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Abstract

Recently the relationships among cryptographic criteria of boolean functions, including
balancedness, the algebraic degree, nonlinearity, propagation criterion and correlation im-
munity, have been widely investagated. In this paper, we will present two constructions
of n-variable boolean functions under consideration of resiliency and propagation criterion
simultaneously.

1 Introduction

Symmetric-key cryptography system is the most widely used by industrial, financial and com-
mercial sectors all over the world. It has many advantages of high performance, low cost imple-
mentation, and easy encryption or decryption. Usually, the Symmetric-key cryptography system
can be roughly divided into two classes, block ciphers and stream ciphers. The former contains
AES(Advanced Encryption System), RC6, DES and so on, whereas the LFRS-based stream
cipher and SEAL belong to the latter. Although there are lots of different cipher systems, a core
component of these systems is the cryptographic boolean functions. So the design and analysis
of the cryptographic boolean functions is vitally important.

In the design of a good cryptographic boolean function, the following criteria of the crypto-
graphic boolean functions are considered: (1)algebraic degree, (2)balancedness, (3)correlation
immunity, (4)nonlinearity, and (5)propagation criterion.

Among these criteria, most researches focus on nonlinearity, correlation immunity, propa-
gation criterion and their relationships. In [PLLT90], Linden et al show the relation between
the Walsh-Hadamard transformation and an n-variable boolean function satisfying the propa-
gation criterion with degree ¢, denoted with PC(t) which means if f changes with probability %
whenever the input x changes at least one and most t coordinates. A general method given in
[KT97] uses linear codes to design functions satisfying PC(¢). In recent researches, the explicit
and simple lower bound on the nonlinearity Ny of f with PC(1) is established in [ZZ00],i.e.,
Nf > 2n71 _ 2n—1—%_

Correlation immunity, introduced by Siegenthaler in 1984 [T.S84], has long been one of
critical indicator of the cryptographic boolean function on stream cipher. A boolean function
f with n-variables is called the m-th-order correlation immune function if when we keep m
variables of input constant, the statistical distribution of output is equivalent to the statistical



distribution of f. If f is the m-th order correlation immune function and is balanced, f is also
called an m-resilient function. The spectral analysis of a boolean function f satisfying correlation
immunity of order m was first presented in [GZMS88a]. Moreover, the designs of the boolean
functions with good correlation immunity have been proposed in [SZZ93|[CLLS96]. And the
upper bound of nonlinearity, Ny < on—1 _ 2"_1_%, is characterized in [Sar00].

The propagation criterion goes against correlation immunity and the same situation exists
between correlation immunity and nonlinearity. So there is no boolean functions satisfying
all of good criteria we mentioned above. As a consequence, the relationships between these
criteria have been widely investigated. If f is m-th order correlation immune, nonlinearity
Ny < n=1_9m for m > g—land Ny < on=1_95-1_9m form < % —1[Sar00]. The relationship
between the order of correlation immunity ,m, and the degree of propagation criterion, ¢, have
been provided in [Car93] and [ZZ01]. Moreover, the upper bound of sum of m and t, m+t < n,
has been shown in [ZZ00].

This paper, we want to established a construction of an n-variable boolean function under
of consideration of balancedness, the correlation immunity and propagation criterion simultane-
ously. We present two new constructions for this idea. One is to modified the construction of a
boolean function which is balanced and m-th order correlation immune [CLLS96], and the other
is through the concept of the equivalence class of boolean functions [BW74]. We also present
the link between the equivalence class of boolean functions and cryptographic criteria.

The organization of the rest of the paper is as follows. In Section 2, we provide the basic
definitions and notations and show the definition of the Walsh-Hadamard transform. It is the
most powerful tool for analyzing boolean functions. We use this tool to describe the definitions
and properties of cryptographic criteria. In Section 3, we present a new construction of n-variable
and m-resilient boolean function which also satisfies PC(t). Then we introduce the concept of
equivalence classes of boolean functions. Based on this, we present another new construction of
n-variable and m-resilient boolean function which also satisfies PC(t).

2 Preliminaries and Notations

This section will provide some notations and definitions. We also introduce the cryptographic
criteria and the powerful tool-Walsh-Hadamard Transform.

2.1 Boolean functions

We say f is an n-variable boolean function if f is the function from {0,1}" to {0,1} (f :
{0,1}™ — {0,1}). For convenience, we use f(x) to represent f with n input variables, f(z) =
f(x1,29,...,2,). The truth table of f is a (0,1)-valued row vector with length 2", denoted by

%“f = (f(")/())),f(")/l),...,f("}/gn_l)) where 79 = (0,0,...,0), v1 = (1,0,...,0), ..., and yon_1 =
1,1,...,1).

