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Abstract

In most two-dimensional random walk models, the directions of a mobile station or subscribe moving out of a
cell are assumed to be independent and identical distributed. The mobility patterns obtained from such a model may
be less sufficient and less effective to measure the performance of cellular networks. This paper presents a new
norma walk model to provide a more realistic and more versatile mobility patterns. This model mainly utilizes an
equivalent drift angle with normal distribution to determine the next moving-out direction in a hexagonal cellular
network.

The experimental results demonstrate that if let the standard deviation of drift angles, o , be 71° anorma walk
could almost behave as a random walk. With three different o , 15° 30° and 60° the results show that the errors
between the analysis values and the simulation values are al within +0.75%, even +0.5% for most test cases. Our
normal walk model can be effectively used for evaluating the performance of cellular networks, based on those
more realistic and more objective mobility patterns.
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model.
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I. Introduction

In cellular or personal communication services (PCS) networks, the networking performance is significantly
affected by the way the network managing the mobile stations or subscribes (MS). Hence designing the networking
strategies for: location updating (LU), paging, cell and location area layout, and radio resource arrangement, often
need mobility models to evaluate the performance. That is, the mobility patterns play a critical role in measuring
and analyzing the performance of cellular networks. Especialy, if the walk model is lessrealistic or even unrealistic,
the research results and conclusions would be less accurate or even invalid [3, 5, 11].

The two-dimensional (2-D) random mobility models are till extensively used in most existing analytic or
simulation-based studies of cellular networks. The major applications utilizing those walk models include modeling
microcell/macrocell PCS networks [1], modeling distance-based LU [1, 6, 7, 11] and movement-based LU [2, 11],
modeling GPRS mobility management [1], pre-fetching/caching location-dependent data [9, 10], and tracking MS
movements[12].

Next, we briefly state the mobility assumptions used by those authors. Akyildiz et al. [1] develop an analytical
model for the new 2-D random walks based on [2], in which the moving probability for each direction is assumed
to be uniform distributed. Tseng and Hung [8] also let the moving probability be uniform distributed in their
analytical random walk model improved from [1]. The authors of [4, 6, 11] design a non-equal (i.e., non-uniform
and also not normal distributed) moving probability used in their simulation-based random walk model. Especially,
the design of the turning probabilities in [4] is completely based on the street layout. Tsai and Jan [7] utilize a
rotation angle to determine the next moving direction, either going straight or turning back. The probability
distribution for this angle is assumed to be normal, used in their analytical mobility model. Tuan et al. [9, 10]
define a simulation-based model for normal walks in a mesh cellular network, in which an equivalent drift angleis
used for deciding the moving-out direction, and the probability of this drift angle is also normal distributed,
originated in [7].

As described above, in most random walk models, the directions of an MS moving outside a cell are assumed to
be independent and identical distributed. The mobility patterns obtained from such a model may be less sufficient

and less effective to investigate the performance of cellular networks. Even though some simulation-based mobility
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models use non-equal probabilities developed under specific considerations, we think such a simulation-based
model still needs to be validated by a corresponding analytical model.

The purpose of this paper is to present an analytical model for the new normal walks used in the hexagonal
cellular networks. The mobility patterns based on this normal walk model could be more realistic and more
versetile for examining the performance of cellular networks. We also expected that a normal walk based on this
model could nearly behave as a random walk, if let the standard deviation of drift angles, o , be 71°. That is, the
movement behavior of this norma mobility model under above ¢ could simulate that of the random mobility
model. On the other hand, with different ¢ , the errors between the analysis values and the simulation values would
be consistently al within +0.75%, even smaller for most test cases.

The major method for our model is to develop an equivalent drift angle with normal distribution and to confine
the limit of each moving-out direction according to the geometric shape of a hexagona cell (see Fig. 1a). Then the
drift angles could be utilized to determine the next moving-out direction when an M S handoffs or handovers within
ahexagona cellular network.

We expect that utilizing this normal walk model to measure performance of those applications as described
previously, like modeling LU and modeling location areas, would be more effective and more objective than
utilizing arandom walk model.

The remainder of this paper is organized as follows. Section |1 illustrates the new normal walks for hexagonal
cellular networks, and describes the extended cell type classification. Section |11 validates the normal walk model
with the performance comparisons, based on the macro-based state diagram. Finaly, section IV concludes some

research results in this paper.

