
Constructing evolutionary trees from

rooted triples

Submitted to

Workshop on Algorithms and Computational Molecular Biology

Corresponding author:

Bang Ye Wu

Dept. of Computer Science and Information Engineering,

Shu-Te University, YenChau, Kaohsiung, Taiwan 824, R.O.C.

E-mail: bangye@mail.stu.edu.tw

TEL: 07-6151000-4612

FAX: 07-6151000-4699

Abstract

In this paper, we propose a new heuristic algorithm for the max-
imum consensus tree of rooted triples. By the experimental results,
we show that the algorithm is better than the three previous heuris-
tics and runs in reasonable time. Furthermore, by the algorithm, it is
possible to make trade-off between the running time and the quality
of the solution. We also investigated the computational complexity of
the maximum compatible set problem. We show that it is NP-hard to
find the maximum vertex set compatible with given rooted triples.

Key Words: computational biology, evolutionary tree, heuristic algorithm,

NP-nard

1

Constructing evolutionary trees from rooted triples

Bang Ye Wu
Dept. of Computer Science and Information Engineering,

Shu-Te University, YenChau, Kaohsiung, Taiwan 824, R.O.C.
E-mail: bangye@mail.stu.edu.tw

1 Introduction

Evolutionary trees are used to present the relationship among a set of

species. An evolutionary tree is a rooted tree, in which each of the leaves

corresponds to one species and each of the internal nodes is the inferred com-

mon ancestor of the species in the subtree. Constructing evolutionary trees

is an important problem in computational biology and there are different

approaches. A rooted triple, or triple for brevity, represents the relationship

of three species. A triple (a(bc)) specifies lca(a, b) = lca(a, c) → lca(b, c),

in which lca(a, b) is the lowest common ancestor of the two leaves and the

relation → means ”is an ancestor of ”. We say that a tree satisfies a triple

or a triple is compatible with a tree if the relationship represented by the

triple is satisfied in the tree. A triple set is compatible if there exists a tree

satisfies all the triples in the set, and the tree is called as the exact consensus

tree.

Given a set of triples, the existence of the exact consensus tree can

be determined in polynomial time. For a set of constraints of the form

lca(a, b) → lca(c, d), the algorithm [1] determines if there is a tree satisfying

2

all the constraints and finds such a tree if it exists. A triple (a(bc)) is

equivalent to lca(a, c) → lca(b, c) and therefore the problem of determining

the existence of the exact consensus tree from triples is also polynomial-

time solvable. An algorithm for constructing all exact consensus trees from

triples was also developed [6]. Unfortunately, it is often that the given triples

are not compatible and it is impossible to find the exact consensus tree. It

motivates the study of the optimization problems of the consensus trees.

We considered two optimization problem. Given a set Y of triples over

species set V , the maximum consensus tree (MCTT) problem is to construct

a tree with leaf set V such that the satisfied triples is as many as possible,

and the maximum compatible set (MCST) problem is to find the compatible

species subset of maximum cardinality. A species subset U is compatible

with a triple set Y if there exists a tree with leaf set U such that all the

triples over U are satisfied. As an example, Figure 1 illustrates the MCTT

of four triples over four species. The four triples are not compatible since

there does not exists any evolutionary tree satisfying all the four triples. The

maximum consensus tree shown in the figure satisfies all the triples except

(c(bd)). Set {a, b, c} is a maximum compatible set since there is only one

triple (a(bc)) over the three species and the set is obviously compatible. In

fact, in this example, any subset of three species is a maximum compatible

set.

The problem to find the maximum consensus tree from constraints of the

form lca(a, b) → lca(c, d) was shown to be NP-hard and a 3-approximation

3

a
b
 c
 c
a
 d

b
a
 d
 c
b
 d

a
 d
 b
 c

Figure 1: The maximum consensus tree of four rooted triples (a(bc)), (c(ad)),
(b(ad)), and (c(bd)).

algorithm was proposed [3]. The approximation algorithm also works for the

MCTT problem but the complexity of the MCTT problem was left open.