Definition 2.1. Let v and vo be the binary vectors of length n. The Hamming weight of the
vector is denoted by hw(v1), the number of 1’s in the vector vi. We denote by #(v1 = va)
(respectively #(v1 # v2) ), the number of places where vi and ve are equal(respectively unequal).
The Hamming distance between vi and vy is denoted by hd(vi,ve), i.e.

hd(v1,v2) = #(v1 # v2) = hw(vy @ ve)
Note that we denote bit-wise XOR operator over by &®.



Besides truth table of f, the following form also can be represent the n-variable function
f(x1,29,....;x,). Tt is called algebraic normal(ANF) form:

flar, 2o, zn) = P e(u)aitay? .. ap
uef{0,1}m

where the coefficient p(u) € {0,1} and u = (uy, ug, ..., up).

The deg(f) is the algebraic degree, the number of variables of highest order product term
with nonzero coefficient in the algebraic normal form.

We call an n-variable function f is an affine function if deg(f) < 1. It takes the ANF form:
©(y) =0 for hw(vy) > 2. Furthermore, f is called the linear function if the constant term (7o)
is also zero.

2.2 Walsh-Hadamard Transform

Definition 2.2. Let f be a function on {0,1}". The Walsh-Hadamard transform of f(x) is
defined as
Wf(w): Z (_1)f(x)®<w,x>
z€0,1™

where w = (w1,w2,...,wn) € {0,1}", < w,x > is the inner product of w and r, < w,x >=
P, wiri. The Walsh-Hadamard transform is also called the spectral distribution or the spec-
trum of a boolean function.

The Walsh-Hadamard transform is mostly used in the analysis of an arbitrary boolean func-
tion. The value, Wy (w), of transform can be viewed as the difference between f and some linear
function < w,x >.

Wf(w) _ Z (_1)f(m)®<w,x>
z€0,1™

= #Half(x) =<w,z >} - #{a[f(z) #<w,z >}
2.3 Cryptographic Properties for Boolean Functions
2.3.1 Balanced functions
Definition 2.3. f is an n-variable boolean function. f is the balanced function if

#{z|f(z) =1} = #{z|f(z) =0}
hw(&p) = 2"

Lemma 2.4. Let f be a balanced boolean function. The Walsh-Hadamard transform of f is zero
atw = (0,...,0), W¢(0,...,0)=0.
2.3.2 Nonlinearity

The nonlinearity of f is defined to be the minimum Hamming distance between f and all affine
functions.



Definition 2.5. Let f be an n-variable boolean function. The nonlinearity of f, denoted by Ny,
1s defined as

N;= min hd(¢r,
f génAl(I}l) (&r:89)

where A(n) is the set of all n-variable affine functions.

According to the definition, we know that a boolean function with high nonlinearity is
difficult to approximate with some affine function. The value of N is also formed by the Walsh-
Hadamard transform. Let L(n) be the set of all n-variable linear functions. L(n) is the subset
of A(n). Then

w
Ny = o=l max |f7(w)’
we{0,1}m 2

2.3.3 Correlation Immune and Resilient Boolean functions

Siegenthaler has defined the correlation immunity [T.S84] as a measure of resistance against
the ciphertext-only correlation attacks in stream cipher [T.S85]. A boolean function f with
n-variables is called the m-th-order correlation immune function if the statistical distribution
of output is equivalent to the statistical distribution of f when we keep m variables of input
constant. If f is also balanced, then f is called the m-resilient function. Xiao and Massey present
the characterization of correlation immune functions on Walsh-Hadamard transform [GZM88a]
as follows:

Theorem 2.6. [GZM88aJAn n-variable boolean function is m-th order correlation immune if
and only if its Walsh-Hadamard transform Wy satisfies

Wi(w) =0, for 1 < hw(w) <m
Moreover, if f is m-resilient resilient then
Wi(w) =0, for 0 < hw(w) <m

Lemma 2.7. [T.S84][GZMS88a] Let f be an m-th order correlation immune function with n
variables. For m < n — 1, the maximum algebraic degree of f is n —m and if f is m-resilient
then the maxzimum algebraic degree of f isn—m —1. Form =n—1, f is an n-variable affine
function.

2.3.4 Propagation Criterion

Definition 2.8. Let f be an n-variable boolean function. The autocorrelation function Ry(c)
1s defined as
Rf(()d) _ Z(_l)f(x)@f(a:@oc)

Note that Ry(0™) is equal to 2"

An n-variable boolean function f satisfies the propagation criterion with degree t if f(x)
changes with a probability of % whenever i(1 < i < t) variables of input are complemented
[PLL190]. Specifically, f is said to satisfy the propagation criterion with degree ¢ if f(z)® f (z®Ba)
is a balanced function for 1 < hw(a) < t. We note that f(z) @ f(x @ «) is also called the
directional derivative of f in the direction a.