I1. The Hexagonal Normal walks
Most two-dimensional (2-D) random walk models supposed that an MS moves into anyone of neighboring cells
with equal probability, i.e., with probability 1/6. Hence, in the hexagonal random walk model, an MSisinitialy at
the center of cell, and then the MS moves out of the current cell randomly via one of six absolute directions
separated by 60° As a result, in next movement, which cell an MS will visit is independent of the current cell the

MS resides. Such a movement trace with high mobility may occur occasionally but not frequently, if contrasted
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with the daily movements of people.

A. The new normal walks.

Based on the habit of people daily moving, we consider that the probability of an MS moving straight or front is
often larger than that of moving via other directions, including U-turn, because most trips follow the shortest-path
(namely, pseudo-linear routes) [7]. A drift angle, 0 , is defined as a equivalent moving angle within one cell, by
which the direction of an MS moving out of a cell could be determined. We further assume that the probability
distribution of the equivalent drift angle, 6 , approaches “normality”, with a zero mean (u = 0°9 and a standard
deviation, o (unit in degree); namely, g ~ N(0°,s 2). Such awalk that uses a normal drift angle to decide the
next moving-out direction is called “normal walk model”.

In our walk model, we assume that the inlets/outlets of a cell are located at the middles of six sides on a cell,
which are marked ‘ x’ in Fig. 1a. Thus the rules of an MS moving outside a cell are as follows. First, an MSinitialy
resides at some inlet/outlet of a cell. Next, the MS depends on a new normal drift angle to determine one of six
relative moving-out directions, including moving straight or front ( F ), turning front-right ( Fr ), turning front-left
(F1), turning right (R ), turning left (L ), and turning back (B , i.e., U-turn). Last, the MS moves out of the cell via
the selected direction as shown in Fig. 1b.

For facilitate computing the probability of 8 ,the 6 can be standardized into Z with the converting formula,

Z =—, where Z represents a standard normal random variable, i.e.,, Z ~ N(0,1). The pdf (probability density

(nlp
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N

function) of Z and the corresponding cdf (cumulative distribution function) of Z are asfollows:j (2) =
and F(2) = OZ j (y)dy, where-¥ <z<¥  respectively.
- ¥

Hence the probabilities of an MS moving outside a cell via different directions could be obtained by (1) and (2).
First, Fig. 1a shows that the limit of each moving-out direction is confined to two angles. The confined angles,
angF, angFl, and angL could be easily computed with substituting the expression, r = R x co0s30°, where r and R
denote the inner radius and outer radius, respectively, as shown in Fig. 1a. Formulas for calculating confined angles

are asfollows:
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Fig. 1. Layout of ahexagonal cell. (@) Limits of 6 moving directions. (b) 6 moving equivaent paths.

angF =tan’ (@) @”'ke6.r’,

angFl = tan” 1(—) @49.1°, and 1)
r
angL = tan"1(¥) = 90".
Then, with (1) and (2), the moving probabilities of a normal walk could be derived, eg., let ¢ be 30° thus

Pr[F,30°] = 0.411, Pr[Fr,30°] = Pr[FI,30°] = 0.244, Pr[R,30°] = Pr[L,30°] = 0.049, and Pr[B,30°] = 0.003.
PI[F,s]=1- 25 (a”gF

PrFl,s]=F (angF'

) - F( )—Pr[Frs]

2
angL angFI @

PrL,s]=F( )=Pr[Rs],and

)- F(

angL

Pr[B,s ] =2X1- F(Z—=2)).

The all six moving-out probabilities as shown above are obviously not equal; however, the probability of turning
right/front-right equals that of turning left/front-left, and also the summation of all probabilities must be one. Since
the ® (2) isfunction of the o , changing the o will lead to changing the moving-out probabilities. Naturally, the
smaller the o is, the larger the probability of moving front, Pr[lf,s ], is. Fig. 2 demonstrates that changing the
o could cause different styles of movement patterns or trajectories. It is clearly that the smaller the o is, the

broader the trgjectory of an MS moving in acdlular network is.
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Fig. 2. Examples of the normal walk tragjectoriesunder o = {15° 30°, 60%.

