
The paper is intended for the Workshop on Algorithms and Computational Molecular Biology

Embedding Quadtrees into Hypercubes

Chui-Cheng Chen
Department of Information Management

Southern Taiwan University of Technology
1 NanTai St., YungKang City Tainan, Taiwan 710, R.O.C.

Tel: +886 6 2533131#4311
E-mail: ccchen@mail.stut.edu.tw

Abstract
The quadtree is useful data structure for a variety of image processing. In this

paper, we propose two simple but effective methods for embedding quadtrees into
hypercubes. First, we embed a complete quadtree of height h into a
(3(h-1)+4)-dimensional hypercube, or into a smaller incomplete hypercube which
comprises a (3(h-1)+3)-dimensional hypercube and a (3(h-2)+4)-dimensional
hypercube. This embedding preserves the adjacency of the complete quadtree, while
the second method does not. The second method is to embed a complete quadtree of
height h into an incomplete hypercube of the same node size with the congestion 2
and the dilation is at most 3.

Keywords: Embedding, Complete quadtrees, Hypercubes

1

Embedding Quadtrees into Hypercubes

Abstract
The quadtree is useful data structure for a variety of image processing. In this

paper, we propose two simple but effective methods for embedding quadtrees into
hypercubes. First, we embed a complete quadtree of height h into a
(3(h-1)+4)-dimensional hypercube, or into a smaller incomplete hypercube which
comprises a (3(h-1)+3)-dimensional hypercube and a (3(h-2)+4)-dimensional
hypercube. This embedding preserves the adjacency of the complete quadtree, while
the second method does not. The second method is to embed a complete quadtree of
height h into an incomplete hypercube of the same node size with the congestion 2
and the dilation is at most 3.
Keywords: Embedding, Complete quadtrees, Hypercubes

1. Introduction

The hypercube is one of the most popular architectures of parallel machines. The

structure of the hypercube presents a rich interconnection topology, a symmetric
structure, and a low diameter. It can simulate many computational structures with only
small constant factor slowdown, such as array, binary tree and mesh of tree [1]. It also
contains many computational structures, such as meshes and rings. While two
consecutive dimensional hypercubes leave a large gap. To overcome this restriction,
incomplete hypercubes provide more flexibility in the size [2, 3]. An incomplete
hypercube can be obtained from a complete hypercube where some nodes/links fail.

Over the years, many algorithms have been designed to embed quadtrees into a

hypercube [4-8]. The quadtree is an efficient data structure to represent binary image
data [9]. The root of the quadtree represents the entire structure to represent binary
image data. The root of the quadtree represents the entire image data, and each
internal node has four sons, each son representing a quadrant of its parent node. Since
the structure of the quadtree is easy to implement, it is a very useful data structure for
a variety of image processing.

Ho and Johnsson [4] have shown a complete quadtree of height h (h≧0), which

has (4h+1-1)/3 nodes, can be embedded into a (2h+1)-dimensional hypercube with
dilation 2, and a specific algorithm to do the embedding has been studied in [5]. Stout
[6] has described how to embed a complete quadtree into a hypercube. Yang and Lee

2

[7] have introduced an efficient algorithm to construct a quadtree in a hypercube. In
this paper, first, we present how to embed a complete quadtree into a hypercube, or
into a smaller incomplete hypercube, so that the adjacency of the complete quadtree is
preserved. Next, we present an algorithm to embed a complete quadtree into an
incomplete hypercube with dilation 3, congestion 2 and expansion 1.

The remainder of this paper is organized as follows. In Section 2, we introduce

the notations and definitions for embedding, In Section 3, we present an algorithm to
embed a complete quadtree into a hypercube, or into a smaller incomplete hypercube.
In Section 4, an algorithm is given to embed a complete quadtree into an incomplete
hypercube with the same node size. In Section 5, we summarize the results.

2. Preliminaries

A complete quadtree of height h is a rooted quadtree. The root the complete

quadtree is on level 0, four nodes on level 1, 4i nodes on level i, etc., and we let QTh

denote the complete quadtree of height h with (4h+1-1)/3 nodes.