Definition 2.9. Let f be an n-variable boolean function satisfying the propagation criterion
with degree k. The autocorrelation function Ry(o):

Rs(a) =0 for 1 < hw(a) <t

The strict avalanche criterion(SAC) [GZMS88b] is equivalent to the propagation criterion
with degree 1 and perfect non-linear is propagation criterion with degree n.

3 Construction

We have known that propagation criterion will goes against the correlation immunity and non-
linearity. In this section, these important cryptographic properties (resiliency, nonlinearity ,
propagation criterion and algebraic degree) will be considered simultaneously for the two new
construction of a boolean function.

3.1 Construction I

In [SMO0O], Sarkar and Maitra provided the construction of n-variable and 1-resilient functions
satisfying PC(5 — 1), by using (n — 2)-variable boolean functions which satisfies PC(n —2). We
call this construction as PC-based Construction. It generates an 1-resilient boolean function
satisfying PC(L — 1), which def(f) = 2 — 1 and Ny = 2"~! — 25,

Now we propose our new method different from PC-based Construction , namely Resilient-
based Construction, to construct an n-variable and m-resilient boolean function which has
the algebraic degree d, maximal nonlinearity Ny = 2771 — 2"=4 and satisfies PC(1). This
Resilient-based Construction is made by modifying the construction of m-resilient functions
in [CLLS96]. At first, we introduce an important theorem of this construction.

Theorem 3.1. [CLLS96] Let n, m and k be three positive integers withn >4, 1 <m <n — 3,
1<k<n-—mand Spmr = {Ay | Ay € {0,1}* where hw(Ay) > m+ 1 and y € {0,1}"*}.
For any a € Spmk, let ug = #{y | Ay, = a and y € {0,1}" %} and u = max, u,. We define a
boolean function f:{0,1}™ — {0,1} by

fly,2) = 1on)1®y2) (1 ®Yn—tk) < Ap, x> D
Tey)I®y2)...(Yn-r) < Ay, x>
...... &b

(9192--~yn—k) < A%n—k,l’x >

where y = (y1,y2, - Yn—k) € {0,1}"7F, & = (x1,22, ..., 2x) € {0,1}" and n; € {0,1}"7% is the
binary representation of i. Then the following conditions hold:

1. f is balanced.
2. f is an m-th order correlation immune function.
8. Ny =271 — g2kl

4. If @yeqo,13n—+ Ay is not equal to zero vector then deg(f)=n—k+1.



Lemma 3.2. [CLLS96] Let f be an n-variable boolean function constructed by Theorem3.1.
When u = max,u, = 1 and k = by where by is defined in Theorem 77, we can obtain the
mazimum nonlinearity

max Ny = 2" — minu2h~1 = 2n=1 — ob1=1 — gn=1 _ okl
u,k u,k

We now take the propagation criterion into consideration and extend Theorem 3.1 to build
the Resilient-based Construction. The following theorem is an important result for Resilient-
based Construction.

Theorem 3.3. Let f(y1,Y2, s Yn—k, T1,22,-..,Tk) be an n-variable and m-resilient boolean
function with parameter k. n; € {0,1}"F is denoted by a binary representation of decimal
number i. We say that f satisfies PC(1) if the following conditions hold:

1. {A, | A, € {0,1}* wherehw(Ay) > m +1 and y € {0,1}"*}

2. Let e; be the boolean vector with length n — k of which the j-th positions is one and the
others is zero. Then < Ay,x > @ < Ayge,,x > is not a constant function for 1 < j <k
and y € {0,1}"F.

3. The sequence (Apy(i), Ay, (3), .oy An,, . (9)) is balanced for 1 < i <k, where Ay(i) means
i-th position of the vector Ay. In other words,

Z Ay (1) = gn k-t

ye{ovl}nik
Proof. From Theorem 3.1, f is m-resilient functions for condition 1. Next, We define

gys = f(yh ey Ys S 1’ vy Yn—ky, T1, axk)

9z, = f(yla s Yn—ks L1y ooy T & ]-a ,.’Ek)
If f(y1,92, s Yn—ks T1, T2, ..., ;) satisfies PC(1), we must prove that f @ g,, for 1 <s<n—k
and f @ gz, for 1 < r < k are both balanced functions. At first, we consider the condition of
f@gy for1<s<n-—k.

f@gys = f(y17y27-~-7yn—k75517$27---vxk)@f(y17-~7ys@17--~7yn—k7$17-~7$k)
— (1016 5) (18 3nt) < (A ® Ape,).7 >
1oy)1Dy2) .. (Yni) < (Am ©® Am@es>7$ > @

(y1y2 cee yn_k) < (A,r]2n7k71 @ An2n7k71@65)7 x >

Because < (A;, ® Ay,@e, ), > is not a constant function, from the proof 1 of Theorem 3.1 we
know f @® gy, is balanced.
Next, for f @ g, where 1 <r <k, we have

f@gmr - f(y17y27"'7yn—kax1,x27“'7$k)@f(yla"'ayn—kamla"'amT@1"'axk‘)
= (1 S yl)(l ® 3/2)(1 S yn—k)Ano(r)
(1@ y1)L S y2).-.(Yn—k) Ay, (1) &

(y1y2--Yn—k)An,, ., (1)



Since the vector (Ay, (1), Ay, (1), ..., Ay, ,_, (r)) is balanced for all 1 < r < k, thus f & g, is
balanced.

