Optimal Independent Spanning Trees on Hypercubes

Shyue-Ming Tang and Yue-Li Wang

All correspondence should be addressed to Professor Yue-Li Wang, Department
of Information Management, National Taiwan University of Science and
Technology, 43, Section 4, Kee-Lung Road, Taipei, Taiwan, Republic of China

(e-mail: ccdir@mail.ntust.edu.tw).

This work was supported by the National Science Council, Republic of China,
under Contract 91-2213-E-011-043.

Abstract

Two spanning trees rooted at some vertex 7 in a graph G are said to be
independent if for each vertex v of G, v#r, the paths from 7 to v in two trees are
vertex-disjoint. A set of spanning trees of G is said to be independent if they are
pairwise independent. A set of independent spanning trees is optimal if the
average path length of the trees is minimum. Any k-dimension hypercube has k&
independent spanning trees rooted at an arbitrary vertex. In this paper, a linear
time algorithm is proposed to construct £ optimal independent spanning trees on

a k-dimension hypercube.

Keywords: independent spanning trees, hypercube, fault-tolerant broadcasting,

product graph.

1. Introduction

A k-dimension hypercube, denoted by Qf, is a graph G = (V, E) with V' =
{0,1,2,...,2"-1}yand E = {(u,v) | v O u=2', 0 < i < k—1}, where (I denotes a k-bit
exclusive or operation. Thus, if & is a positive integer, O is both k-connected
and k-regular. Meanwhile, the hypercube is a well-known class of graphs which
may be described in terms of product operation, i.e., Qf = Op—1 X K7 , and 01
= K7 is a complete graph with two vertices [4]. For an example, Q4 is shown in

Figure 1.

Figure 1 An example 4-dimension hypercube Q4 .

Hypercubes (or hypercube networks) are important due to their simple
structure and suitability for developing algorithms [1, 2, 6, 12, 13, 14, 17, 21].
There are commercially available parallel computers, such as nCUBE [18], CM-
5 [8.9], and iPSC [19], which are equipped with the hypercube multiprocessors
architecture. Therefore, it is valuable to investigate the communication problems
on hypercubes.

A set of paths connecting two vertices in a graph is said to be internally

disjoint if any pair of paths in the set have no common vertex except the two end

2

vertices. Considering a graph G=(V,E), a tree T is called a spanning tree of G if
T is a subgraph of G and T contains all vertices in V. Two spanning trees of G
are said to be independent if they are rooted at the same vertex, say r, and for
each vertex v # r, the two paths from 7 to v, one path in each tree, are internally
disjoint (or called vertex-disjoint). A set of spanning trees of G is said to be
independent if they are pairwise independent. For example, four independent
spanning trees of the hypercube Q4 are shown in Figure 2. For each vertex v [J

{1,2,...,15}, four paths from 0 to v, one path in each tree, are internally disjoint.

Figure 2 Four independent spanning trees on Q4 .

The study on independent spanning trees has applications in fault-tolerant
protocols for distributed computing networks. For example, broadcasting in a
network is sending a message from a given node to all other nodes in the

network. A fault-tolerant broadcasting protocol can be designed by means of

independent spanning trees [3,11]. The fault-tolerance is achieved by sending k&
copies of the message along k independent spanning trees rooted at the source
node. If the source node is faultless, this scheme can tolerate up to k—1 faulty
nodes.

In [11], Itai and Rodeh gave a linear time algorithm for finding two
independent spanning trees in a biconnected graph. In [5], Cheriyan and
Maheshwari showed that, for any 3-connected graph G and for any vertex r of G,
three independent spanning trees rooted at » can be found in O(|V]|E|) time. In
[23] and [15], the authors conjectured that any k-connected graph has k&
independent spanning trees rooted at an arbitrary vertex ». In [10], Huck has
proved that the conjecture is true for the class of planar graphs. The conjecture is
still open for arbitrary k-connected graphs with k> 3.