We denote the n-dimensional hypercube with 2n nodes as Hn. These nodes of Hn
are labeled {0, 1, …, 2n-1} with binary number. Two nodes in the hypercube are
linked with an edge if their binary numbers differ by a single bit. The Hamming
distance is the number of different bits between two nodes. If a hypercube misses
some certain nodes, it is called an incomplete hypercube [2, 3]. Let IH(n1, n2, …, nk)
denote the incomplete hypercube which comprises k complete hypercubes: Hn1,

Hn2, …, Hnk, where nj>ni≧0, for j<i≦k.

To conveniently describe the embedding, we can partition a hypercube into four
sub-hypercubes by the leftmost two bits of the hypercube, and the binary numbers of
the leftmost two bits of the four sub-hypercubes correspond to 00, 01, 11 and 10 (see
Figure 1 (a)). Each node of a sub-hypercube has an edge to link a node of adjacent
sub-hypercube; the leftmost and the rightmost sub-hypercubes are adjacent, likewise,
the top and the bottom sub-hypercubes are adjacent. Similarly, a hypercube can be
partitioned into sixteen sub-hypercubes by the leftmost four bits of the hypercube, and
the binary numbers of the leftmost four bits of the sixteen sub-hypercubes correspond
to 0000, 0001, …, 1111 (see Figure 1(b)). Each node of a sub-hypercube has an edge
to link a node of adjacent sub-hypercube.

3

0

0

1

1

00 01

10 11

00

00

01

01

11

11

10

10

0000 0001 0011 0010

0100 0101 0111 0110

1100 1101 1111 1110

1000 1001 1011 1010

 (a) (b)
Figure 1. A hypercube is partitioned to four or sixteen sub-hypercubes.

In one-to-one node embedding of a graph G into a graph H, the dilation of an

edge in G is the length of embedded path in H. The dilation of an embedding is the
maximum dilation over all edges in G. The congestion of an edge in H is the number
of edges of G that are embedded using the same edge of H. The congestion of an
embedding is the maximum congestion over all edges in H. The expansion of an
embedding is the ratio of the number of node in H to the number of nodes in G. Hence,
it has to be considered the tradeoff among the dilation, the congestion and the
expansion of an embedding.

3. Embedding complete quadtrees into hypercubes with dilation 1

In this section we show how to embed QTh into a hypercube, or into a smaller

incomplete hypercube, while the adjacency of QTh is preserved.

Theorem 1. QTh (h≧1) can be embedded into a (3(h-1)+4)-dimensional hypercube.

Proof. We prove the theorem by induction on h.
 Hypothesis: QTh-1 can be embedded into a (3(h-2)+4)-dimensional hypercube.

Basis step (h=1, 2): When h=1, QT1 can be embedded directly into H4 as show in
Figure 2. When h=2, we partition H7 into 16 sub-hypercubes H3’s. Since a tritree of
height 1 can be embedded into H3 as shown in Figure 3, and each node of
sub-hypercube H3 has an edge to link a node of another adjacent H3, we can embed
QT2 into H7 (see Figure 4).

4

1

2 3 4 5

2

4

3

1 5

Figure 2. QT1 is embedded into H4. The embedded QT1 is depicted by the

 solid lines in H4.

1

2 3 4

2

4

3

1

Figure 3. A tritree of height 1 is embedded into H3.

r

00

00

01

01

11

11

10

10

r

Figure 4. QT2 is embedded into H7.

Induction step: we denote as the induced graph of QTh by deleting a
QTh-1 from itself (see Figure 5). Then we can construct in a ((3(h-2)+4-1)-
dimensional hypercube. Moreover, we partition the (3(h-1)+4)-dimensional hypercube
into 16 sub-hypercubes H(3(h-2)+3)’s by the leftmost four bits of the hypercube. Each
H(3(h-2)+3) contains a . Now, we embed QTh into the (3(h-1)+4)-dimensional
hypercube as Figure 6 shows. Let the root of QTh be embedded into sub-hypercube R,
and two adjacent sub-hypercubes A and E embed QTh-1 by linking the root of in
sub-hypercube A to a subtree QTh-2 of in sub-hypercube E. Likewise, two
adjacent sub-hypercubes B and F (C and G, D and H) can embed QTh-1. The
embedding works because of the symmetry of the hypercube. Thus QTh can be
embedded into the (3(h-1)+4)-dimensional hypercube. □

