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Abstract 
Undesirable or obnoxious facility location 
problems are the most active research areas with 
location theory in recent years. In this paper, we 
consider the problem of locating a single 
obnoxious facility in the continuous plane, where 
the location of the facility is restricted to be 
outside a specified forbidden region around each 
demand point. The objective of this problem is to 
minimize the sum of the weighted rectilinear 
distances from the demand points to the facility. 
We propose an efficient approach for finding the 
near-optimal facility location based on a 
well-known optimization procedure, genetic 
algorithms. Experimental results are presented to 
illustrate the feasibility of the proposed approach. 
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1. Introduction 

One of the most active research areas within 
location theory in recent years is to deal with the 
location of undesirable or obnoxious facilities [1, 
3, 5, 15, 17]. A so-called undesirable or 
obnoxious facility is that if it may cause lower 
quality of life or pose a serious danger to the 
individuals living nearby. Examples of obnoxious 
facilities include nuclear power plants, solid 
waste repositories, chemical incinerator, etc. For 
the location of a single obnoxious facility, the 
most frequently used objective is to find a 
location within a feasible region that maximizes 
its minimum distance with respect to all existing 
facilities. This is referred to as the maximin 
criterion [2, 10]. On the other hand, the maxisum 
criterion involves the maximization of a weighted 
sum of the distances from the obnoxious facility 
to all the demand points [2, 10]. For a general 
overview of the maximin and maxisum criteria 

for locating single or multiple facilities, the 
interesting reader may refer to Erkut and Neuman 
[7]. 

Brimberg and Wesolowsky [2] described a 
mathematical model for locating a single 
obnoxious facility on a continuous plane, which 
considers transportation costs between the facility 
and a set of demand points, as well as social costs 
arising from the undesirable characteristics of the 
facility. Two main features of the model include 
the following: (1) A standard minisum objective 
function is used to measure the transportation 
costs, while the social costs are included 
implicitly in the lower bound constraints 
associated with the model that force the facility 
location to be outside a specified forbidden 
region around each demand point; (2) The model 
adopts the rectilinear norm to measure the 
distances. The distance metric is applicable since 
the travel between facilities can be approximated 
by the rectilinear paths. Moon and Chaudhry [14] 
also considered the above type of formulation, 
but only applied it to a discrete setting. Examples 
of location in the presence of forbidden regions 
were discussed in Hamacher and Nickel [9], and 
Buchanan and Wesolowsky [4], etc. 

Although varieties of approaches have been 
proposed for solving the problem of locating 
obnoxious facilities in the plane, the best 
selection of a site is still a complex problem. In 
this paper, we adopt the assumption and model 
proposed by the Brimberg and Wesolowsky [2], 
and we use genetic algorithms to find the best 
facility locations. Genetic algorithms (GAs) [6, 8, 
12, 13] are robust computational and stochastic 
search procedures modeled on the mechanics of 
natural genetic systems. GAs act as a biological 
metaphor and try to simulate some of the 
processes observed in natural evaluation. GAs are 
well known for their ability by efficiently 
exploiting the historical information to improve 
search performance and GAs have the following 

 



advantages over traditional search methods: (1) 
GAs directly work with a coding of the parameter 
set; (2) search is carried out from a population of 
points; (3) payoff information is used instead of 
derivatives or auxiliary knowledge; and (4) 
probabilistic transition rules are used instead of 
deterministic ones [8]. GAs are gradually finding 
applications in various fields, such as 
combinational optimization [6], machine learning 
[16], and image processing [11]. 

The paper is organized as follows: In Section 
2, we formulate the obnoxious facility location 
problem in the literature and present the GA 
approach. The example and computational results 
are given in Section 3. The conclusions are 
summarized in Section 4. 

2. The Problem Formulation and 
Proposed Approach 

2.1. Mathematical model  

The minisum criterion of an obnoxious facility 
location problem using rectilinear distances is 
stated as follows: given a two-dimensional region 
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where 

● w is the minisum objective function, 

● d  is the rectilinear distance between 
the new facility to be located at  and 
existing demand point i located at 

, i.e.,  
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● v  is a specified nonnegative weight which 
converts the distance traveled from demand 
point i to the new facility into a 
transportation cost, and  

i

● r nii  , ,2 ,1for    ,0 K=> , represents a 
specified lower bound on the distance 
separating demand point i from the new 
facility. 