Recently it was shown that the MCTT problem is also NP-hard, and exact

and heuristic algorithms were developed [8]. The NP-hardness of the MCTT

problem was also shown by Jansson independently [4]. Similar problems for

unrooted trees were also investigated. A quartet represents the relationship

of four species on an unrooted tree. To determine if there is a tree satisfying

a given set of quartets were shown to be NP-complete [7]. Therefore the

corresponding optimization problem is obviously NP-hard.

In this paper, we propose another heuristic algorithm for the MCTT

problem. The performance was tested by experiments. By the experimental

results, the heuristic algorithm is better than the previous ones and runs in

reasonable time. We also show that the MCST problem is NP-hard.

4

2 A heuristic algorithm for the MCTT

In this section, we present a heuristic algorithm for the MCTT. The algo-

rithm is derived from the exact algorithm [8] and the performance is analyzed

by comparing with the exact algorithm and previous heuristic algorithms.

For the completeness, we first briefly introduce those algorithms.

2.1 The exact algorithm

The algorithm Exact MCTT uses the dynamic programming strategy and

is based on the following formula:

score(V) = max
(V1,V2)∈B(V)

{score(V1) + score(V2) + w(V1, V2)} (1)

For a species set V , B(V) is the set of all bipartitions of V . The value

score(V) is the maximum number of satisfiable triples over V , and w(V1, V2)

of two disjoint sets is the number of triples (x(v1v2)) in which v1 ∈ V1,

v2 ∈ V2 and x /∈ V1 ∪ V2. The algorithm computes the score of a set by

trying all of its bipartitions. A set V corresponds to an internal node of the

evolutionary tree and two subsets of the best bipartition correspond to the

two subtrees of the internal node. By computing the scores of subsets with

cardinalities from small to large, the algorithm takes O((m + n2)3n) time

and O(2n) space.

2.2 Previous heuristics

We introduce the following three heuristics proposed in the previous papers.

5

BOSF: The Best-One-Split-First algorithm [3] uses the top-down splitting

strategy. The algorithm repeatedly split the species set into bipar-

titions of the form (V1, V2) in which V1 contains only singleton. There-

fore the algorithm always construct a linear tree. In each iteration,

the split species is chosen greedily by finding the maximum ratio of

the number of satisfied triples to the number of conflicted triples.

MCSF: The Min-Cut-Split-First algorithm [3] also uses the top-down split-

ting strategy. The algorithm is derived from the exact algorithm for

compatible triples [1]. For compatible triples, it is always possible to

find a bipartition without conflicting any triple in each iteration. For

uncompatible triples, the MCSF algorithm repeatedly split the species

set into the bipartition such that the number of conflicted triples is

minimized. The bipartition in each iteration is found by computing

the minimum cut of an auxiliary graph.

BPMF: The Best-Pair-Merge-First algorithm [8] uses the bottom-up merging

strategy. The algorithm repeatedly merges two subtrees with best

score. There are six different scoring functions are tested in the pa-

per. Basically, in each iteration, it tries to maximize the number of

satisfied triples and to minimize the number of conflicted triples. It

was reported that none of the six scoring functions is absolutely better

than the others. In our experiments, we ran the six algorithms for each

data instance and took the best one as the result of the algorithm.

6

2.3 The heuristic algorithm

The Dynamic-Programming-With-Pruning (DPWP) algorithm, the heuris-

tic algorithm we propose in the paper, is derived from the exact algorithm

with dynamic programming strategy. The exact algorithm runs in exponen-

tial time since the number of subsets is exponential. Instead of all subsets,

we use an array Qi to keep at most K subsets for each possible cardinality

i. The algorithm merges the subsets with cardinalities from small to large.

When a subset V of cardinality i is considered, it is merged with each of the

subsets in Qj for each j ≤ i. The resulted set is then considered to be put

into the array. If the set is already in the array, we keep the best score of

the set. Otherwise it is put into the array. However, if the array is full, the

set with minimum score is discarded. The scoring function we used is s−c
s+c ,

in which s is the number of satisfied triples and c is the number of conflicted

triples. The score of two intersecting sets is −∞ since the merge is invalid.

The algorithm is as follows.