In [20], Obokata et al. mentioned that an k-dimension hypercube is an -
channel graph and has & independent spanning trees rooted at any vertex.
According to their scheme, an k-dimension hypercube Qf can be viewed as the
product graph of Of—1 and K7, and k independent spanning trees on QJf can be
constructed recursively from k-1 independent spanning trees on Qf—1. Four
independent spanning trees on (J4 shown in Figure 2 are constructed by
Obokata's algorithm that will be introduced in Section 3. However, the tree set
constructed by Obokata's algorithm is not optimal in terms of average path
length when k£ > 3. To make up the shortcoming, in this paper we propose an
algorithm to construct k& optimal independent spanning trees on a k-dimension
hypercube.

The remaining part of this paper is organized as follows. In Section 2, we
introduce some notation and define the optimal independent spanning trees
rooted at a vertex in a given graph. In Section 3, we propose an algorithm for
constructing k optimal independent spanning trees on a k-dimension hypercube.
In Section 4, we give the correctness proof for the algorithm. The last section

contains our concluding remarks.

2. Definition of Optimal Independent Spanning Trees

Let dg(u,v) denote the distance, i.e., the number of edges, between vertices
u and v in G. The height of a tree T rooted at vertex r is the maximum distance
of the paths from 7 to any other vertices in 7. In [16], the path length of a tree is
defined as the sum of the distance from every vertex to the root of the tree. The
path length is a natural concept when we analyze the search cost of a tree. Let G
be a k-connected graph and S = {71, 7o, ..., Tk} be a set of independent
spanning trees rooted at 7 in G and D(v) denote the average distance from v to r
with respect to S, i.e., D(v) = Z; dri(r,v) / k. Then, we define the average
path length of S as the summation of D(v), for all vV and v#r. That is, the
average path length of S is equal to zvm{r} D(v), or Zf:] va{r} driry) /
k. A set S of independent spanning trees is defined to be optimal if the average
path length of S is minimum. For example, the average path length of the tree set
in Figure 2 is (46+46+46+50)/4 = 47, while the average path length of the tree
set in Figure 3 is (46+46+46+46)/4 = 46. We are going to explain that a set of
independent spanning trees in Figure 3 is optimal since its average path length is
minimum.

We define child(v,i), parent(v,i) as the children set and the parent set,
respectively, of vertex v in 7j of a tree set S. The ancestor set of a vertex v in T7j ,
denoted by ancestor(v,i), is the set of vertices in the path from r to parent(v,i) in
T;. The descendant set of a vertex v in T; , denoted by descendant(v,i), is the set
of all vertices except v in the subtree rooted at v in 7; . The neighborhood of a
vertex v, denoted by N(v), is the set of all vertices which are adjacent with v in a
graph.

A k-dimension hypercube is both k-connected and k-regular. In [22], the
authors proposed a parent exchange scheme to reduce the height of some

independent spanning tree in a k-connected and k-regular graph. A parent

exchange of vertex v with respect to a set of £ independent spanning trees is to
change the parent of v from vertex parent(v,i) to vertex parent(v,T;), where (Tq
Tb ... T§) is a permutation of (1 2 ... k). For example, the tree set in Figure 3
results from a parent exchange (4132) of vertex 14 with respect to the tree set in
Figure 2. That is, the parent of vertex 14 in 7; is changed to parent(14,15) =
parent(14,4) = {15}; the parent of vertex 14 in 7) is changed to parent(14,T%) =

parent(14,1) = {6}; the parent of vertex 14 in 73 remains unchanged; and the

parent of vertex 14 in 7} is changed to parent(6,Ty) = parent(14,2) = {10}.

Figure 3 Four optimal independent spanning trees on Q4 .

