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Abstract 

In most two-dimensional random walk models, the directions of a mobile station or subscribe moving out of a 

cell are assumed to be independent and identical distributed. The mobility patterns obtained from such a model may 

be less sufficient and less effective to measure the performance of cellular networks. This paper presents a new 

normal walk model to provide a more realistic and more versatile mobility patterns. This model mainly utilizes an 

equivalent drift angle with normal distribution to determine the next moving-out direction in a hexagonal cellular 

network.  

The experimental results demonstrate that if let the standard deviation of drift angles, σ, be 71°, a normal walk 

could almost behave as a random walk. With three different σ, 15°, 30°, and 60°, the results show that the errors 

between the analysis values and the simulation values are all within ±0.75%, even ±0.5% for most test cases. Our 

normal walk model can be effectively used for evaluating the performance of cellular networks, based on those 

more realistic and more objective mobility patterns. 

Key words: mobile station or subscriber, cellular networks, mobility patterns, random walk model, normal walk 

model. 
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I. Introduction 

In cellular or personal communication services (PCS) networks, the networking performance is significantly 

affected by the way the network managing the mobile stations or subscribes (MS). Hence designing the networking 

strategies for: location updating (LU), paging, cell and location area layout, and radio resource arrangement, often 

need mobility models to evaluate the performance. That is, the mobility patterns play a critical role in measuring 

and analyzing the performance of cellular networks. Especially, if the walk model is less realistic or even unrealistic, 

the research results and conclusions would be less accurate or even invalid [3, 5, 11]. 

The two-dimensional (2-D) random mobility models are still extensively used in most existing analytic or 

simulation-based studies of cellular networks. The major applications utilizing those walk models include modeling 

microcell/macrocell PCS networks [1], modeling distance-based LU [1, 6, 7, 11] and movement-based LU [2, 11], 

modeling GPRS mobility management [1], pre-fetching/caching location-dependent data [9, 10], and tracking MS 

movements [12]. 

Next, we briefly state the mobility assumptions used by those authors. Akyildiz et al. [1] develop an analytical 

model for the new 2-D random walks based on [2], in which the moving probability for each direction is assumed 

to be uniform distributed. Tseng and Hung [8] also let the moving probability be uniform distributed in their 

analytical random walk model improved from [1]. The authors of [4, 6, 11] design a non-equal (i.e., non-uniform 

and also not normal distributed) moving probability used in their simulation-based random walk model. Especially, 

the design of the turning probabilities in [4] is completely based on the street layout. Tsai and Jan [7] utilize a 

rotation angle to determine the next moving direction, either going straight or turning back. The probability 

distribution for this angle is assumed to be normal, used in their analytical mobility model.  Tuan et al. [9, 10] 

define a simulation-based model for normal walks in a mesh cellular network, in which an equivalent drift angle is 

used for deciding the moving-out direction, and the probability of this drift angle is also normal distributed, 

originated in [7]. 

As described above, in most random walk models, the directions of an MS moving outside a cell are assumed to 

be independent and identical distributed. The mobility patterns obtained from such a model may be less sufficient 

and less effective to investigate the performance of cellular networks. Even though some simulation-based mobility 
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models use non-equal probabilities developed under specific considerations, we think such a simulation-based 

model still needs to be validated by a corresponding analytical model. 

The purpose of this paper is to present an analytical model for the new normal walks used in the hexagonal 

cellular networks. The mobility patterns based on this normal walk model could be more realistic and more 

versatile for examining the performance of cellular networks. We also expected that a normal walk based on this 

model could nearly behave as a random walk, if let the standard deviation of drift angles, σ, be 71°. That is, the 

movement behavior of this normal mobility model under above σ could simulate that of the random mobility 

model. On the other hand, with different σ, the errors between the analysis values and the simulation values would 

be consistently all within ±0.75%, even smaller for most test cases.  

The major method for our model is to develop an equivalent drift angle with normal distribution and to confine 

the limit of each moving-out direction according to the geometric shape of a hexagonal cell (see Fig. 1a). Then the 

drift angles could be utilized to determine the next moving-out direction when an MS handoffs or handovers within 

a hexagonal cellular network.  

