

The above validation methodology is not good enough and it has some disadvantages.
For example, the AMIPS cannot run big programs like benchmarks. It is because that the
benchmarks aways use the OS services (like File 1/0). The solution of this problem is that
the AMIPS should provide the interfaces for detection of the OS services. And the OS
services can be done by C++ language. It is shown in Figure 15. We don't implement the

interfaces yet. However, after implementing the interfaces, the AMIPS will be more

complete.
i on Fil e
i on. t xt
i nterface interface
OS Ser pVyJg clels AMI PS OS Serpi ces
OQut pujt l nput

Figure 15: The solution of the OS services problems.

4. Conclusions

In this paper, we design a proposed asynchronous processor AMIPS by using

22

SystemC HDL. We validate the correctness of each component locally. We also validate

the correctness of the AMIPS at the instruction level and program level.

The AMIPS is the first prototype so we have some more things to do in the future. For

example, we do not do the RTL synthesis yet since we do not have tools. Also, we have to

design the asynchronous multiplier and divider. However, with this design, we can study

some issues about the asynchronous architecture.

Refer ences

[1]
[2]
[3]

[4]

[5]

[6]

[7]

[8]
[9]

SYSTEMC Version 2.0 Beta-2 User’s Guide, 1996.

Describing Synthesizable RTL in SystemC, Version 1.0, May 2001.

D. K. Arvind et a. “Micronetss A Mode for Decentralising Control in
Asynchronous Processor Architectures,” Asynchronous Design Methodologies,
Proceedings, Second Working Conference, pp. 190-199, 1995.

A. Davis and Steven M. Nowick. An Introduction to Asynchronous Circuit Design.
Technical Report UUCS-97-013, Department of Computer Science, University of
Utah, Sep. 1997.

SB. Furber, P. Day, JD. Garside, N.C. Paver and J.V. Woods, “AMULET1: a
micropipelined ARM,” Compcon Spring '94, Digest of Papers, pp. 476-485, 1994.
S.B. Furber, JD. Garside, P. Riocreux, S. Temple, P. Day, Janwei Liu and N.C.
Paver, “AMULET?2e: an asynchronous embedded controller,” Proceedings of the
|EEE, \Vol. 87, Issue 2, pp. 243-256, Feb. 1999.

S. Hauck. Asynchronous design methodologies: an overview. Proceedings of the
IEEE, 83(1): 69-93, Jan. 1995.

G. Kaneand J. Heinrich. MIPS RISC Architecture. Prentice Hall, 1992.

D.W. Lloyd and JK. Garside, “A Practicad Comparison of Asynchronous Design

23

[10]

[11]

[12]

Styles,” Seventh International Symposium on, Asynchronous Circuits and Systems,
pp. 36-45, 2001.

I.E. Sutherland, “ Micropipelines,” Communications of the ACM, \ol.32, No.6, pp.
720-738, June 1989.

T. Werner and V. Akella, “ Asynchronous processor survey,” |EEE Computer Vol 30,
Issue 11, pp. 67-76, Nov. 1997.

J.V. Woods, P. Day, S.B. Furber, J.D. Garside, N.C. Paver, S. Temple, “AMULET1:
an asynchronous ARM microprocessor,” Computers, |IEEE Transactions on

Computers, Vol. 46 Issue 4, pp. 385-398, Apr. 1997.

24