A parent exchange may not be beneficial to the height of a set of
independent spanning trees. Let {71*, 75*,... , Tk*} denote the tree set after a
parent exchange. We define the benefit of the parent exchange on some vertex v
for 7 as

benefit(v, /) = (|descendant(v,i)| + 1) (x; — y,),
where x; and y; denote the distance from » to v in 75 and 75* , respectively. A

6

parent exchange affects not only the distance from r to v but also the distance
from r to all descendants of v in 7j. Thus, we have to multiple the distance
change with the number of vertices in the subtree rooted at v in 7.

The total benefit of a parent exchange on vertex v is the summation of the

benefit with respect to the tree set , i.e.,

k
Z benefit(v, 7).

A parent exchange is beneficial if the total benefit of the exchange is
positive. For example, the total benefit of the parent exchange (4132) on vertex
14 with respect to the tree set in Figure 2 is benefit(14,4) = (| descendant(14.,4) |
+1)(5-3)=2x%x2=4,

Based on this definition of a set of optimal independent spanning trees, we

have the following lemma.

Lemma 1. Given a k-connected, k-regular graph G and a set S of independent
spanning trees on G, if there is no beneficial exchange in S, then S is

optimal.

Proof. Suppose the tree set S is not optimal. Let S = {Tl* Ty Tk* } be a set
of optimal independent spanning trees rooted at the same vertex. Since
2,00n (1 D(v) is greater than 2] V\{F}D*(v), there exists at least one vertex u
such that D(u) is greater than D*(u). It turns out that there exists a beneficial
exchange on u with respect to S such that Zkizlbeneﬁt(u,i) is positive. This

contradicts that no beneficial exchange exists in S. Q.E.D.

No beneficial exchange implies a set of optimal independent spanning
trees. However, to determine whether there exists a beneficial exchange in a tree
set is not easy. The following lemma provides a more efficient method to

identify a set of optimal independent spanning trees.

Lemma 2. Given a k-connected, k-regular graph G and a set S of independent
spanning trees rooted at r in G. Let v be a vertex in G, vU{r}IN(r),

and uIN(), if |d(r,u)—d(r,v)| £ 1 for every T (1 S, then S is optimal.

Proof. There is no beneficial exchange for root vertex r and vertices in N(r)
since any parent exchange breaks the independency of S, and thus, is not
feasible. For vertex vI{r}[IN(r) and ulIN(v), since |d{r.u)—d(r,v)| < 1 for a
tree 7 [1 S, the distance from r to u in 7 is the same as (i) the distance from r to
the parent of v, (ii) the distance from 7 to v, or (iii) the distance from 7 to one
child of v. In all of these cases, there is no benefit for v to change its parent
vertex in 7. If this condition holds for every tree in S, then there is no beneficial
exchange on v with respect to the tree set S. Since for tree set S there is no

beneficial exchange on every vertex in G, by Lemma 1, S is optimal. Q.E.D.

In Figure 3, for every vertex v, v[1{0,1,2,4,8}, if u is a neighbor of v in O,
then u is either in the parent layer or in the children layer of v in 7; (i = 1,2,3,4).
That is, |dy(r,v)—dr(r,u)| is always equal to one. It turns out that the set of

independent spanning trees is optimal.

3. Construction of Optimal Independent Spanning Trees

Hypercubes are vertex-symmetric [7]. Without loss of generality, we
simply consider independent spanning trees rooted at vertex 0 of a hypercube.
Before describing our algorithm, we rewrite the algorithm proposed by Obokata

et al. [20] as follows.

Algorithm IST Hypercube(k)
Input: .

Output: A set of k independent spanning trees on Qf .
Method:

Step 1. If k£ is equal to 2, then return path <0,1,3,2> and path
<0,2,3,1> as 77 and T» , respectively.

Step 2. Call IST Hypercube (k-1).