Algorithm DPWP(K)

Input: A set Y of rooted triples over species set U of cardinality n.

All triples are stored in a matrix M of lists.

M [i, j] is a list of the elements of set {x|(x(ij)) ∈ Y }.

Output: A rooted evolutionary tree T .

Step 1: (Initialization)

7

Array Q1 contains all subsets of singleton,

and Qi is empty for 2 ≤ i ≤ n.

For each subset V in the arrays, score(V) is the currently best

score and partition(V) is the bipartition corresponding to score(V).

Step 2: Compute the number of satisfied triples.

For i=1 to n− 1 do

For j=1 to i do

For each V1 in Qi and V2 in Qj do

Compute the score score(V1, V2);

Search Qi+j for V = V1 ∪ V2;

If V already exists, keep the better score;

Else put V into Qi+j ;

If |Qi+j | > K, delete the set with smallest score;

Step 3: Construct the tree by backtracking partition(U).

Step 4: Output the tree.

The complexity of the algorithm is given in the next lemma. Since it is

obvious, we ignore the proof.

Lemma 1: The algorithm DPWP runs in O(n2K3) time and uses O(nK)

space.

8

2.4 The experimental results

2.4.1 The environment of the experiments

Both the exact and heuristic algorithms were coded in C language and

ported on a personal computer equipped with Intel Pentium IV-1.8 CPU

and 128M bytes memory. The platform is Microsoft WIN32. The triples

were generated randomly over all species. In this subsection, n is the number

of species, m is the number of triples, and K is the array size of the DPWP

algorithm. We ran the exact algorithm only for n ≤ 20, and the other

heuristics for n ≤ 30. For the exact algorithm with n = 20, only few

instances were tested. For the other cases, over hundreds of data were

tested.

2.4.2 Running time

The heuristic algorithms BOSF, MCSF, and BPMF run quickly. In all of

our tests, the number of species is no more than 30, and the three algorithm

obtained results within one second. We measured the running time of the

exact algorithm for n from 12 to 20, and the time of DPWP for n from 12

to 30. The result is shown in Table 1.

Table 1: The running time (second)
12 15 18 20 24 27 30

Exact 1 18 752 8314 NA NA NA
DPWP(300) 1 2 5 7 16 21 34
DPWP(600) 2 7 13 19 54 84 130
DPWP(900) NA 15 34 78 128 201 273

9

2.4.3 Performances

The performance ratios of the heuristic algorithms are shown in the follow-

ing tables, The ratio is obtained by opt(Y)/heu(A, Y), where opt(Y) is the

maximum number of satisfiable triples in Y and heu(A, Y) is the number

of triples satisfied by the tree found by heuristic algorithm A. The column

labeled by DPWP(K) shows the results for the algorithm DPWP with ar-

ray size K. Table 2 shows the worst ratios for different numbers of triples.

Table 3 and 4 show the average and worst ratios for different number of

species. Table 5 shows how much the DPWP algorithm improves the previ-

ous heuristics. The ratio (in percentage) is calculated by (x−y)/y, in which

x is the result (number of satisfied triples) by the DPWP and y is the best

one of the results by BPMF, BOSF, and MCSF.

Table 2: The worst error ratios for different numbers of triples with n = 15
BPMF BOSF MCSF DPWP(300) DPWP(600) DPWP(900)

m = 200 1.1630 1.2250 1.4000 1.0106 1.0000 1.0000
m = 400 1.1081 1.1486 1.3248 1.0066 1.0000 1.0063
m = 600 1.0885 1.1270 1.2321 1.0048 1.0000 1.0000

Table 3: The average error ratios for different numbers of species
BPMF BOSF MCSF DPWP(300) DPWP(600) DPWP(900)

n = 12 1.0511 1.0835 1.1699 1.0000 1.0000 1.0000
n = 15 1.0635 1.0932 1.1889 1.0003 1.0000 1.0000
n = 18 1.0676 1.0903 1.1614 1.0008 1.0005 1.0001
n = 20 1.0849 1.0920 1.1838 1.0026 1.0000 1.0000

2.5 Discussion

By the experimental results, we observed the following.