We expect that utilizing this normal walk model to measure performance of those applications as described 

previously, like modeling LU and modeling location areas, would be more effective and more objective than 

utilizing a random walk model. 

The remainder of this paper is organized as follows. Section II illustrates the new normal walks for hexagonal 

cellular networks, and describes the extended cell type classification. Section III validates the normal walk model 

with the performance comparisons, based on the macro-based state diagram. Finally, section IV concludes some 

research results in this paper.  

II. The Hexagonal Normal walks 

Most two-dimensional (2-D) random walk models supposed that an MS moves into anyone of neighboring cells 

with equal probability, i.e., with probability 1/6.  Hence, in the hexagonal random walk model, an MS is initially at 

the center of cell, and then the MS moves out of the current cell randomly via one of six absolute directions 

separated by 60°. As a result, in next movement, which cell an MS will visit is independent of the current cell the 

MS resides. Such a movement trace with high mobility may occur occasionally but not frequently, if contrasted 
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with the daily movements of people. 

A. The new normal walks. 

Based on the habit of people daily moving, we consider that the probability of an MS moving straight or front is 

often larger than that of moving via other directions, including U-turn, because most trips follow the shortest-path 

(namely, pseudo-linear routes) [7]. A drift angle, θ, is defined as a equivalent moving angle within one cell, by 

which the direction of an MS moving out of a cell could be determined. We further assume that the probability 

distribution of the equivalent drift angle, θ, approaches “normality”, with a zero mean (μ= 0°) and a standard 

deviation, σ (unit in degree); namely, ),0(~ 2σθ oN .  Such a walk that uses a normal drift angle to decide the 

next moving-out direction is called “normal walk model”. 

In our walk model, we assume that the inlets/outlets of a cell are located at the middles of six sides on a cell, 

which are marked ‘×’ in Fig. 1a. Thus the rules of an MS moving outside a cell are as follows. First, an MS initially 

resides at some inlet/outlet of a cell. Next, the MS depends on a new normal drift angle to determine one of six 

relative moving-out directions, including moving straight or front ( F
r

), turning front-right ( rF
r

), turning front-left 

( lF
r

), turning right ( R
r

), turning left ( L
r

), and turning back ( B
r

, i.e., U-turn). Last, the MS moves out of the cell via 

the selected direction as shown in Fig. 1b.  

For facilitate computing the probability of θ, the θ can be standardized into Z with the converting formula,  

σ
θ

=Z , where Z represents a standard normal random variable, i.e., )1 ,0(~ NZ . The pdf (probability density 

function) of Z and the corresponding cdf (cumulative distribution function) of Z are as follows: 2/2

2

1
)( zez −⋅=

π
ϕ  

and ∞<<∞⋅=Φ ∫
∞−

zdyyz
z

-  where,)()( ϕ , respectively.  

Hence the probabilities of an MS moving outside a cell via different directions could be obtained by (1) and (2). 

First, Fig. 1a shows that the limit of each moving-out direction is confined to two angles. The confined angles, 

angF, angFl, and angL could be easily computed with substituting the expression, r = R × cos30°, where r and R 

denote the inner radius and outer radius, respectively, as shown in Fig. 1a. Formulas for calculating confined angles 

are as follows: 
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Fig. 1. Layout of a hexagonal cell.  (a) Limits of 6 moving directions. (b) 6 moving equivalent paths. 
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Then, with (1) and (2), the moving probabilities of a normal walk could be derived, e.g., let σ be 30°, thus 
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The all six moving-out probabilities as shown above are obviously not equal; however, the probability of turning 

right/front-right equals that of turning left/front-left, and also the summation of all probabilities must be one. Since 

the Φ(z) is function of the σ, changing the σ will lead to changing the moving-out probabilities. Naturally, the 

smaller the σ is, the larger the probability of moving front, ],Pr[ σF
r

, is. Fig. 2 demonstrates that changing the 

σ could cause different styles of movement patterns or trajectories. It is clearly that the smaller the σ is, the 

broader the trajectory of an MS moving in a cellular network is. 
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σ = 15°

σ = 30°

σ = 60°

Normal Walk Model

 

Fig. 2. Examples of the normal walk trajectories under σ = {15°, 30°, 60°}. 