3QT

3QT

3QT
3QT

3QT

4/
h

4/
1−h

4/
1−h

4/
1−h

4/
1−h

5

���������� �����

QTh-1

Figure 5. . 4/3

hQT

00

00

01

01

11

11

10

10
�����
�����

�����
�����

�����

�����
�����

R

A

B

C

D

E

F

HG

�����
�����

�����
�����

�����
�����

�����
�����

�����
�����

�����
�����

�����
�����

�����
�����

�����
�����

�����
�����

�����
�����

�����
�����

R

�����
�����

�����
�����

�����
�����

�����
�����

�����
�����

�����
�����

�����
�����

�����
�����

�����
�����

�����
�����

�����
�����

�����
�����

A B C DE F G H

Figure 6. QTh is embedded into a (3(h-1)+4)-dimensional hypercube, �����

where each ����� represents a QTh-2.

By the preceding construction, the embedded complete hypercube H3(h-1)+4 can
be reduced to a smaller incomplete hypercube.

Corollary 1. QTh (h≧1) can be embedded into IH(3(h-1)+3, 3(h-2)+4). □

4. Embedding quadtrees into incomplete hypercubes with expansion

1

We have show that a complete quadtree can be embedded into hypercube, or into

a smaller incomplete hypercube, with dilation 1 and congestion 1 in the previous
section. In this section we discuss how to embed a complete quadtree into an
incomplete quadtree into an incomplete hypercube with the same node size
(expansion 1), considering the dilation and the congestion when doing the embedding.

6

Here, denote IH(n1, n2, …, nk) as an incomplete hypercube, which can be obtained by
deleting the largest 2n1-(2n2 + … + 2nk) nodes (in binary number) and their neighboring
edges from an (n1+1)-dimensional hypercube.

Theorem 2. QTh (h≧1) can be embedded into IH(2h, 2(h-1), …, 2, 0) with dilation 3,
congestion 2 and expansion 1.

Proof. We prove the theorem by induction on h.

Stronger Hypothesis: QTh-1 can be embedded into IH(2(h-1), 2(h-2), …, 2, 0)

with dilation 3, congestion 2 and expansion 1, and the dilation is equal to 2 for
embedding the edges between level h-2 and level h-1 of QTh-1.

Basis step (h=1 and h=2): When h=1, we can embed QT1 into IH(2, 0) with

dilation 2 and congestion 2 (see Figure 7), since the dilation of edge (a, d) in QT1 is 2
and the congestion of either edge (a, b) or edge (a, c) is 2 in IH(2, 0). Thus the
dilation is equal to 2 for embedding the edges between level 0 and level 1.

a

b c d e

b

c

e

a

d

Figure 7. QT1 is embedded into IH(2, 0) with dilation 2 and congestion 2.

When h=2, there are 42 leaf nodes, so we have to add H4 to IH(2, 0). H4 can be
partitioned into four sub-hypercubes by the leftmost two bits of H4, hence, the binary
numbers of the leftmost two bits of the four sub-hypercubes correspond to 00, 01, 11
and 10. We can construct four H2’s from these four sub-hypercubes to make the binary
numbers of the rightmost two bits of each H2 the same. We use Figure 8 to describe
how to embed QT2 into IH(4, 2, 0).

Figure 8 illustrates the embedding of QT2 into IH(4, 2, 0). The four H2’s

comprise respectively the nodes (b, g, h, i), (u, e, s, t), (c, k, l, m) and (d, o, p, q). Each
leaf node of QT1 in IH(2, 0) has an edge to link a node of an H2, such as leaf nodes f, j,
n and r linking respectively nodes b, c, d and e. We take leaf nodes f, j, n and r of QT1
in IH(2, 0) as leaf nodes of QT2, nodes b, c, d and e as the parents of the nodes (f, g, h,
i), (j, k, l, m), (n, o, p, q) and (r, s, t, u). The congestion of the edges which link IH(2, 0)
and H4, such as edges (b, f), (c, j), (d, n) and (e, r), is 2. The dilation of edges between