Step 3. Let "1, T, ..., T"k—1 be the k-1 independent spanning trees
on Qf—1 . Construct 71, T", ..., T"k—1 by adding 2*”" to the
value of each vertex in 7"1, 7", ..., T'j—1 -

Step 4. (Construction of 71, 17, ..., Tk—1)

Fori=1 to k-1 do
Construct 7; by connecting the only child of the root in 77;
(ie., vertex 2'") with the corresponding vertex in 7";
(ie., vertex 2+ 2K,
Step 5. (Construction of 7%)
Substep 5.1 (Create the only child of the root)
Connect vertex 0 with vertex 2" .
Substep 5.2 (Create k—1 grandchildren of the root)
Fori=0to k2 do
Connect vertex 2°" with vertex 2'+2" .
Substep 5.3 (Create 2*'—1 leaves)
For every vertex v<2""and v # 0 do
Connect vertex v with vertex v+2*" .
Substep 5.4 (Create 2"~k edges in T by transforming 77)
For every vertex v[1{0,1,2,.... 251 2¥"'+1 2¥'42! | 2k14ok 2
do
Set parent(v,k) = parent(v,1).
Set parent(v,1) = v—25".
enddo

End of Algorithm IST Hypercube

Based on the algorithm, k& independent spanning trees on (Qj are

recursively constructed by combining k-1 pairs of identical spanning trees of

Or-1

and adding one more spanning tree. Let f{n) be the running time of

Algorithm IST Hypercube, where 7 is the number of vertices in Qf , i.e., n = 2%,

Then, we have a recurrence equation that bounds f{n):

fin)=2fin-1)+cn,

where ¢ is a constant. By induction on n, we have f(n) is O(n logn), or O(kn).
Thus, Algorithm IST Hypercube takes linear time to construct £ independent

spanning trees.

Theorem 3. [0bo96] Algorithm IST Hypercube correctly constructs k

independent spanning trees on Qy in O(kn) time, where n = 2~

Four independent spanning trees of Q4 shown in Figure 2 are constructed
by using Algorithm IST Hypercube. Notice that four bold-line edges in 77
result from the construction of four corresponding bold-line edges in 74 . In a k-
connected, k-regular graph, two spanning trees rooted at r are not independent if
any vertex (not r) has the same parent in two trees. Based on Algorithm
IST Hypercube there are 2*"'—k vertices in 77 that must change their original
parents since everyone of them has the same parent in 7% .

By Lemma 1, we know that the tree set in Figure 2 is not optimal since
there exists a beneficial parent exchange on vertex 14, i.e., (4131). Furthermore,
the height of 74 can be reduced from 6 to 5 by doing the parent exchange. For
reducing the height of 7% , we modify Step 5 of algorithm IST Hypercube and

form a new algorithm as follows.

Algorithm OIST Hypercube(k)
Input: .
Output: & optimal independent spanning trees on Qf .
Method:
Step 1. If k£ is equal to 2, then return path <0,1,3,2> and path
<0,2,3,1> as 77 and T» , respectively.
Step 2. Call OIST Hypercube(k—1).
Step 3. Construct 71, 77, ..., Tx—1 by using the same method in Steps
3 and 4 of Algorithm IST Hypercube.
Step 4. (Construction of 7%)
Substep 4.1 Create the only child of the root.
Substep 4.2 Create k—1 grandchildren of the root.
Substep 4.3 Create 2*'-1 leaves.

10

Substep 4.4 (Create 2*"'~k edges in T by transforming 7},)
For every vertex v[1{0,1,2,.... 251 2¥'+1 2¥'42! | 2k14ok 2
do
Let 7 be a tree (1 < x < k—1) in which
dpy(0,v) is minimum among the k-1 trees.
Set parent(v,k) = parent(v,x).
Set parent(v,x) = v—2"" .
enddo
End of Algorithm OIST Hypercube

In Substep 4.4, we choose a 7 , instead of 77 , as a transformed tree. For
example, see Figure 3. We choose 77 as the transformed tree of vertex 14 since
min {d7,(0,14), d1,(0,14), d15(0,14)} = {5, 3, 3} = 3 and x = 2 or 3. Then, we
connect vertex 14 to vertex 10 (i.e., parent(14,2)) in 7% and set parent(14,2) to 6
(=14-8). By maintaining an information of minimum distance for a vertex v, we
can determine the tree 7} in constant time. Thus, Step 4 takes O(n) time and
Algorithm OIST Hypercube totally takes O(kn) time to construct £ independent

spanning trees.