B. The extended cell type classification. 

Fig. 3 depicts a 6-layer hexagonal cellular cluster with (n2 + n)/2 cells (where n = 6). The cell at the center of the 

cluster is unique and called “central cell” or layer-0 cell. The cells that embraces the layer-(x – 1) are referred to as 

“inner cells” or layer-x cells, where 1 ≤ x < n – 1. Moreover, as x = n – 1, the cells at the most outer layer are called 

“border cells” or layer-(n – 1) cells. Especially, the cells embracing the border cells are termed as “boundary cells”, 

which are outside of the cluster. Except the central cell is only one in layer-0, each layer-x contains 6x cells, e.g., the 

layer-2 consists of 12 cells, which are shadowed at the second ring in Fig. 3. 

  Following Akyildiz et al.’s cell type classification, a 6-layer cluster is partitioned into six equal pie-shape 

regions (pie-region) by three axes, L1-L3, separated by 60° as shown in Fig. 3. The equivalent cells will be 

assigned type 〈x, y〉, if cells are in layer-x and are at the relative y + 1st position on different pie-regions. This type 

classification significantly reduces the number of states of an n-layer random walk cluster from (3n2 + 3n – 5) to (n2 

+ n)/2, and efficiently speed up measuring the performance of analytical walk models. 
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Fig. 3. An n-layer hexagonal cellular network, for n = 6. 

Here, we extend the above classification method to be adapted for our normal walk model. In other words, 

afterclassifying all cells with type 〈x, y〉 (where 0 ≤ x < n and 0 ≤ y < x), we further add side indices, is (where 0 ≤ s 

< 6), to each of the typed cells. Afterwards, each side on a cell will be indexed as 〈x, y, is〉, where the order of is is 

from i0 to i5 in a counter-clockwise direction. This extended classification could facilitate modeling an n-layer 

cellular cluster for normal walks as shown in Fig. 4., and it will be described in detail later. 

The basic correlation between any both neighboring sides, 〈x, y, is〉 and 〈x’, y’, it〉, on the same pie-region is that s 

= mod6(t + 3) (where the modn denotes a modulus-n function), e.g., both 〈4, 2, i0〉 and 〈5, 2, i3〉 are neighboring sides. 

The other basic correlation between both 〈x, y, ia〉 and 〈x, y, ib〉 sides on the same cell is stated as below. 

 First, let },,,,,{][ LlFFrFRBkDir
rrrrrr

=  where 0 ≤ k ≤ 5, i.e., each member of Dir[k] represents one of six 

moving-out directions (see Fig. 1b). Next, suppose the path of an MS moving through a cell is from the 〈x, y, ia〉 

side to the 〈x, y, ib〉 side (i.e., from the ia inlet to the ib outlet on the 〈x, y〉 cell) via the kth direction. Thus the value 

of ib could be derived from the expression, b = mod6(a + k), if ia and k are given. Here, we assume that the ib side, 

an MS will reach in next step via the kth direction, is function of the ia side, the MS resides at now; namely, the next 

side, ib, is independent of any cell sides that the MS visited previously. For example, if an MS moves from the 〈4, 2, 

i4〉 side and towards the front-right ( rF
r

, k = 2), then the MS will reach the 〈4, 2, i0〉 side (or the neighboring 〈5, 2, 

i3〉 cell) after one step. 
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Fig. 4. The extended type classification with side indices for a 6-layer cellular cluster. 

For classifying cells, Definition 1 indicates when cells on different pie-regions are equivalent and could be 

classified with the same cell types 〈x, y〉. 