Alternatively, by using the sign function 
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for all real values of the scalar variables s and t, 
the Eq.(1) can be rewritten as follows: 
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Using this model, Brimberg and Wesolowsky [2] 
presented an O  algorithm to solve the 
rectilinear distance minisum problem with 
infeasible regions. Konforty and Tamir [10] also 
focused on the same model and proposed an 

)( 3n

)log( nnO  algorithm to solve the problem. Here, 
we provide an alternative way and adopt the 
robust search method of genetic algorithm to 
solve this problem. 

2.2 Genetic Algorithm 

Genetic algorithms (GAs) are randomized search 
and optimization techniques guided by the 
principles of evolution and natural genetics, and 
have a large amount of implicit parallelism. They 
provide near optimal solutions of an objective or 
fitness function in complex, large, and 
multimodal landscapes. In general, a GA contains 
a fixed-size population of potential solutions over 
the search space. These potential solutions of the 
search space are encoded as binary or 
floating-point strings and called individuals or 
chromosomes. The initial population can be 
created randomly or based on the 
problem-specific knowledge. In each iteration, 
called a generation, a new population is created 
based on a preceding one through the following 
three steps: (1) evaluation: each individual of the 
old population is evaluated using a fitness 
function and given a value to denote its merit, (2) 
selection: individuals with better fitness are 
selected to generate next population, and (3) 
mating: genetic operators such as crossover and 
mutation are applied to the selected individuals to 
produce new individuals for the next generation. 
The above three steps are iterated for many 

 



generations until a satisfactory solution is found 
or a terminated criterion is met. The standard GA 
procedure is described in the following 
pseudocode: 

t ← 0 
Randomly generate a population P(t) 
Evaluate each member in P(t) 
while (the termination criterion is not met) do 

  begin 
t ← t + 1 
select P(t) from P(t-1) 
recombine P(t) 
evaluate each member in P(t) 

  end 

When we use a GA to solve a problem, we 
must consider the following components: (1) a 
genetic representation of solutions to the problem, 
(2) one way to create the initial population of 
solutions, (3) an evaluation function that rates all 
candidate solutions according to their “fitness”, 
(4) genetic operators that alter genetic 
composition of children during reproduction, and 
(5) control parameters (e.g., population size, 
crossover and mutation rates) [13]. 

A. Solution representation 

A real-coded GA is a GA that uses 
floating-point numbers to represent genes [13]. In 
our utilization of GA to find proper facility 
location, the coordinates of a facility are 
real-coded and represent an individual. Since 
each location has two coordinates, the length of 
the individual is 2p, where p is the number of 
facilities. 

B. Initial population 

A GA requires a population of potential 
solutions to be initialized at the beginning of the 
GA process. Usually, the initialization process 
varies with the applications. Here, we randomly 
select a point from the rectangular region 
contains all demand points and associated 
forbidden areas as the facility location until all 
population members are created. 

C. Fitness function 

A fitness function is the survival arbiter for 
individuals. Since the objective of the problem is 
to minimize the sum of the weighted rectilinear 
distances from the demand points to the facility, 
the fitness function is just defined as the same as 
Eq.(4),  
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where  and (  represent the location 
of the facility and the demand point, respectively, 
and  is a specified nonnegative weight. 
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.D. Genetic operators 

Three primary genetic operators: selection, 
crossover, and mutation are generally used in 
GAs. 

˙Selection 

The selection operator determines which 
individuals are chosen for mating and how many 
offspring each selected individual produces. Two 
reproductive strategies are commonly used. 
Generational reproduction replaces the whole 
population in each generation, but steady-state 
reproduction only replaces the less-fitted 
members in a generation. 