Then we have completed the proof. ]

A boolean function f constructed by Resilient-based Construction, the nonlinearity is
27—l _ 28~ From Lemma 3.2, when u = 1 (i.e. Ay, # Ay, for alli # j and A, Ay € Spmk),
we can obtain the maximal nonlinearity which is only determined by k. Next lemma will show
what relation exists among n, m, k in Resilient-based Construction.

Lemma 3.4. Let n, m, k be positive integers. If an n-variable and m-resilient boolean function
f(y,z) satisfying PC(1) is generated by Resilient-based Construction, thenn >5,1<m <

253 ] and max{2m + 2, (2] +1} <k <n-—1.

Proof. We choose parameter k and thus f(y, x) is the form of f(y1 , y2,- - s Yn—k, T1, T2,y . . ,Tf).
We know that if the set S), , 1 defined in Theorem 3.1 meets the two conditions mentioned in
Theorem 3.3, an m-resilient boolean function f(y,z) satisfying PC(1) can be constructed. For
the first condition, we can pick out the distinct vectors to make the set S, ,, .. At the same time,
the nonlinearity of f is maximal. For the second condition, the (A, (t), Ay, (t), ..., 4y, ,  (t))
must be balanced for all 1 <t < k. This means the sum of Hamming weight of A, is k2n—k=1 And
the Hamming weight of A, is greater than or equal to m + 1 for y € {0,1}"*. So we have

hw(Ay) > m+1 and 3, hw(Ay) = kon—k-1
(m + 1)2n—k < k2n—k—1
2m+2 <k

Since vectors in the set S, ,, . are distinct, u = 1 and k£ must meet the condition:

() () o () o
s (S)o () oo ()

Therefore, k >n —k and k > [§] + 1.

For k =n, f(y,x) = f(x1,22,...,2,) =< Ay,,x > is an linear function and f(y,z) will not
satisfy PC(1). Therefore, k is at most n — 1. So max{2m +2, 5| +1} <k <n —1 and we can
deduce that n > 5,1 <m < L"szsj O

Then

Lemma 3.5. A boolean function f(y,z) constructed by Resilient-based Construction with
parameter k has the algebraic degree at most n — k.

Proof. From the condition 2 of Theorem 3.3, we know that >> o 13n—» Ay is a zero vector. In
the ANF of f(y,z), there is no product term y1y2 ... y,—rx; for 1 <i < k. So algebraic degree
of f is at most n — k. When deg(f) = n — k, the following condition holds:

@ Ay is not the zero vetor where hw(n;) =n —k —1
7 <1;

where 7; < n; means 7;(i) implies 7;(3). O



Now we use an example to explain this method. Suppose we want to construct a 6-variable
and 1-resilient boolean function which satisfies PC(1), then

Step 1. n =6 and m = 1, the condition for m and n holds.

Step 2. Then max{2m+2, |5]+1} <k, and we know 4 < k£ < 5. Since < ;L >—|—< ;l )—!—( j ) >

26=4 we have k = 4.

Step 3. Choose 4 balanced vectors with length 26=* to be columns of matrix A s

A, 1100
Ay | |01 10
A4 = Ay, | 0001
Ay, 1011
Then check if A,, # A, # Ay, # Ay, and hw(A4,,) > 2 for i = 0,1,2,3. We find the

-+

Hamming weight of A,, = [0,0,0,1] is 1 and adjus
vector [1,0,1,0]7. So we have

>
the first column of Ag 14 with the

A, 1100
| An | 0110
A4 = Ap | 100 1
Ap, 0011

Step 4. Construct f(y,x) as follows:

flyz) = (1)1 y2)(z1 ®12) ®
1@ y1)(y2)(r1 D x2) @
y1)(1 © y2)) (71 ® 24) &

y1y2)(r3 © 4)

~~ I~ —~

Then f(y,r) is l-resilient function and satisfies PC(1). Since 3, o, Ay = Ay © Ay =
(1,0,1,0) and 3, .,  A; = Ay, ® Ay, = (0,1,0,1), then the algebraic degree of f is 2.

For the following theorem, we can extend the Theorem 3.3 to Extended-Resilient-Based
Construction. By this construction, an n-variable and m-resilient boolean function f is gen-
erated. Moreover, f satisfies PC(t).