Definition 1: Two cells, Ci and Cj, are considered as “equivalent”, if and only if, the multiset of side indices for 

Ci‘s neighboring sides equals that for Cj‘s neighboring sides, in corresponding order. 

The extended type classification for an n-layer normal walk cluster is described in Stage 1 and 2, based on the 

algorithm in [1]. Through the steps in Stage 1, all the equivalent cells on different pie-regions are assigned same 

types 〈x, y〉, where x and y denote that cells are at the y + 1st position in layer-x. Steps in Stage 1, required for 

assigning cell types, are shown as below. 

Step 1.1) For the central cell in layer-0, it is assigned type 〈0, 0〉.   

Step 1.2) In layer-x (where 1 ≤ x < n), identify the cells that are unmarked and are adjacent to 〈x – 1, 0〉 cells 

being labeled in layer-(x – 1), and then assign them with the type 〈x, 0〉. Thus the last six unmarked cells 

will be typed as 〈n – 1, 0〉 in this recursive step. 

Step 1.3) If the cells neighboring to 〈x, y – 1〉 cells in the same layer-x (where 2 ≤ x < n and 1 ≤ y < x) are still 
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unmarked, then assign them with the type 〈x, y〉 recursively in the clockwise direction. Thus the last six 

marked cells are typed as 〈n – 1, n – 2〉 in this step. 

Next, Stage 2 further assigns the side indices (SI) for all cells, typed as 〈x, y〉 in Stage 1, through the following 

steps. For clarifying the expressions as below, the symbol i[k] is same as ik, and the value of ik is equal to k. 

Step 2.1) For the 〈0, 0〉 cell, its six sides are indexed as 〈0, 0, i0〉, because its all neighboring cells are of the same 

type 〈1, 0〉. 

Step 2.2) For 〈x, 0〉 cells (where 1 ≤ x < n), find the unmarked sides that are adjacent to the marked 〈x – 1, 0, i0〉 

sides in layer-(x – 1), and then assign them with the index 〈x, 0, i[mod6(i0 + 3)]〉, i.e., 〈x, 0, i3〉. 

Then find sides that are unmarked on 〈x, 0〉 cells, and then sequentially index them as 〈x, 0, i[mod6(i3 + 

s)]〉 from s = 1 to s = 5 in the count-clockwise direction. Thus the multiset of SI on 〈x, 0〉 cell is {〈 x, 0, i3〉, 

〈 x, 0, i4〉, 〈 x, 0, i5〉, 〈 x, 0, i0〉, 〈 x, 0, i1〉, 〈 x, 0, i2〉} in the order indexed. 

Step 2.3) For 〈x, y〉 cells (where 2 ≤ x < n and 1 ≤ y < x), find the unmarked sides that are neighboring to the 

marked 〈x – 1, y – 1, i5〉 sides in layer-(x – 1), and then index them as 〈x, y, i[mod6(i5 + 3)]〉, i.e., 〈x, y, i2〉. 

Then assign the unmarked sides on 〈x, y〉 cells with the index 〈x, y, i[mod6(i2 + s)]〉 from s = 1 to s = 5 in 

the count-clockwise direction. Hence the multiset of SI on this cell is {〈 x, y, i2〉, 〈 x, y, i3〉, 〈 x, y, i4〉, 〈 x, y, 

i5〉, 〈 x, y, i0〉, 〈 x, y, i1〉} in the order indexed. 

For an n-layer normal walk cluster, It is easy to examine that the extended classification algorithm possesses the 

following properties. 

1) For the 〈0, 0〉 central cell, if n > 1, the 〈0, 0〉 cell’s neighboring sides are all same and indexed as 〈1, 0, i3〉. If n 

= 1, its neighboring sides are all outside the cluster and indexed as “Boundary 〈0, 0, i0〉”. 

2) For a 〈x, 0〉 inner cell (where 1 ≤ x < n – 1), the multiset of SI for its neighboring sides is {〈x + 1, 0, i3〉, 〈x + 1, 

x, i3〉, 〈x, x – 1, i4〉, 〈x – 1, 0, i0〉, 〈x, modx(1), i[mod6(1+ 1/x)]〉, 〈x + 1, 1, i2〉}. 