B. The extended cell type classification.

Fig. 3 depicts a 6-layer hexagonal cellular cluster with (n? + n)/2 cells (where n = 6). The cell at the center of the
cluster is unique and called “central cell” or layer-0 cell. The cells that embraces the layer-(x — 1) are referred to as
“inner cells’ or layer-x cells, where 1 £ x < n— 1. Moreover, asx = n—1, the cells at the most outer layer are called
“border cells’ or layer-(n — 1) cells. Especialy, the cells embracing the border cells are termed as “boundary cells’,
which are outside of the cluster. Except the central cell isonly onein layer-0, each layer-x contains 6x cells, e.g., the
layer-2 consists of 12 cells, which are shadowed at the second ring in Fig. 3.

Following Akyildiz et al.’s cell type classification, a 6-layer cluster is partitioned into six equal pie-shape
regions (pie-region) by three axes, L1-L3, separated by 60° as shown in Fig. 3. The equivalent cells will be
assigned type &, yii if cells arein layer-x and are at the relative y + 1st position on different pie-regions. This type
classification significantly reduces the number of states of an n-layer random walk cluster from (3n + 3n—5) to (n?

+ n)/2, and efficiently speed up measuring the performance of analytical walk models.
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Fig. 3. An n-layer hexagona cellular network, for n = 6.

Here, we extend the above classification method to be adapted for our normal walk model. In other words,
afterclassifying al cells with type &, yfi(where 0 £ x < nand 0 £ y < x), we further add side indices, is (Where 0 £ s
< 6), to each of the typed cells. Afterwards, each side on a cell will be indexed as &, v, ifi where the order of isis
from iy to is in a counter-clockwise direction. This extended classification could facilitate modeling an n-layer
cellular cluster for normal walks as shown in Fig. 4., and it will be described in detail later.

The basic correlation between any both neighboring sides, &, v, isfiand &, y', i;fi on the same pie-region isthat s
= modg(t + 3) (where the mod, denotes a modulus-n function), e.g., both &, 2, igfiand &b, 2, isfiare neighboring sides.
The other basic correlation between both &, v, ifiand &, v, ipfisides on the same cell is stated as below.

First, let Dir[k] ={B,R Fr,F,FI,[} where 0 £ k £ 5, i.e., each member of Dir[k] represents one of six
moving-out directions (see Fig. 1b). Next, suppose the path of an MS moving through a cell is from the &, v, i.fi
sideto the &, y, ifiside (i.e., from the i, inlet to the i, outlet on the &, yficell) viathe kth direction. Thus the value
of iy, could be derived from the expression, b = mods(a + k), if i, and k are given. Here, we assume that the i, side,
an MSwill reach in next step viathe kth direction, is function of the i, side, the MS resides at now; namely, the next
side, iy, isindependent of any cell sides that the M S visited previously. For example, if an MS moves from the &, 2,
i,fiside and towards the front-right ( Fr , k = 2), then the MS will reach the &, 2, i fiside (or the neighboring &, 2,

isficell) after one step.
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Fig. 4. The extended type classification with side indices for a 6-layer cellular cluster.

For classifying cells, Definition 1 indicates when cells on different pie-regions are equivalent and could be
classified with the same cell types &, yfi

Definition 1: Two célls, Cj and Cj, are considered as “equivalent”, if and only if, the multiset of side indices for
Ci*s neighboring sides equals that for Cj*s neighboring sides, in corresponding order.

The extended type classification for an n-layer normal walk cluster is described in Stage 1 and 2, based on the
algorithm in [1]. Through the steps in Stage 1, all the equivalent cells on different pie-regions are assigned same
types &, yfi where x and y denote that cells are at the y + 1st position in layer-x. Steps in Stage 1, required for
assigning cell types, are shown as below.

Step 1.1) For the central cell in layer-0, it is assigned type &, Of

Step 1.2) In layer-x (where 1 £ x < n), identify the cells that are unmarked and are adjacent to & — 1, Oficells

being labeled in layer-(x — 1), and then assign them with the type &, Ofi Thus the last six unmarked cells
will be typed as &n — 1, Ofiin this recursive step.