Theorem 3.6. Let f(y1,Y2, .., Yn—k, L1, T2, . .., Tk) be an n-variable and m-resilient boolean with
parameter k. f is generated by Theorem 3.1. And o = (b,a) is a boolean vector with length n
where b € {0,1}*% and a € {0,1}*. We say that f satisfies PC(t) if the following conditions
hold:

1. < Ay,x > @ < Aygp,x > is not a constant function for 1 < hw(b) < min{n — k,t} and
y € {0,1}"F.

2. The sequence (< Ayg,a >, < Ap,a>, ..., <A
min{k,t}. In other words,

Z < Ayya>=2"""1 for 1 < hw(a) < min{k,t}
ye{o’l}n—k

Ngn_k_,+ @ >) is balanced for 1 < hw(a) <



Proof. From the definition of PC(t), we know if f satisfies PC(t) then f(y,x)® f(y® an—k, z®
ay) is balanced for 1 < hw(a)) < t. Then

fy,2)® fly® b,z ®a)
= 1oy)1dy2)... (1B yn—k)(< (A & Apyap), ¢ > ® < Ayyap,a >) ®
Qoy)ADy2) . (Yn-i)(< (A © Apyan), > ® < Apap,a>) @

(W1y2- - Yn—k) < (Ap, o & (An, , jeb) x> <Ay, apa>)

Then we consider the following:

case (i). b is not a zero vector. We know that < A,,,z > ® < A, is not a constant function
for 1 < hw(b) < min{n — k,t}. Therefore, no matter what a is, (< (4, ® Ap,ap),z > & <
Ay b, a >) is always a balanced function. So f(y,z) @ f(y ® b,z ® a) is balanced.

case (ii). b is a zero vector. So < (A;, ® A;,qp), T > is a constant function. Then

f(y,a:)@f(y@b,x@a) = f(y,$)@f(y,$@a)
= 1oy)1®y).. (1O Yy _1)(< Ay, a>) D
(1 &) yl)(l @ 3/2) .. (yn—k)(< Amva >) D

(y1y2 s yn—k) @ (< A772n,k717a >)
From the condition 2, we know @,cg1yn—+ < Ay,a >= 0 for 1 < hw(a) < min{k,t}. So
f(y,x) ® f(y,x @ a) is balanced for 1 < hw(a) < min{k,t}.
Finally, we complete this proof. O

In the following example, we use the Extended-Resilient-Based Construction to gen-
erate a 9-variable and 1-resilient boolean function f(y,x) which satisfies PC(2). First of all, we
decide parameter k. From Lemma 3.4 we know 2 x 1 +2 <k <9 —1 and

o (3 (5) (1)

We use the computer to search 297° x 5 matrix Ag15. But Ag 15 which follows the conditions
defined in Lemma ?? and hw(A,,) > 2, is not found when k£ = 5. So k is assigned to 6 and we
find 2976 x 6 matrix S9.1,6:

[ Ap] JO O 101 0]
Ay, 100001
Ay, 010011
T E R -
Ay 100110
Ay 010100
A, | 11111 1]




fly,z) = (1)1 @ y)(1Dys)(z3@w5)®

1@ y1)(1 @ y2)(ys)(r1 © x6) ©

(y2)(1 © y3) (21 D 25 © 76) @
(y2)(y3)(x1 © 22 D 23) @

1@ ys)(x3®xy B xe) ®
2)(y3) (21 @ x4 ® 5) B

(1S ys)(z2 ®x4) &

(y3)(z1 @ w2 © 73 © 74 © 75 D T6)

A~~~ I~

Therefore, a 9-variable and 1-resilient boolean function f(y,x) is generated. f(y,z) also satisfies
PC(2). Tt is easy to check that for some ¢ and hw(n;) = 2, > Ay, #0. Thus def(f) = 2.The
nonlinearity Ny = 29-1 261 — 294

The Extended-Resilient-Based Construction is provided to construct an n-variable and
m-resilient boolean function which satisfies PC(t). Unfortunately, it is easy to find the matrix
Ay m i for t =1 but not for ¢t > 2. Form the previous example, we use the exhausting search to
decide the matrix A, ,, 1 which meets the conditions in Theorem ??. It will be open problem
of an efficient way to find the matrix A, ,,, ;, for the future research.

N5 <ni

3.2 Construction II

We can construct an n-variable boolean function which is m-resilient and satisfies PC(t) by the
PC-based Construction or Extended-Resilient-Based Construction. However, these
constructions can not cover all m-resilient functions which satisfy PC(t) if functions really ex-
ist. For example, the PC-based Construction is useful only for n is even and m = 1. And
it is impossible that a 1-resilient boolean function which satisfies PC(1) can be generated by
Extended-Resilient-Based Construction when n is less than 4. So we want to know whether
there exists a construction which can generate a boolean function for given cryptographic pa-
rameters such as balancedness, the degree of propagation criterion, the order of correlation
immunity and nonlinearity. In this section, we present our idea through the equivalence class of
boolean functions.