4. Correctness

In this section, we shall prove that Algorithm OIST Hypercube can
construct k optimal independent spanning trees on Qg . Let 71, 72, ..., Tg be the

output of Algorithm OIST Hypercube. We have the following lemmas.

Lemma 4. T, T, ..., and Ty, are spanning trees of QO .

Proof. Since 71, 77, ..., and T}—1 are obtained by using the same method of
Algorithm IST Hypercube, and the transformation step does not affect the
property of a spanning tree, 77, 79, ..., and T—1 are spanning trees of Oy . As
for T}, it is obvious that 2*~1 edges are created in Step 4 and Substeps 4.1, 4.2,

and 4.3 do not create cycle. We only have to prove that no cycle is formed

11

among the edges created by Substep 4.4 of Algorithm OIST Hypercube.

Let (a,b) be an edge created by Substep 4.4 with b = parent(a,k). It means
that there is a tree 7y , 1 < x < k-1, in which dpy(0,a) is minimum among the
k=1 trees and d7y(0,a) > d73(0,b). Suppose that there exist a cycle <a,b,c,..., a>
in Ty . Then, we have d7y(0,a) > dy(0,b) 2 dTy(O,b) > dTy(O,c) 2 dr,(0,c)>... 2
dr(0,a). Since there exists a tree 7, , | <w < k-1, and d73,/(0,a) < d7y(0,a), Ty
is not the transformed tree of vertex a. It is a contradiction. Thus, there is no

cycle is formed in 7% . Q.E.D.

For proving that 77, 7, ..., and T} are pairwise independent, we make use
of the proposition : “7; and T; (i#)) are independent if and only if for every
vertex v in QO , v # 0, ancestor(v,i) n ancestor(v,j) = {0}”. For convenience of
explanation, we divide O into subgraphs 4 and B which are induced by vertex
sets {0,1,2,..., 2"'=1} and {2, 2¥'+1, 242, ..., 25~1}, respectively. Then, 7";
denotes a spanning tree on A, while 7"; denotes a spanning tree on B. Note that

both 4 and B are Q-1 .

Lemma 5. T, 79, ..., and Tx—1 are mutually independent.

Proof. 7; (1 <i < k-1) is constructed by combining 7”; with 7"; and doing
transformation on some vertices. For every vertex v in 4, v # 0, ancestor(v,i) N
ancestor(v,j) = {0} since the two path from v to 0 in 7"; and T T(1sjs k-1) are
internally disjoint. For every vertex v in B, v # 2", ancestor(v,i) n ancestor(v,/)
= {parent(v,i), ..., 4, ¢, ..., child(0,i), 0} n {parent(v), ..., b, d, ..., child(0,/), 0}
= {0} since four vertex sets {parent(v,i), ..., a}, {c, ..., child(0,i)}, {parent(v,)), ...,
b}, and {d, ..., child(0,/)} are mutually disjoint. See Figure 4. In case v = 25/,
ancestor(v,i) N ancestor(v,j) = {2'+2, 271 0} n {25421 271 0} = {0}.

Q.E.D.

12

Figure 4 Two paths from v to 0 in 7; and Iy (Isijs k-1).

Lemma 6. For 1 <i < k-1, Ty and T; are independent.