Step 1.3) If the cells neighboring to &, y — 1ficells in the same layer-x (where2 £ x<nand 1 £ y < X) are till
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unmarked, then assign them with the type &, yfirecursively in the clockwise direction. Thus the last six
marked cells are typed as &n — 1, n — 2fiin this step.

Next, Stage 2 further assigns the side indices (SI) for all cells, typed as &, yfiin Stage 1, through the following

steps. For clarifying the expressions as below, the symbol i[K] is same as iy, and the value of iy is equal to k.

Step 2.1) For the &0, Oficell, its six sides are indexed as &, 0, iofi because its all neighboring cells are of the same
type &L, Of

Step 2.2) For &, Oficells (where 1 £ x < n), find the unmarked sides that are adjacent to the marked & — 1, 0, i¢fi
sidesin layer-(x — 1), and then assign them with the index &, 0, ifmod(io + 3)]fi i.€., &, 0, isfi
Then find sides that are unmarked on &, Oficells, and then sequentially index them as &, 0, i[mods(is +
s)]fifrom s=1to s= 5 in the count-clockwise direction. Thus the multiset of Sl on &, Oficell is{éax, 0, isfi
ax, 0,40 &x, 0, isA &x, 0, iph ax, 0, i1f &x, 0, i»f} in the order indexed.

Step 2.3) For &, yficells (where 2 £ x < nand 1 £ y < x), find the unmarked sides that are neighboring to the
marked & — 1,y —1, isfisidesin layer-(x — 1), and then index them as &, Y, i[mods(is + 3)]f i.e., &, Y, i-f
Then assign the unmarked sides on &, yficells with the index &, y, ifmodg(i, + s)]Jiifroms=1tos=5in
the count-clockwise direction. Hence the multiset of Sl onthiscell is{&x, v, i»fi ax, y, iz &X, y, i4f &x, y,
isfi ax, y, iofi ax, y, i1f} in the order indexed.

For an n-layer normal walk cluster, It is easy to examine that the extended classification agorithm possesses the

following properties.

1) For the &, Oficentral cell, if n > 1, the &, Oficell’s neighboring sides are all same and indexed as &L, O, i5fi If n
=1, its neighboring sides are all outside the cluster and indexed as “Boundary &, 0, ioft.

2) For a&, Ofiinner cell (where 1 £ x < n—1), the multiset of Sl for its neighboring sidesis{& + 1, 0, isfi & + 1,
X, iafl &, X— 1, i4fi & —1, 0, igfi &, mody(1), i[mods(1+ EL/XQ)]A & + 1, 1, i-f}.
For example, let x = 1, the multiset of SI for &L, Oficell’s neighboring sidesis{&, 0, isfi &, 1, isf} &L, O, i4f
&, 0,10 &L, 0, i,fi &, 1, i,f}.

3) For a &, yfinner cell (where2 £ x<n-21and1£ y < x), the multiset of Sl of its neighboring sidesis{& + 1,

Y, isfl & y =1, i4fl &1,y -1, isfl & — 1, modh1(y), i[mods(ey/(x — 1)0]f &, mod(y + 1), i[mods(1 + &y
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+ D)/xOIR &+ 1,y + 1, iof}.
For instance, if x=3 and y = x— 1, the multiset of Sl for &, 2ficell’s neighboring sidesis {&4, 2, isfi &, 1,
i 8, 1,isf &, 0, i1f 8, 0, i-f &, 3, i-f}.

4) For a& — 1, Ofiborder cell (where n > 1), the multiset of Sl for its neighboring sidesis{an—1,n—-2, i;i an—
2, 0, igft & — 1, modn_1(1), i[mods(1 + &/(n — 1)0)]A Boundary & — 1, 0, iofi Boundary & — 1, 0, iofi
Boundary an—1, 0, iof}.

For example, if n =6, the multiset of Sl for &, Oficell’s neighboring sidesis{&b, 4, isfi &, O, igfi &b, 1, i1f
Boundary &6, 0, iofi Boundary &b, 0, igfi Boundary &b, 0, iof} .