At first, we introduce the concept of equivalence classes of boolean functions. Consider two
three-variable boolean functions

f(fU1,fE2,fL‘3) = T1T2
and
9(y1, Y2, Y3) = Y23 D Y.

We observe that f(x1,x2,23) and g(y1,y2,y3) are equivalent by match variables as {z; —
y2,x2 — (y3 + 1), z3 — y1}. Two boolean functions are equivalent if there exist input per-
mutation and output shifted by an affine function that can transform one function to the other.
In [BW74], the concept of equivalence classes is defined as follows:

Definition 3.7. [BW?74] Let f and g be n-variable boolean function and f # g. If f is equivalent
to g, then there exists an invertible n x n matriz U ,two n-length binary vectors A and (3, and a
binary value c such that

g(xz) = fzU s N)d < B, > Gc

10



where © = (x1,x2,...,Tan_1).

According to the above definition, we can divide the set of boolean functions with n variables
into numerous equivalence classes £y,. For any boolean function f; in the equivalence class £y,
fj is equivalent to f;. When n=3, we can find three equivalence classes:

5f12 fl(a;) = X1T2T3
5}02: fg(x) = T1T2
5f32 fg(.%') =0

For n = 4 and n = 5, the equivalence classes are listed in Appendix A (Table 2 and Table 3). The
following theorem will show the characteristic of the equivalence class for the Walsh-Hadamrad
transform and the autocorrelation function.

Theorem 3.8. Let f and g be n-variable boolean functions and f is equivalent to g. Then
1. Wy(w) = (-1 @<=y (B @ w)(U)T).
2. Ry(a) = (—1)<P*>Ry(al).
Proof. We know if f and g are in the same equivalence class. Then
g(xz) = fzU e N)d < f,x > dc
1. For Walsh-Hadamard transform of f and g,

Wyw) = 3 (-pp@eses
ze{0,1}"
= Z (_1)(f(l“U@A)€9<ﬁ,x>@c)EB<w,z>
z€{0,1}"
= (-1)° Z (—1)f CUONO<fOw,2>
ze€{0,1}"
= (-1)° > (—1)f (D)B<BBw (z8NU 1>
ze{0,1}m
= (—1)c®<EWAU!> S (—1)f@e<Bew)U™HT 2>
z€{0,1}™

_ (—1)C®<ﬁ@w’)‘U_l>Wf((ﬂ @ w)(Ufl)T)

2. For autocorrelation functions,
Ry(a) = Z (—1)9@) ()
ze{0,1}m
— Z (—1)7 @UONBf (z&)UBN)D<P 0>
ze{0,1}m
_ (_1)<ﬂ,a> Z (_1)f(z)®f(z@aU)
z€{0,1}m
= (-1)<P*"Ry(al)
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From Theorem 3.8, we note that Wy(3;) may be equal to Wy(3;) or —Wy(5;) if f and g
are in the same equivalence class. |Wy(w)| — |W¢(w)| is an one-to-one and onto mapping. This
is also true for the autocorrelation function of f and g. So we can further characterize the
equivalence class by the following definition:

Definition 3.9. Let P be a set of patterns and P = {p1,p2,...,p} where p; is positive integer
or 0. A real-valued set , S = {s1,s2,...,8} ,with size | is P — patterns if {|s1],|s2],. . .,|s1]} = P.

For example, let P be a pattern set with eight elements, P = {0,0,0,0,0,2,2,4}. Then
S1={0,0,0,2, —4,2,0, 0} is P — class while So = {2, 0, 0, —2, 2, 0, 0, 0} is not.
Now we define two pattern sets for a boolean function f; as follows:

PWy, = (W (w)] for w e {0,1}"}
PRyp = {lRg(a)] for a € {0,1}"}

Lemma 3.10. If f and g are equivalent, then
1. the algebraic degree: deg(f) = deg(g),
2. PW; = PW, and PRy = PR,,
3. nonlinearity: Ny = Ng.

An equivalence class &, can be characterized by a pair of pattern sets, PW;, and PRy,. For
n=3, the pattern sets of three equivalence classes are:

En: PWy =1{2,2,2,2,2,2,2,6}
PRy, = {4,4,4,4,4,4,4,8},
Er: PWy, = {0,0,0,0,4,4,4,4}
PRy, = {0,0,0,0,0,0,8,8},
Er: PWy, = {0,0,0,0,0,0,0,8}
PR, = {8,8,8,8,8,8,8,8},

We list tables of equivalence classes and corresponding pattern sets for n = 4 and 5 in the
Appendix A. Considering the cryptographic properties of all boolean functions , we can only
focus on the pattern sets, PWy, and PRy,, of the equivalence class. Moreover, for a given
n, the number of equivalence classes is smaller than the number of boolean functions. When
n = 3, 2% boolean functions are only divided into 3 equivalence classes. When n = 5, there
are 48 equivalence classes for 232 boolean functions. Thus a boolean function with specific
cryptographic properties can be generated by finding its equivalence class.