Proof. Based on Algorithm OIST Hypercube, if one vertex v is the leaf nodes
of Tk, then v J 4, else v J B J{0}. For every vertex v in 4, v # 0, ancestor(v,i)
N ancestor(v,k) = {parent(v,i), ..., child(0.7), 0} n {parent(v,k), ..., child(0,k), 0}
= {0} since {parent(v,i), ..., child(0,i)} [J 4 and {parent(v,k), ..., child(0,k)} O B.
For every vertex v in B, v # 2! see Figure 5. {parent(v,i), ..., a} n
{parent(v,k), ..., child(0,k)} = @ due to the transformation step of the algorithm.
Thus, ancestor(v,i) n ancestor(v,k) = {parent(v,i), ..., a, b, ..., child(0,7), 0} n
{parent(v,k), ..., child(0,k), 0} = {0} since three vertex sets {parent(v,i), ..., a},
{b, ..., child(0,i)}, and {parent(v,k), ..., child(0,k)} are mutually disjoint. In case
v =251 ancestor(v,i) n ancestor(v,k) = {2*'+2"" 2" 0} n {0} = {0}. Q.E.D.

13

Ti Tk

Figure S Two paths fromvto 0 in 7;and 7T} (1 < i< k-1).

Lemma 7. Lemma 2 holsinTy , T, ..., Tk.

Proof. We prove this lemma by induction on &. For k£ = 2, Lemma 2 holds in
both 71 and 7% . Suppose that Lemma 2 holds for k—1. Then we should prove
that Lemma 2 holds for .

For 1 <i< k-1, T;is constructed from 7”; and 7"; . If vertex v 1 4 and v [
{0}00N(0), N(v) consists of k-1 vertices in 7”; and one vertex (v+2*") in T"; .
The optimal property of the k—1 neighbors in 77; retains in 7j . The construction
step makes d73(0,v+2*") = d73(0,v) = 1. Similarly, if vertex v 0 B and v # 2,
N(v) consists of k—1 vertices in 7"; and one vertex (v=2"") in 7"; . The optimal
property of the k-1 neighbors in 7"; retains in 7; . The construction step makes
dri(0,v) = d3(0,v—2*") = 1. Since the transformation step do not affect the
distance from any vertex to the root, Lemma 2 holds in 77 .

In Ty, if v O B and v # 2", then there exists a T (1 < x < k-1) such that
dri(0,v) = d7y(0,v) and the distance is minimum among the tree set. If v [1 4

and v # 0, then v is a leaf node and its parent is set to v+2*"'. It turns out that

14

|dTr(0,u) — d7p(0,v)| = 1 for each u [J N(v) since we have proved that |d7;(0,u) —
dri(0,v)|=1(1<i<k-1). Thatis, Lemma 2 also holds in 7% . Q.E.D.

We summarize Lemmas 4, 5, 6, and 7 as Theorem 8.

Theorem 8. Algorithm OIST Hypercube correctly construct k optimal

independent spanning trees on Qy, in O(kn) time, where n = 2*.

S. Concluding remarks

In this paper, we present a linear time algorithm for constructing &
independent spanning trees of a k-dimension hypercube. The height of every
spanning tree is k+1. This result is optimal since the average path length of the
tree set is minimum.

There are many vertex-symmetric graphs, such as star graphs, recursive
circulant graphs, and so on. Efficient algorithms to find independent spanning
trees for these classes of graphs are valuable. New skills for verifying the
independency of spanning trees rooted at a vertex are also eagerly needed when

developing these algorithms.

References

[1] B. Abali, F. Ozguner, and A. Bataineh, Balanced Parallel Sort on
Hypercube Multiprocessors, [EEE Transactions on Parallel and
Distributed Systems, Vol. 4, No. 5, 1993, pp.572-581.

[2] C. Aykanat, F. Ozguner, F. Ercal, and P. Sadayappan, Iterative Algorithms
for Solution of Large Sparse Systems of Linear Equations on Hypercubes,
IEEE Transactions on Computers, Vol. 37, No. 12, 1988, pp.1554-1567.