For example, let x = 1, the multiset of SI for 〈1, 0〉 cell’s neighboring sides is {〈2, 0, i3〉, 〈2, 1, i3〉, 〈1, 0, i4〉, 

〈0, 0, i0〉, 〈1, 0, i2〉, 〈2, 1, i2〉}. 

3) For a 〈x, y〉 inner cell (where 2 ≤ x < n – 1 and 1 ≤ y < x), the multiset of SI of its neighboring sides is {〈x + 1, 

y, i3〉, 〈x, y – 1, i4〉, 〈x – 1, y – 1, i5〉, 〈x – 1, modx-1(y), i[mod6(y/(x – 1))]〉, 〈x, modx(y + 1), i[mod6(1 + (y 
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+ 1)/x)]〉, 〈x + 1, y + 1, i2〉}. 

For instance, if x = 3 and y = x – 1, the multiset of SI for 〈3, 2〉 cell’s neighboring sides is {〈4, 2, i3〉, 〈3, 1, 

i4〉, 〈2, 1, i5〉, 〈2, 0, i1〉, 〈3, 0, i2〉, 〈4, 3, i2〉}. 

4) For a 〈n – 1, 0〉 border cell (where n > 1), the multiset of SI for its neighboring sides is {〈 n – 1, n – 2, i4〉, 〈n – 

2, 0, i0〉, 〈n – 1, modn–1(1), i[mod6(1 + 1/(n – 1))]〉, Boundary 〈n – 1, 0, i0〉, Boundary 〈n – 1, 0, i0〉, 

Boundary 〈n – 1, 0, i0〉}. 

For example, if n = 6, the multiset of SI for 〈5, 0〉 cell’s neighboring sides is {〈5, 4, i4〉, 〈4, 0, i0〉, 〈5, 1, i1〉, 

Boundary 〈5, 0, i0〉, Boundary 〈5, 0, i0〉, Boundary 〈5, 0, i0〉}. 

5) For a 〈n – 1, y〉 border cell (where n > 2 and 1 ≤ y < n – 1), the multiset of SI for its neighboring sides is {〈n – 

1, y – 1, i4}〉, 〈n – 2, y – 1, i5〉, 〈n – 2, modn-2(y), i[mod6(y/(n – 2))]〉, 〈n – 1, mod n-1(y + 1), i[mod6(1 + 

(y + 1)/(n – 1))]〉, Boundary 〈n – 1, y, i0〉, Boundary 〈n – 1, y, i0〉}. 

For instance, let n = 6 and y = n – 2, the multiset of SI for 〈5, 4〉 cell’s neighboring sides is {〈5, 3, i4〉, 〈4, 3, 

i5〉, 〈4, 0, i1〉, 〈5, 0, i2〉, Boundary 〈5, 4, i0〉, Boundary 〈5, 4, i0〉}. 

The above properties and examples demonstrate that the extended type classification algorithm satisfies 

Definition 1. Also, the one-step probability of moving outside Ci equals that moving outside Cj if the starting and 

arriving sides, 〈x, y, ia〉 and 〈x, y, ib〉, for both movements are same. 

III. Performance measuring and comparisons 

For a random walk model in [1], a typed cell corresponds to a state. However, for our normal walk model, a state 

is matched with an indexed side (inlet), based on the extended type classification. In the state-transition diagram, 

depicting all states, including absorbing ones, associated with probabilities may be too complicated for this model. 

Here, we develop a two-level state, macrostate and microstate, for clarifying the diagram. The new macro-based 

state transition diagram of a 6-layer cellular cluster for normal walks is shown in Fig. 5. 

A. The macro-based state diagram.  

A macrostate (x, y) is an abstract state, and it just denotes that an MS resides one of the 〈x, y〉 cells through some 

side (inlet). Such a macrostate, excluding the central state (0, 0) and absorbing states (6, z), could be further split 
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State-transition diagram with marcostates
  for a 6-layer hexagoanal normal walk model.
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Fig. 5. The macro-based state-transition diagram for a 6-layer cellular cluster. 

into at most 6 microstates (x, y, is), where 0 ≤ s ≤ 5, as shown in Fig. 6.  