Now we want to find a 5-variable boolean function g with the algebraic degree 3. We
also expect that g is 1-st order correlation immune, satisfies PC(2) and achieves maximum
nonlinearity. From the previous section, neither the PC-based Construction nor Extended-
Resilient-Based Construction can be used to generate such function. So we consider the
following construction through the equivalence classes. We note that the degree of propagation
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criterion is 2 and order of correlation immunity is 1. The number of zeros, Zg, and Zy,, must
meet the following constraints:

Zr, > C7+C35=16and
Zw, > C{=5
And the maximum nonlinearity for n = 5 is 25~! — 2% =38, By looking up the pattern sets

in Table 3 and Table 6, we can find that £, meets our requirements. From Theorem 3.8, it is
possible to find a matrix U and a vector  such that Wy(w) = 0 for hw(w) =1 and Ry(a) =0
for for 1 < hw(a) < 2. Then we obtain

11011
1 01 0O
U = {01000
00 0 1 0
00001
3 = [1 1000
So g is
g(x1, 2, 23,24, 5) = X3x2x1 D T5x4 B T5T1 D TaT2 B T4y

DPr3xre O x301 D X221 D T2 D 21
& = (0,0,0,1,0,1,1,0,0,1,1,1,0,0,0,0,
0,1,0,0,1,1,0,0,0,0,1,0,1,0,1,0)

From the concept of equivalence class of boolean functions, it is easy to see the crypto-
graphic properties of all boolean functions. We can find a boolean function with some given
cryptographic properties by the corresponding equivalence class if the function exists. However,
the number of equivalence classes of boolean functions is unknown for n > 6. It will be an inter-
esting problem to develop an efficient algorithm to find all equivalence classes and corresponding
pattern sets.

4 Conclusion

In this paper, we present two new constructions to generated a boolean function which take
all these cryptographic properties into considered. One is the Resilient-based Construction
and the other is the method through the concept of the equivalence classes of boolean func-
tion. We link the concept of equivalence classes with the Walsh-Hadamard transform and the
autocorrelation function which are both used to analyze cryptographic properties of boolean
functions.If there exists an efficient method to find all equivalence classes of boolean functions.
For studying cryptographic boolean functions, we can focus on the equivalence classes by the
patter sets, PW; and PRy. It is helpful for the design of applications which use cryptographic
boolean functions as a core component.
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A Equivalence classes for n=3.,4 and 5

A.1 Equivalence classes

gfi def(fi) fi
5f1 3 T1X2X3
£f2 2 12
5f3 <1 0
Table 1: The equivalence classes for n = 3.
5fi def(fl) fi
5]01 4 T1X2X3T4
&r, 4 T1X23%T4 P 122
5f3 4 122234 D X122 D X3T4
5f4 3 XT2X3%4
5f5 3 Tox3T4 D L1272
ng 2 r1T2 D T34
5f7 2 12
gfs <1 0
Table 2: The equivalence classes for n = 4.

Ex 5 T1ToT3T4Xs
5]02 5 L1T2X3X4L5 D X129
5f3 5 T1X2T3L4T5 D 122 D T3T4
&, 5 T1X2T3T4T5 B x1T2T3
gfs 5 XT1X2X3L4X5 D T1X2X3 D T1X2
Efs 5 T1T2X3T4T5 O T1T273 D T174
Er, 5 T1X2x3T4X5 B T1T2x3 B x4T5
Erq 5 T1ToXL3T4Ts B T1X2T3 B T124 P Tox5
Er, 5 T1LoX3L4Xs D L1223 D T12X2 D T4X5
Etio 5 T12223T4T5 D 12273 D X172 O w314
gfu ) T1L2T3X4X5 D T1X2L3 D T1L4T5
gfl2 ) T1T2X3X4T5 D 1X2T3 D X1T4X5 D T1X2
Erry 5 T1X9X3T4X5 B X1Tox3 D 1245 D Tox3
5f14 ) T1T2X3L4T5 D 1X2T3 D 12425 D Tox3 D DTaxs
Eris 5 T1X2L3T4X5 B T1Tox3 D X1X4T5 D Toxy
5f16 5 T1T22324%5 D T1T273 D T124T5 B X223 D Brory
Efin 5 T1X2X3T4T5 B T1T2T3 B T124T5 P Toaxy B Px3Ts
€f18 ) T1ToX3X4X5 P X1L2X3 P X1X4X5 P Xoxs D Loxy B Pr3xs
Etig 5 T1T2T3T4T5DXT1T2T3DT1T4T5DT2Xx3D 224D DT3L5D

T4
gf20 4 ToX3L4T5
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5f21 4 T2X3T4X5 D T1T2