7

level 0 and level 1 increases by 1, compared to the dilation of the edges between level
0 and level 1 for embedding QT1 into IH(2, 0), such as the dilation of edge (a, b), (a,
c), (a, d) and (a, e) become 2, 2, 3 and 2, respectively. Therefore, QT2 can be
embedded into IH(4, 2, 0) with dilation 3, congestion 2 and expansion 1, and the
dilation is equal to 2 for embedding the edges between level 1 and level 2 of QT2.

������
������

�����
�����

�����
�����

�����
�����

�����
�����

�����
�����

�����
�����

�����
�����

�����
�����

�����
�����

�����
�����

�����
�����

�����
�����

�����
�����

�����
�����

�����
�����

a

b c d e

f g h i j k l m n p qo r s t u

f

j

r

a u

m

g

n

c

d b
k

o

p
l

q

h

e

s

t

i

����������

�����

�����
�����

�����
�����

�����

�����
�����

�����

�����
�����

�����

�����
�����

�����
�����

�����
�����

�����

�����
�����

�����

Figure 8. QT2 is embedded into IH(4, 2, 0). Four H2’s, depicted respectively
by solid lines, are constructed from H4 in IH(4, 2, 0).

Induction step: There are 4h nodes which are added to QTh-1 as the leaf nodes of

QTh, thus we have to add H2h to IH(2(h-1), …, 2, 0). Likewise, using the approach of
basis step, we partition H2h into four sub-hypercubes by the leftmost two bits of H2h to
construct 22(h-1) H2’s, and the binary numbers of the rightmost 2(h-1) bits of each H2
are the same. Each leaf node of QTh-1 in IH(2(h-1), …, 2, 0) has an edge to link a node
of an H2 in H2h, since leaf nodes of QTh-1 are embedded into either the nodes of H2(h-1)
in IH(2(h-1), 2(h-2), …, 2, 0) or the adjacent nodes of H2(h-1) in IH(2(h-2), …, 2, 0),
and the binary numbers of the rightmost 2(h-1) bits of both the adjacent nodes are the
same. We take leaf nodes of QTh-1 as leaf nodes of QTh and the nodes, which are
adjacent with leaf nodes of QTh-1, of H2h as the parents of leaf nodes of QTh. We use
Figure 9 to show how to embed QTh into IH(2h, 2(h-1), …, 2, 0).

8

Figure 9 illustrates the embedding of QTh into IH(2h, 2(h-1), …, 2, 0). We label
the nodes of IH(2h, 2(h-1), …, 2, 0) by 2h+1 bits and partition IH(2h, 2(h-1), …, 2, 0)
into eight sub-hypercubes by the leftmost three bits of the incomplete hypercube.
Hence, the eight sub-hypercubes can be labeled as 000, 001, 011, 010, 100, 101, 111
and 110. Let n1, n2, n3 and n4 construct H2 from these four sub-hypercubes 101, 100,
110 and 111 in H2h. If a leaf node of QTh-1 is embedded into n5 in the sub-hypercube
001, we take n5 as leaf node of QTh and n1 as the parent of n5, n2, n3 and n4.
Similarly, if a leaf node of QTh-1 is embedded into n6 in the sub-hypercube 000, n6
has an edge to link n2 because of the symmetry of the hypercube. We take n6 as leaf
node of QTh and n2 as the parent of n6, n1, n4 and n3. By using the same method, we
take the remaining leaf nodes of QTh-1 as leaf nodes of QTh and their adjacent nodes in
H2h as the parents of leaf nodes of QTh.