A microstate (x, y, is) is a physical state, and it represents that an MS visits the 〈x, y〉 cell through the 〈x, y, is〉 side, 

i.e., the is inlet on the 〈x, y〉 cell. A microstate (n, z, i0) is absorbing one; also, it means that an MS moves out of the 

n-layer cluster through one of the 〈n – 1, z, is〉 sides. 

The actual number of microstates, mx,y, within one (x, y) macrostate equals the number of unique indexed sides 

(inlet) through which an MS can move into the 〈x, y〉 cell, e.g., m0,0 = 1, m2,1 = 6, and m5,2 = 4 (see Fig. 5). Since an 

indexed side matches to a microstate, the total number of microstates, S(n), is equal to nm yx
x

y

n

x
+∑∑

−

=

−

=
,

1

0

1

1
, i.e., 

)1)(13()( −−= nnnS . Table 1 lists the number of microstates for different typed cells. For example, in a 6-layer 

cellular cluster, the S(n) is 85; in contrast, the number of macrostates, SM(n), is only 21, because SM(n) = (n2 + n)/2. 

Supposed that Probx,y[k] represents the probability of an MS moving out of a 〈x, y〉 cell from the is inlet to the it 

outlet via the kth moving direction, belongs to },,,,,{][ LlFFrFRBkDir
rrrrrr

= . For a (x, y) macrostate, Probx,y[k] 

naturally corresponds to the one-step transition probability that the system shifts outside the (x, y) macrostate from 

the is microstate via tth outlet, and Probx,y[k] = {Bs, Rs, Frs, Fs, Fls, Rs} where 0 ≤ s, t, k ≤ 5 (see Fig. 6). Thus if the  
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Fig. 6. Example of a macrostate comprising 6 microstates. 

is (inlet) and it (outlet) are known, then the Probx,y[k] can be decided by the expression, k = mod6(t – s + 6), 

bywhich all one-step probabilities for any one macrostate, Pm(x, y), could be obtained. For instance, pm(2, 0),(x’, y’, is’) 

is for a 〈2, 0〉 cell as shown in Fig. 7, in which the 〈x’, y’, is’〉 sides are neighboring to the 〈x, y, it〉 sides. 

Table 1. The number of microstates/macrostates for a 〈x, y〉 cell. 

Cell types: (a) Microstates, mx,y (b) Macrostates (a) × (b) 

Central cell, 〈0, 0〉 × 1  1 1 

Inner cells, 〈x, y〉 × 6  (n – 1)(n – 2)/2 3(n – 1)(n – 2) 

Border cells, 〈n – 1, z〉  × 4 or × 3 (for z = 0)  (n – 1)  4(n – 1) – 1 

Boundary cells, 〈n, z〉 × 1 (n – 1) (n – 1) 

Total of microstates: S(n) = (3n – 1)(n – 1). 

If let ),,(),,,( ss iyxiyxp ′′′  be the probability that an MS moves from 〈x, y, is〉 side to 〈x', y', is'〉 side after one step, 

then ][ ),,(),,,( ss iyxiyxpP ′′′=  is the one-step transition probability matrix of the n-layer cluster for normal walks. 

Since the system has S(n) microstates, the size of matrix P is S(n) × S(n). However, in matrix P, only n elements 

are constant, 0.1),0,1(),,0,0( 30
=iip  and 0.1),,(),,,( 00

=izniznp , and the remainders are function of σ.  
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Fig. 7. One-step transition probabilities only for one macrostate, e.g., pm(2, 0),(x’, y’, is’). 

The order of members listed in each rows and columns of matrix P corresponds to that of microstates listed by 

the following algorithm. 