5) For aé — 1, yiiborder cell (wheren>2and 1 £ y < n-1), the multiset of Sl for its neighboring sidesis {& —
1,y-1,igdf & —2,y—1, isf & — 2, modn-2(y), ifmods(&y/(n — 2)0]f & — 1, mod .1(y + 1), ifmodg(1 +
&y + 1)/(n—1)0)]f Boundary & — 1, y, iofi Boundary & — 1, y, iof} .

For instance, let n= 6 and y = n— 2, the multiset of Sl for &, 4ficell’s neighboring sidesis{&b, 3, isil &, 3,
isfi &, 0, i1 &, 0, i,fi Boundary &, 4, iofi Boundary &b, 4, iof}.

The above properties and examples demonstrate that the extended type classification algorithm satisfies

Definition 1. Also, the one-step probability of moving outside Cj equals that moving outside Cj if the starting and

arriving sides, &, v, i;and &, y, ipfi for both movements are same.

I11. Performance measuring and comparisons

For arandom walk model in [1], atyped cell corresponds to a state. However, for our normal walk model, a state
is matched with an indexed side (inlet), based on the extended type classification. In the state-transition diagram,
depicting all states, including absorbing ones, associated with probabilities may be too complicated for this model.
Here, we develop a two-level state, macrostate and microstate, for clarifying the diagram. The new macro-based

state transition diagram of a 6-layer cellular cluster for normal walksis shownin Fig. 5.

A. The macro-based state diagram.
A macrostate (x, y) is an abstract state, and it just denotes that an M S resides one of the &, yficells through some

side (inlet). Such a macrostate, excluding the central state (0, 0) and absorbing states (6, 2), could be further split
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Sate-transition diagram with marcostates
for a 6-layer hexagoanal normal walk model.

Central state @‘
BC o

! % 3
2 4

5 0 0 5

Absorbing state

~———0 0

10

Notethat L represents the absorbing state,(6,2).

Fig. 5. The macro-based state-transition diagram for a 6-layer céellular cluster.

into at most 6 microstates (X, y, is), where 0 £ s£ 5, asshown in Fig. 6.

A microstate (x, y, i) isaphysical state, and it represents that an M S visits the &, yficell through the &, v, isfiside,
i.e, theiginlet on the &, yficell. A microstate (n, z, ig) is absorbing one; also, it means that an MS moves out of the
n-layer cluster through one of the & — 1, z, ifisides.

The actual number of microstates, my,, within one (x, y) macrostate equals the number of unique indexed sides
(inlet) through which an MS can move into the &, yficell, e.g., myp =1, my; = 6, and ms, = 4 (see Fig. 5). Since an

n-1 x-1

indexed side matches to a microstate, the total number of microstates, S(n), isequal to § A myy+n, i.e.,
x=1 y=0

S(n) =(3n- H(n- 1) . Table 1 lists the number of microstates for different typed cells. For example, in a 6-layer
cellular cluster, the (n) is 85; in contrast, the number of macrostates, Sy(n), is only 21, because Sy(n) = (n? + n)/2.
Supposed that Proby ,[K] represents the probability of an MS moving out of a &, yficell from the is inlet to the i
outlet via the kth moving direction, belongs to Dir[k] ={B,R,Fr,F,Fl,L}. For a (x, y) macrostate, Prob, ,[K]
naturally corresponds to the one-step transition probability that the system shifts outside the (X, y) macrostate from

the is microstate via tth outlet, and Proby ,[K] = {Bs, R, Frs, Fs, Fls, R} where O£ s, t, KE 5 (see Fig. 6). Thusif the
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One Marcostate (x,y) contains 6 Microstates (X,y,i S).

Fig. 6. Example of amacrostate comprising 6 microstates.

is (inlet) and i; (outlet) are known, then the Prob, [K] can be decided by the expression, k = mods(t — s + 6),
bywhich all one-step probabilities for any one macrostate, P,(X, y), could be obtained. For instance, pm(2, 0),(x, Y, is)

isfor a&, Oficell asshownin Fig. 7, inwhichthe &, vy, is fisides are neighboring to the &, v, i;fisides.

Table 1. The number of microstatesymacrostates for a &, yficell.

Cell types: () Microstates, my, | (b) Macrostates @ x (b)
Central cell, &0, O x1 1 1
Inner cells, &, yi X6 (n=1)(n-2)/2 3(n-1)(n-2)
Border cdlls, &an— 1, zfi x4orx3(forz=0) | (n—-1) 4n-1)-1
Boundary cells, &, zii x1 (n-12) (n=-1)

Tota of microstates: S(n) = (3n—1)(n—1).