5f22 4 ToX3X4T5 D T2x3

5f23 4 T2X3T4X5 D Toax3 D T4T5

gf24 4 ToT3T4XT5 D T1X2 D T3T4

5f25 4 ToT3T4T5 D 1023

E o 4 Tox3T4T5 D T12223 D T122

5f27 4 XToX3L4x5 DO T1X2x3 D Toxyg

Efag 4 Tox3T4T5 D L1223 D T124

5f29 4 XToX3L4x5 D T1X2x3 D T4x5

Etso 4 T2x3T4T5 D T1T273 D T172 B T34

Eran 4 ToX3T4x5 D x1T273 O T124 D T3T5

5f32 4 ToT3LAT5 D T1X2X3 D 1T D T42T5

5f33 4 XToX3L4X5 D T1X2x3 D Toxy D T3T5

5f34 4 ToL3T4T5 D T1X2X3 P T1X4Z5

Efas 4 ToX3T4T5 D T1X2T3 P T124T5 P T4T5
nge 4 ToT3T4T5 D T1X2X3 D X1X4T5 D ToTyg D T4T5
Esr 4 ToX3T4T5 B T1T2T3 B T1T4T5 D TaTy B T3T5
5f38 3 T1T2X3

gf39 3 T1T2x3 D TaTs

5f40 3 12223 D 124

gf41 3 T1T2x3 D T1T4 D Toxs

€f42 3 T1X2x3 D 17425

5f43 3 T1T2x3 P T1X4X5 D Tox3

Efua 3 T1T9T3 D T124%5 D Toxy

Etus 3 X123 B T12425 O Toxy B Taxy O T3T5H
gf46 2 12

5f47 2 12X D r374

gf4s <1 0

Table 3: The equivalence classes for n = 5.

A.2 Pattern Sets of Equivalence Classes

Let N be an integer. We denote N; by the sequence of N’s with length . For example, 235 means
the sequence 2, 2, 2.

&y, Patterns Sets
PW;y PRy
En | 27 64 47 8
E fa 04 44 O6 82
Er | 07 8 8g

Table 4: The pattern sets of equivalence class for n = 3.

| & Patterns Sets
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PW; PRy
g | 215 14 1215 16,
£, | 212 63 10 4y 123 16
S | 210 66 15 16
£, | 0s 47 12, 814 16,
Ers O 4s 89 09 8¢ 164
Ers | 416 015 161
£ | 012 8 012 164
£ | 05 16 1616

Table 5: The pattern sets of equivalence class for n = 4.

&y, Patterns Sets

PW;¢ PR
Er 231 30 2831 32
Er, 298 143 18 494 287 321
Er, 216 610 10g 430 281 32
5f4 294 67 2064 2098 283 323
Ers 294 64 103 224 1294 204 283 32
Efs 299 6 109 147 18 418 126 20g 281, 32
Er, 291, 67 107 143 494 207 329
Ery 216 610 10g 497 123 207 32
Er, 215 613 103 144 49y 126 2017 32
Erio 299 64 104 145 418 1215 281 324
Ern 218 6120 147 18; 416 129 20 32
Erro 215 619 107 224 1297 209 32;
Efisy 219 69 103 18 415 1215 203 324
Etiy 215 615 107 18; 419 1299 324
Efis 218 619 102 145 499 129 209 32
Efie 216 610 10g 495 126 32
Err | 219 67 105 144 4917 1219 207 324
Erig 216 610 10g 495 126 321
Eti 212 616 104 4o 123 32
gfzo 016 415 28 2430 329
Efa 014 410 129 169 017 87 247 32
Efro | 016 410 123 20q 8oq4 246 329
Epys | U6 410 126 830 329
gf24 08 414 88 122 017 813 241 321
Efys | 012 415 83 24 1695 24¢ 32;
Efye | 012 414 84 204 819 169 243 32
Etyr 019 416 84 169 01 84 169 245 32
Efs | 011 414 84 125 163 011 813 165 241 32
5f29 012 412 84 124 018 8 167 32
Epyy | 012 412 84 124 Og 821 167 247 32;
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Efa Og 414 8g 129 015 814 160 324
gf32 07 416 83 164 Og 899 163 32
Efss | 04 46 812 024 8 167 32
gf34 Og 415 8 127 164 09 81 16 321
Efss | 010 415 86 204 816 1615 32
Efss | 010 413 8 123 012 816 163 321
Efy O 415 810 124 015 816 321
5f38 024 87 24 1608 324

E fao dog 124 094 167 32
Efao O2 8 169 018 1612 329
Efn 016 816 027 164 324
Efas 430 127 20 81 1615 32
Epis | 019 812 164 09 81 165 321
Efag | Aos 124 012 815 163 323
gf45 016 816 015 816 321
Epag | D28 164 024 323

€f47 016 816 030 329

gf48 031 321 3232

Table 6: The pattern sets of equivalence class for n = 5.
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