1. First, list the central state, i.e., (0, 0, i0). 
2. Next, list all inner microstate, (x, y, is), as follows: 
     for x = 1 to (n – 2) do 
        for y = 0 to (x – 1) do 
           for s = 0 to 5 do 
              list (x, y, is). 
3. Then, list the border ones: 
     for y = 0 to (x – 1) do 
        for s = 1 to 4 do 
           list (n – 1, y, is), if existed. 
4. Last, list the absorbing states, (n, y, i0): 
     for y = 0 to (n – 2) do  

list (n, y, i0). 

Furthermore, for k = 1, (3) defines ][ ),,(),,,(,
)(

ss iyxiyxk
k pP ′′′=  as the probability that an MH moves from 〈x, y, 

is〉 side to 〈x', y', is'〉 side after k steps.  







>×

=
= − 1 ,

1              ,
)1(

)(

for kPP

for kP
P k

k                                     (3) 

Thus ),,(),,,(, 0ijniyxk s
p  in (4) denotes the probability that an MH initially resides at a 〈x, y, is〉 side, and then 

moves outside a n-layer cluster through the 〈n –1, j, it〉 side. Later, we will evaluate the performances of a 6-layer 

cellular cluster for normal walks by using ),,6(),,,(, 0ijiyxk s
p . 







>−

=
= − 1  ,

1                           ,

)1(
),,(),,,(

)(
),,(),,,(
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p k
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k
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ijniyx
ijniyxk

ss

s

s
                    (4) 
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B. The performance analysis and comparisons.  

For validating the analytical normal walk model, we define two evaluation factors, yxS ,  and zT ,5 , based 

on the equations Akyildiz et al.’s propose in [1]. First, yxS ,  represents the expected number of steps that an MH 

initially resides at a specified 〈x, y〉 cell, and then the MS leaves out of a 6-layer cluster through anyone of 〈5, j〉 

border cells (where 0 ≤ j < 5). 

In contrast to yxS , , define yxS ,
~

 in (5b) as the simulation values with M = 1,500,000 experimental trials, 

which are used to validate the analysis ones, yxS , , with 200 truncated terms to approach the infinite summation. 

yxk j
ijiyxk

s
yx m

pkS
s

,1

4

0
),,6(),,,(,

5

0
,

1
0

⋅⋅= ∑ ∑ ∑
∞

= = =
.                        (5a) 

∑
=

⋅=
M

i
yxyx is

M
S

1
),(, )(~1~

.                                 (5b) 

Next, let zT ,5  represent the other expected number of steps that an MH initially resides at anyone of 〈x, y〉 cells 

(where 0 ≤ x < 5 and 0 ≤ y < x – 1) and then leaves the 6-layer cluster through a specified 〈5, z〉 cell. Be similar to 

(5a) and (5b), we define and calculate the simulation values, zT ,5
~

, in (6b) to validate the analysis values, zT ,5 .  

In (5a) and (6a), the 1/mx,y acts as a weight factor, where the mx,y is defined as previously. 

yxk x

x

y
iziyxk

s
z m

pkT
s

,1

5

0

1

0
),,6(),,,(,

5

0
,5

1
0
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∞

= =

−

= =
.                      (6a) 

∑
=

⋅=
M

i
zz it

M
T

1
),5(,5 )(~1~

.                                 (6a) 

In (3), the computing complexity required for obtaining )(kP  is generally at the order of O(S(n)3), where S(n) is 

the size of rows or columns. Since one hexagonal cell can neighbor at most six cells (outlets), each of rows in 

matrix P also contains no more than six non-zero elements. Obviously, matrix P is a spare matrix. Thus the order of 

computing )(kP  can be effectively reduced from O(S(n)3) to O(S(n)2) by utilizing this spare feature in our 

algorithms. 
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Here, we define some notation to facilitate comparing performance, based on the above formulas. 

l nS , nT : Sets of analysis values, yxS , and zT ,5 , respectively, under normal walk model. 

l nS
~

, nT
~

: Sets of simulation values, yxS ,
~

and zT ,5
~

, under normal walk model. 

l nŜ , nT̂ : Sets of analysis values, yxS , and zT ,5 , under normal walk model, but its moving probability is 

forced with uniform distribution. 

l rS , rT : Sets of analysis values, yxL , and zK ,5 , under random walk model [1], as the basis of 

performance comparisons. 