If et p(x,y.i.).(x¢ysigy D€ the probability that an MS moves from &, y, igiside to &, y', isfiside after one step,

then P :[p(x,y,is),(x¢y¢igt)] is the one-step transition probability matrix of the n-layer cluster for normal walks.

Since the system has S(n) microstates, the size of matrix P is S(n) x §n). However, in matrix P, only n elements

areconstant, P(o,0;i,),(L0,iz) =1-0 ad P(n,ziy),(n,zi,) =1-0,and the remainders are function of o .
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where (x¢y¢ig) ={(10.iy),(21i1),(21i4).(30,i3),(3Li2).(3.2i3)}, and
(x¢y€ir) ={(20.i3),(20.i4),(2,0,i2).(2.0,i0),(20.i5),(20,i1)} .

Fig. 7. One-step transition probabilities only for one macrostate, e.g., pm(2, 0).(<, Y, is)-

The order of members listed in each rows and columns of matrix P corresponds to that of microstates listed by

the following algorithm.

1. Firdt, list the central state, i.e., (0, 0, ig).
2. Next, list al inner microstate, (X, v, is), asfollows:
for x=1to(n-2) do
fory=0to(x—1)do
for s=0to5do
list (x,Y, ig).
3. Then, list the border ones:
fory=0to(x—1) do
fors=1to4do
list(n—1,y, iy, if existed.
4, Last, list the absorbing states, (n, v, io):
fory=0to(n-2)do
list (n,y, o).

Furthermore, for k = 1, (3) defines pk) = [ Pk,(x,y,is),(x¢y¢ig)] as the probability that an MH moves from &, v,
isfisideto &, y', isfiside after k steps.

>[P, fork =1

pk) =
1P’ P&-D for k>1

©)

Thus PK,(x, v,ie).(N. o) in (4) denotes the probability that an MH initially resides at a &, Y, isfiside, and then
moves outside a n-layer cluster through the & —1, |, itfiside. Later, we will evaluate the performances of a 6-layer

cellular cluster for normal walks by using Py (x,y.i.).(6, i) -

{- P(X,y,is),(n,j,io)’ fork=1

P, (x,yiis) (M io) =T S(k) k-1 @
FFo0yiamiie) - Foyie). (i) fOrK>1
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B. The performance analysis and comparisons.

For validating the analytical normal walk model, we define two evaluation factors, S<X’y> and T<5’Z>, based
on the equations Akyildiz et al.’s propose in [1]. First, S<ny> represents the expected number of steps that an MH

initially resides at a specified &, yficell, and then the MS leaves out of a 6-layer cluster through anyone of &, jii
border cells (where0 £ j < 5).

In contrast to S<X’y> , define §<X’y> in (5b) as the simulation values with M = 1,500,000 experimental trials,

which are used to validate the analysis ones, S<ny> , with 200 truncated terms to approach the infinite summation.

S.y=& & & kxp —— (53)
- K, (X, Y,is),(6,],i :
) =3, 808 (i) (6.1 "~
= )
S = X 1) . 5b
<X,Y> M El S(X,Y)() (5b)

Next, let T<5’Z> represent the other expected number of steps that an MH initially resides at anyone of &, yficells

(where 0 £ x<5and 0 £ y < x— 1) and then leaves the 6-layer cluster through a specified &b, zficell. Be similar to

(5a) and (5b), we define and calculate the simulation values, T~<5, 2) in (6b) to validate the analysis values, T<5’ 7

In (5a) and (6a), the 1/m, , acts as a weight factor, where the m, is defined as previously.

- Ol 1 1
Tz =a & & & kP 6zio) X (63)
k=1 x=0 y=0 s=0 My,y
~ i M-
T, =— t ). 6a)
(5.2) M oy (5,2)() (6a)

In (3), the computing complexity required for obtaining Pk s generally at the order of O(S(n)®), where §(n) is
the size of rows or columns. Since one hexagonal cell can neighbor at most six cells (outlets), each of rows in
matrix P also contains no more than six non-zero elements. Obviously, matrix P is a spare matrix. Thus the order of
computing P®) can be effectively reduced from O(S(n)®) to O(S(n)?) by utilizing this spare feature in our

agorithms.
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Here, we define some notation to facilitate comparing performance, based on the above formulas.