10

Table 4: The worst error ratios for different numbers of species
BPMF BOSF MCSF DPWP(300) DPWP(600) DPWP(900)

n = 12 1.1707 1.2727 1.5484 1.0000 1.0000 1.0000
n = 15 1.1630 1.2250 1.4000 1.0106 1.0000 1.0064
n = 18 1.1463 1.1870 1.3738 1.0084 1.0068 1.0068
n = 20 1.1111 1.1301 1.2222 1.0078 1.0000 1.0000

Table 5: The improvement by DPWP
n 18 21 24 27 30
Max 10.0% 14.0% 14.3% 15.9% 14.6%
average 6.0% 7.3% 8.3% 9.0% 9.3%

• For all data in our tests, the DPWP algorithm performs better than

the previous heuristics.

• The DPWP algorithm finds optimal solution in most of the cases

for small data instances. In our tests, the percentages of that the

DPWP(900) found the optimal solution are 100% for n = 12, 99.3%

for n = 15, and 98% for n = 18.

• The running time of the DPWP algorithm is much more reasonable

than that of the exact algorithm.

• By the DPWP algorithm, it is possible to make trade-off between the

running time and the quality of solution.

3 The computational complexity of MCST

In this section, we shall show the NP-hardness of the MCST problem by

reducing the Feedback Vertex Set problem to it. We first give the definition

of the Feedback Vertex Set problem.

11

Definition 1: Let G = (V, A) be a directed graph. A subset V ′ of V is a

feedback vertex set if every directed cycle in G contains at least one vertex

in V ′. Given a directed graph G = (V,A) and an integer k, the Feedback

Vertex Set problem asks if there is a feedback vertex set V ′ with |V ′| ≤ k.

The Feedback Vertex Set problem is NP-complete [5, 2].

Definition 2: Let Y be a set of triples over vertex set V and U ⊂ V .

The reduced triple set YU is the subset of triples over U , i.e. YU = {(a(bc) :

a, b, c ∈ U} ∩ Y . A vertex set U is compatible with Y if the reduced triple

set YU is compatible.

Definition 3: Given a set Y of rooted triples over species set V , the

maximum compatible vertex set (MCST) problem looks for a subset U of V

such that U is compatible with Y and the cardinality of U is maximum.

The computational complexity is shown in the next theorem.

Theorem 2: The MCST problem is NP-hard.

Proof: We reduce the Feedback Vertex Set problem to the MCST prob-

lem. Given an instance G = (V, A) and k of the Feedback Arc Set problem,

we construct a set of rooted triples Y and show that the directed graph

G contains a feedback vertex set of cardinality k if and only if there is a

compatible vertex set of cardinality 2n− k, where n = |V |.

Let xi /∈ V , 1 ≤ i ≤ n. For every arc (u, v) ∈ A, we construct n

corresponding triples (u(xiv)) in Y , where 1 ≤ i ≤ n. Suppose that U is a

12

feedback vertex set of G and |U | = k. Removing U and all arcs incident to

any vertex in U from G results in a directed acyclic graph G1 = (V \U,A1).

Since G1 contains no cycle, we may assign each vertex v a label f(v) ∈

{1 . . . p} such that f(u) < f(v) for every (u, v) ∈ A1, where p ≤ |V | is

number of nodes of the longest path in G1. Let Vi = {v|f(v) = i} and

Ti be an arbitrary evolutionary tree of Vi for 1 ≤ i ≤ p. We construct an

evolutionary tree T of V ∪X as in Figure 2. For any arc (u, v) ∈ A1, since

f(u) < f(v), the corresponding triples (u(xiv)) in Y is compatible with

T . Therefore all triples corresponding to arcs in A1 are satisfied, and the

cardinality of the compatible vertex set is |V \ U |+ |X| = 2n− k.

Conversely suppose that the cardinality of the maximum compatible

vertex set is 2n − k. Let U = U1 ∪ X1 be the maximum compatible set,

where U1 ⊂ V and X1 ⊂ X. First we show that X1 = X. If X1 is empty,

the cardinality of U1 is at most n. However, there is a trivial compatible

set consisted of X and any two vertices in V . We conclude that X1 is not

empty. If there exists some xi /∈ X1 and xj ∈ X1, U1 is not maximum since

we may insert xi into the tree without conflicting any triple. Consequently

X1 = X.