First, we contrast the mobility behavior of an analytical normal walk under σ = 71° with that of an analytical 

random walk. The experimental results indicate that the performance curves of nn TS /  and rr TS /  are almost 

identical as shown in Fig. 8a. Hence, for comparing performance more clearly, Fig. 8b further illustrates the 

discrepancy between them for all test cases. The errors between both are within ±0.75%, and even only ±0.3% 

between nT and rT , as shown in Fig. 8b. Since the errors are small and within ±0.75%, we conclude that the 

mobility of normal walk under σ = 71° could nertly behave like that of the 2-D random walk.  

Next, we compare nn TS /  (analysis values) with nn TS
~

/
~

 (simulation values) to validate this normal walk model 

under three typical σ, 60°, 30°, and 15°. We observe that the performance curves of nn TS /  and nn TS
~

/
~

 are 

almost overlapped and identical as shown in Fig. 9a, 10a, and 11a, respectively. On the other hand, Fig. 9b, 10b, 

and 11b illustrate that all errors between them are consistently within ±0.5%, even ±0.25% for most test cases. 

Also, we find that if let an MS initially reside at a specified 〈x, y〉 cell, then the movements required for the MS 

moving outside an n-layer cluster obviously decrease as the σ decreases, e.g., S(0, 0) = 23.7→10.9→6.8 (unit in 

steps) under σ = 60°→30°→15°, as expected.  

Last, let this normal walk model be with equal moving-out probability for each direction; that is, let it completely 

behave as a random walk model. We observe the errors between nn TS ˆ/ˆ  and rr TS /
 

are really 0% (see Fig. 12). 

Accordingly, we think that the correctness of this analytic model and formulas as defined above could be 

demonstrated by this result indirectly. 
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(a)                                            (b) 

Fig. 8. Comparison on S/T (Normal walk, σ= 71° vs. Random walk.)  (a) Values of S/T.  (b) Errors of S/T. 
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(a)                                            (b) 

Fig. 9. Comparison on S/T (Analysis vs. Simulation, σ= 60°.)  (a) Values of S/T.  (b) Errors of S/T. 
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(a)                                            (b) 

Fig. 10. Comparison on S/T (Analysis vs. Simulation, σ= 30°.)  (a) Values of S/T.  (b) Errors of S/T. 
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Fig. 11. Comparison on S/T (Analysis vs. Simulation, σ= 15°.)  (a) Values of S/T.  (b) Errors of S/T. 
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Fig. 12. Comparison on S/T (Normal walk, prob. = 1/6 vs. Random walk). (a) Values of S/T.  (b) Errors of S/T. 

IV. Conclusions 

In cellular or PCS networks, the mobility patterns play a critical role in measuring and analyzing the performance 

of networks. Especially, if the mobility model, including random walks, is unrealistic, the research conclusions will 

be invalid. This paper presents a new analytical normal walk model to provide a more realistic and more versatile 

mobility patterns for measuring performance of networks.  

We conduct some experiments to demonstrate this normal walk model. The experimental results verify that 

when the standard deviation of drift angles, σ, is 71°, a normal walk could almost behave as a random walk, based 

on the performance curves of both are almost identical. Moreover, with different σ, 15°, 30°, and 60°, the results 

also indicate that the errors between the analysis values and the simulation values are all within ±0.75%, even ±

0.5% for most test cases. We think the normal walk model can be effectively used for examining the performance of 
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cellular networks, based on those more realistic and more objective mobility patterns. 

We need to apply this analytical normal walks in different applications, e.g., modeling microcell/macrocell PCS 

networks, modeling location update/paging, pre-fetching/caching location-dependent data, and tracking MS 

movements in our future works. Thus we can further investigate and improve this analytical model to be used more 

effectively in the study of cellular or PCS networks. 
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