[3] F. Bao, Y. Igarashi, and S.R. Ohring, Reliable Broadcasting in Product

15

[4]

[5]

[6]

[7]
[8]
[9]

[10]

[11]

[12]

[13]

[14]

Networks , Discrete Applied Mathematics, Vol. 83, 1998, pp.3-20.

G. Chartrand and O. R. Oellermann, Applied and Algorithmic Graph
Theory, McGraw-Hill, Inc., 1993, pp.29-30.

J. Cheriyan, S. N. Maheshwari, “Finding Nonseparating Induced Cycles
and Independent Spanning Trees in 3-connected Graphs,” Journal of
Algorithms 9, 1988, pp.507-537.

A. K. Gupta and S. E. Hambrusch, Multiple Network Embeddings into
Hypercubes, Journal of Parallel and Distributed Computing, Vol. 19, 1993,
pp.73-82.

Frank Harary, “Graph Theory,” Addison-Wesley, 1968, pp.171-173.

W. D. Hillis. The Connection Machine, MIT Press, 1985.

W. D. Hillis and L. W. Tucker, The CM-5 Connection Machine: A
Scalable Supercomputer, Communications of the ACM, Vol. 36, No. 11,
1993, pp.30-40.

A. Huck, “Independent Trees in Planar Graphs,” Graphs and
Combinatorics 15, 1999, pp.29-77.

A. Itai and M. Rodeh, The Multi-tree Approach to Reliability in
Distributed Networks, in Proceedings of the 25th Annual IEEE Symposium
on Foundation of Computer Science, 1984, pp.137-147. (Seen also in
Information and Computation, Vol. 79, 1988, pp.43-59.)

S. L. Johnsson, Communication Efficient Basic Linear Algebra
Computations on Hypercube Architectures, Journal of Parallel and
Distributed Computing, Vol. 4, 1987, pp.133-172.

S. L. Johnsson and C. T. Ho, Optimum Broadcasting and Personalized
Communication in Hypercubes, IEEE Transactions on Computers, Vol. 38,
No. 9, 1989, pp.1249-1268.

J. F. Jenq and S. Sahni, All Pairs Shortest Paths on a Hypercube
Multiprocessor, Proceedings of the International Conference on Parallel

Processing, 1987, pp.713-716.

16

[15]

[16]

[17]

[18]
[19]

[20]

[21]

[22]

[23]

Samir Khuller and Baruch Schieber, “On Independent Spanning Trees”,
Information Processing Letters 42, 1992, pp.321-323.

D. E. Knuth, The Art of Computer Programming, Vol. 3: Sorting and
Searching, Addison-Wesley, 1973, pp.194-198.

F. T. Leighton, Hypercubes and Related Networks, Chapter 3 in
Introduction to Parallel Algorithms and Architectures: Arrays, Trees,
Hypercubes, Morgan Kaufmann Publishers, Inc., 1992.

nCUBE Corporation, nCUBE 28 Programmer's Reference Manual, 1992.
S. F. Nugent, The iPSC/2 Direct-connect Communications Technology,
Proceedings of the Third Conference on Hypercube Concurrent Computers
and Applications, Pasadena, 1988, pp.51-60.

K. Obokata, Y. Iwasaki, F. Bao, and Y. Igarashi, “Independent Spanning
Trees of Product Graphs,” Lecture Notes in Computer Science 1197, 1996,
pp-338-351.

Y. Saad and M. H. Schultz, Topological Properties of Hypercube, IEEE
Transactions on Computers, Vol. 37, No. 7, 1988, pp.867-872.

S. Tang, , Yue-Li Wang, and Jing-Xian Lee, “On the Height of
Independent Spanning Trees of A k-connected k-regular Graph,”
Proceedings of National Computer Symposium, Taipei, 2001, pp.A159-
Al64.

A. Zehavi, A. Ttai, “Three Tree-paths,” Journal of Graph Theory 13, 1989,
pp.-175-188.

17