There are several schemes for the selection 
process. Baker compared various selection 
methods comprehensively, and presented an 
improved version called stochastic universal 
sampling (SUS) method [13]. The SUS method is 
an optimal sequential selection algorithm. All 
surviving individuals are simultaneously 
determined in a single traverse of the population. 
A SUS procedure is described by the following C 
code: 

ptr = Rand( ); 
for(sum = i =0; i < N; i++) 
  for(sum += ExpVal[i]; sum > ptr; ptr++) 
    Selection_individual(i); 

The Rand( ) returns a random real number 
between 0 and 1, N is the number of individuals 
in a population, and ExpVal[i] represents the 
expected value of individual i and the value is 
used to indicate the average number of offspring 
that individual should receive [13]. Here we 
adopt the steady-state reproduction and the SUS 
method in the proposed approach. 

˙Crossover and Mutation 

Crossover and mutation operators are applied 
with different probabilities and play different 
roles in the GA. Crossover is aimed to increase 
the average quality of the population. On the 
other hand, mutation is needed to explore new 
areas of the search space and helps the algorithm 
avoid sticking in local optima. The One-point 
crossover and Gaussian mutation schemes [13] 



are adopted in the proposed approach. 

The Gaussian mutation works as follows: 

ppp ×±= αˆ , (6) 

where p is the existing gene value in an 
individual,  is the mutated gene, and p̂ α  is a 
real number selected from a Gaussian distribution 
with zero mean and standard deviation 0.1. If the 
mutation process generates gene values outside 
the valid range of the gene, the gene value will be 
reset to the lower or upper value of the 
initialization range of that gene. 

E. Control parameters 

The population size influences the performance 
of GAs. A small-sized population reduces the 
evaluation cost but results in premature 
convergence, because the population provides 
insufficient samples in the search space. For a 
large-sized population, the GA can gain more 
information to search better solutions because the 
population contains more representative solutions 
over the search space. However, more 
computations are needed in a large-sized 
population, and this situation possibly results in 
an unacceptably slow rate of convergence. 

Both crossover and mutation probabilities 
also influence the performance of GAs. In order 
to get better performance, a few additional tries 
are performed to find more appropriate values for 
these desired GA control parameters in the 
proposed approach. 

3. Experiments 

In order to test the feasibility of the proposed 
approach, we use it to solve the following 
example. The problem deals with five demand 
points. The locations of each demand point, the 
specified weight and lower bound on the distance 
separating demand point from the facility are 
shown in Table 1. The parameters of GA used in 
the experiments are as follows: (1) the generation 
number is 3000, (2) the population size is 50, and 
(3) the probability of crossover is 0.85. 

The five demand points and the near-optimal 
solution are indicated by the circle and square as 
shown in Fig.1. The forbidden region associated 
each demand point is also shown in Fig.1. We 
can find that the facility location is at (7.0005, 
2.9988), and the total distance is 16.2549. 
Although the proposed approach achieved similar 
result that obtained via the branch-and-bound 

method [2]; however, the former is more efficient 
than the latter. Since the constraint associated 
Eq.(1) defines a nonconvex feasible region, it 
results in Eq.(1) cannot be expressed as a linear 
program [2]. Brimberg and Wesolowsky divided 
the plane into many rectangular cells by drawing 
horizontal and vertical lines through each 
demand point, and then to find the optimal 
solution. On the contrary, the proposed approach 
does not need any additional process. 

Table 1. Input Data for Sample Problem 

i (xi, yi) ri vi 

1 (2, 3) 2 1 
2 (4, 4) 1.5 1 
3 (5.5, 3.75) 2.25 1 
4 (7, 6) 1.5 1 
5 (8.25, 2.25) 1.25 1 

 

 
Fig. 1. Five demand points, forbidden regions, 

and facility location is obtained by the 
proposed approach. 

 

4. Conclusions 

In this paper, an obnoxious facility location 
problem was solved by the proposed GA 
approach. The problem deals with locating a 
single facility in the plane in order to minimize a 
weighted sum of distances between the facility 
and a set of demand points. The problem 
possesses a constraint that the location of the 
facility is restricted to be outside a specified 
forbidden region around each demand point. The 
experimental results reveal that the proposed 
approach provides a simple but effective way to 
solve the obnoxious facility location problem. 

 



Further work of applying the proposed approach 
to the Euclidean versions of these problems is in 
progress. 
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