�����
���

���

���
��

���

���

������
��

���

���

���

���

���

��
��

���
���

�����
���

��

��
��

���

��

��

���

���

���
��
��

���
���

��
��

���
���

��

��

���

���

�����
��

���

���
���

��

���

���

��

��

��
���
���

��
��

���
���

��
��

���

���

��

��

�����
��

���

���
���

��

���

���

��

��

��
���
���

��
��

���
���

��
��

���

���

��

��

�����
���

��

��
��

���

��

��

���

���

���
��
��

���
���

��
��

���
���

��

��

���

���

����
��

��

��
��

��

��

��

��

��

��
��
��

��
��

��
��

��
��

��

��

��

��

������
���

���

���
���

���

���

���

���

���

���
���
���

���
���

���
���

���
���

���

���

���

���

��
���
���

��
���
���
���

���

��
��

���
���
���

��
��
��

��
�����

���
���

��
��
��

���
���

��
��

���
���
���

��
��
��

���
��
��

���
��
��
��

��

���
���

��
��
��

���
���
���

���
�����

��
��

���
���
���

��
��

���
���

��
��
��

���
���
���

��
��
��

��
��
��
��

��

��
��

��
��
��

��
��
��

��
����

��
��

��
��
��

��
��

��
��

��
��
��

��
��
��

���
���
���

���
���
���
���

���

���
���

���
���
���

���
���
���

���
������

���
���

���
���
���

���
���

���
���

���
���
���

���
���
���

n6 n5 n1 n2

n4 n3

000-

010-

001-

011-

000-

010-

001-

011-

2(h-1)-dimension

Figure 9. Embedding QTh into IH(2h, 2(h-1), …, 2, 0). The
sub-hypercube H2h is partitioned into four sub-hypercubes H2(h-1)’s, and
the bold lines depict an H2 from these four H2(h-1)’s.

The dilation of the edges between level h-2 and level h-1 of QTh increases by 1,

compared to the dilation of the edges between level h-2 and level h-1 for embedding
QTh-1 into H(2(h-1), …, 2, 0), while the congestion of the edges between
IH(2(h-1), …, 2, 0) and H2h is held on 2. Therefore, QTh can be embedded into IH(2h,
2(h-1), …, 2, 0) with dilation 3, congestion 2 and expansion 1, and dilation is equal to

9

2 for embedding the edges between level h-1 and level h of QTh. □

5. Conclusions

We have presented two simple but effective algorithms for embedding quadtrees

into hypercubes. First, we have shown hat a complete quadtree of height h (h≧1) can
be embedded into a (3(h-1)+4)-dimensional hypercube, or into a smaller incomplete
hypercube IH(3(h-1)+3, 3(h-2)+4), so that the adjacency of the complete quadtree is
preserved. Then a complete quadtree of height h can be embedded into an incomplete
hypercube IH(2h, 2(h-1), …,2 ,0) with expansion 1, congestion 2 and dilation 3.

Reference

1. T. Leighton, Introduction to parallel Algorithms and Architectures: Array, Tree,

Hypercubes (Morgan Kaufmann, Reading, MA,1992).
2. H. P. Katseff, Incomplete Hypercubes, IEEE Trans Computer 37 (1988) 604-608.
3. N. F. Tzeng, H. L. Cheng and P. J. Chuang, Embeddings in Incomplete Hypercube,

Proc. of Int. Conf. on Parallel Processing 3 (1990) 335-339.
4. C. T. Ho and S. L. Johnsson, Dilation d Embedding of a Hyper-Pyramid into a

Hypercube, Proc. of the Supercomputing’89 (1989) 294-303.
5. N. Krishnakuma, V. G. Hegde and S. S. Iyengar, Fault Tolerant Based Embedding

of Quadtrees into Hypercubes, Proc. of Int. Conf. on Parallel Processing 3 (1991)
244-249.

6. Q. F. Stout, Hypercubes and Pyramids, Pyramidal Systems for Computer Vision,
(Springer-Verlag, 1986) 75-89.

7. S. N. Yang and R. R. Lee, IEEE Region 10 Conference, Tencon 92 11th-13th (1992)
131-135.

8. F. Dehne, A. G. Ferreira and A. Rau-Chaplin, Efficient Parallel Construction and
Manipulation of Quadtrees, Proc. of Int. Conf. on Parallel Processing 3 (1991)
255-262.

9. H. Samet, The Quadtree and Related Hierarchical Data Structures, Computing
Surveys 16 (1984) 187-260.

10

	Abstract
	Abstract
	Reference