® S,, T,:Setsof analysisvalues, S<ny> and T<5,z> , respectively, under normal walk model.

o §n , 'Fn : Sets of simulation values, §<X’y> and T<5’Z> , under normal walk model.

o én 'fn: Sets of analysis values, S<X’y> and T<5,Z>, under normal walk model, but its moving probability is
forced with uniform distribution.

® S, T, : Sets of analysis values, L<ny> and K<5,z> , under random wak model [1], as the basis of
performance comparisons.

First, we contrast the mobility behavior of an analytical normal walk under o = 71° with that of an analytical
random walk. The experimental results indicate that the performance curves of S, /T, andS; /T, are amost
identical as shown in Fig. 8a. Hence, for comparing performance more clearly, Fig. 8b further illustrates the
discrepancy between them for all test cases. The errors between both are within +0.75%, and even only 10.3%
between T,and T,, as shown in Fig. 8b. Since the errors are small and within +0.75%, we conclude that the
mobility of norma walk under o = 71° could nertly behave like that of the 2-D random walk.

Next, we compare S, /T, (analysis values) with §n / 'Fn (simulation values) to validate this normal walk model
under three typical o, 60°% 30° and 15° We observe that the performance curves of S, /T,, and %/fn are
amost overlapped and identical as shown in Fig. 9a, 10a, and 11a, respectively. On the other hand, Fig. 9b, 10b,
and 11b illustrate that al errors between them are consistently within +0.5%, even +0.25% for most test cases.
Also, we find that if let an MS initially reside at a specified &, yficell, then the movements required for the MS
moving outside an n-layer cluster obviously decrease asthe o decreases, e.g., S(0, 0) = 23.7-10.9- 6.8 (unit in
steps) under o = 60°- 30°- 15°, as expected.

Last, let this normal walk model be with equal moving-out probability for each direction; that is, let it completely
behave as a random walk model. We observe the errors between én / 'fn and S /T, areredly 0% (see Fig. 12).
Accordingly, we think that the correctness of this analytic model and formulas as defined above could be

demonstrated by this result indirectly.
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Fig. 8. Comparison on ST (Normal walk, o = 71° vs. Randomwalk.) (&) Valuesof ST.
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Fig. 9. Comparison on ST (Anaysisvs. Simulation, ¢ =60°) (a) Vaues of ST.
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(b) Errors of S/T.
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Fig. 10. Comparison on ST (Analysisvs. Simulation, o = 30°)
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(b)

(a) Vauesof ST. (b) Errorsof ST.
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Fig. 11. Comparison on ST (Analysisvs. Simulation, ¢ =15°) (@) Valuesof ST. (b) Errorsof ST.
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Fig. 12. Comparison on ST (Normal walk, prob. = 1/6 vs. Random walk). (a) Valuesof ST. (b) Errors of ST.

IV. Conclusions
In cellular or PCS networks, the mobility patterns play a critical role in measuring and analyzing the performance
of networks. Especially, if the mobility model, including random walks, is unrealistic, the research conclusions will
be invalid. This paper presents a new analytical normal walk model to provide a more realistic and more versatile
mobility patterns for measuring performance of networks.

We conduct some experiments to demonstrate this normal walk model. The experimental results verify that
when the standard deviation of drift angles, o , is71° anormal walk could almost behave as a random walk, based
on the performance curves of both are almost identical. Moreover, with different ¢ , 15° 30° and 60°, the results
also indicate that the errors between the analysis values and the simulation values are all within +0.75%, even *

0.5% for most test cases. We think the normal walk model can be effectively used for examining the performance of
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cellular networks, based on those more realistic and more objective mobility patterns.

We need to apply this analytical normal walks in different applications, e.g., modeling microcell/macrocell PCS
networks, modeling location update/paging, pre-fetching/caching location-dependent data, and tracking MS
movements in our future works. Thus we can further investigate and improve this analytical model to be used more

effectively in the study of cellular or PCS networks.
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