As in Figure 2, let the path from root to x be (r1, r2, . . . , rp, x) and Vi

denote the set of leaves whose lowest common ancestor with x is ri. For

each triple (u(xv)) ∈ YU in which u ∈ Vi and v ∈ Vj , since lca(u, x) =

lca(u, v) → lca(x, v), we have j > i. Let A1 be the set of arcs corresponding

to the triples in YU , that is A1 = {(u, v)|(u(xv) ∈ YU}. Consider the graph

13

T
1

T
2

T
p

....

x

r
p

r
1

r
2

....

V
p

V
3

V
2

V
1

x
1
,x
2
,...

Figure 2: Transformation of an instance of the Feedback Vertex Set problem
into that of the MCST problem. Left: the labeling of a directed acyclic
graph; Right: A maximum consensus tree of the MCST problem.

G1 = (U1, A1) and label each vertex v with i if v ∈ Vi. Since all the arcs

in A1 are from vertices with small labels to larger labels, G1 contains no

directed cycle. Therefore V \ U1 is a feedback vertex set of G and contains

k vertices.

The above transformation reduces the Feedback Vertex Set problem to

the MCST problem in polynomial time. Since the Feedback Vertex Set

problem is NP-complete, the MCST problem is NP-hard.

4 Concluding remarks

In this paper, we propose a new heuristic algorithm DPWP for the MCTT

problem. By the experimental results, we show that the algorithm performs

better than the previous heuristics and runs in reasonable time. The DPWP

algorithm can be easily modified to work for the weighted version of the

14

MCTT problem, in which each triple has a weight and we want to find the

tree such that the total weight of the satisfied triples is maximized. All the

algorithms in the paper can be extended to the case that the input is a set

of trees not restricted to triples by transforming the input trees into triples.

However, the result is a tree satisfying maximum number of triples but not

number of input trees. We are going to open the source program when the

release version is completed.

The exact algorithm for the MCTT also works for the MCST. Since the

decision version of the MCST is polynomial-time solvable, another approach

to the exact solution of the MCST is to determine the compatibility of each

subset. Good heuristic and approximation algorithms will be interesting.

References

[1] A.V. Aho, Y. Sagiv, T.G. Szymanski and J.D. Ullman, Inferring a tree

from lowest common ancestors with an application to the optimization

of relational expressions, SIAM Journal on Computing, vol. 10, no. 3,

pp. 405–421, 1981.

[2] M.R. Garey and D.S. Johnson, Computers and Intractability: A guide

to the theory of NP-Completeness, W.H.Freeman and Company, San

Fransisco, 1979.

[3] L. Gasieniec, J. Jansson, A. Lingas and A. Ostlin, On the complex-

ity of computing evolutionary trees, in Proceedings of the 3th Annual

International Conference COCOON’97, pp.134–145, 1997.

15

[4] J. Jansson, On the complexity of inferring rooted evolutionary trees, in

the Proceedings of the Brazilian Symposium on Graph, Algorithms, and

Combinatorics (GRACO01), Fortaleza, Electronic Notes in Discrete

Mathematics, Vol. 7, pp. 121–125, Elsevier, 2001.

[5] R.M. Karp, Reducibility among combinatorial problems, in R.E. Miller

and J.W. Thatcher (eds.) Complexity of Computer Computations,

Plenum Press, New York, pp. 85–103, 1972.

[6] M.P. Ng and N.C. Wormald, Reconstruction of rooted trees from sub-

trees, Discrete Applied Mathematics, vol. 69, pp. 19–31, 1996.

[7] M. Steel, The complexity of reconstructing trees from qualitative char-

acters and subtrees, Journal of Classification, vol. 9, pp. 91–116, 1992.

[8] B.Y. Wu, Constructing the maximum consensus tree from rooted

triples, to appear in Journal of Combinatorial Optimization.

16

