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Abstract 
 
  Risk management has been considered as an 
effective technique to cope with inherent 
uncertainty associated with software 
development. Current software risk 
management mainly relies on subjective 
judgment of project managers. In such 
subjective approach, decision-making process 
is human-intensive and opaque. This paper 
presents a systematic approach to assist 
software risk management using BBN 
(Bayesian Belief Network). It converts the 
opaque decision-making process in risk 
management into a visible and repeatable 
process. Our method uses BBNs’ causal 
dependency and prediction function to assist 
managers to perform risk analysis and resource 
adjustment.  We have implemented the 
proposed algorithm in a simulation 
environment.  Our results showed that this 
BBN-based approach could effectively 
enhance probabilities of project success. 
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1. Introduction 
 

There exist many uncertainties in 
software development processes and products; 
for instance, the uncertainties in estimating 
software size and quality, or in determining 
resource allocation and when to stop testing, 
etc.  Current software engineering techniques 
cannot eliminate such uncertainties.  Thus, 
risk management is critical.  Dr. Kitchenham 
proposed that estimate uncertainty is "best 
managed across an organization's total 
portfolio"[10].  This implies that if resources 
can be shared or reallocated among several 
projects, then probabilities of project success 
can be enhanced. However, it may not be 
possible to manage several projects at the same 
time and share resources among them. Current 
risk management mainly relies on subjective 
judgment of project managers. Such subjective 
process is human-intensive and opaque.  It 
will be desirable to assist risk management 
with more objective measures.  This paper 
presents a systematic approach using BBNs 
(Bayesian Belief Networks) to assist risk 
management.  A BBN provides improved 
clarity in defining and tracing causal 
dependencies.  Moreover, it can perform 
calculation and prediction under uncertainties.  
Using BBN-based profile, our risk 
management algorithm can detect potential 



 

  

risks and trace them to their root causes; our 
method can also warn the user of activities' 
saturation and assist the user to adjust resource 
allocation.  In the following, we will first 
briefly introduce BBNs, then, present our 
proposed algorithm, followed by experimented 
case studies. 
 

2. Bayesian Belief Networks (BBNs) 
 

BBNs have attracted much recent 
attention in the area of decision support 
under uncertainties. BBNs’ underlying 
theory (Bayesian probability) has been 
around for a long time; while the 
implementation algorithms [7] and software 
tools (eg., Hugin) [5 ] are available in these 
few years.  Bayesian Belief Network [4,7] 
is an acyclic graph with an associated set of 
probability tables. Nodes in a BBN represent 
random variables, whose states are usually 
expressed in discrete numbers or ranges.  
Arcs represent the casual relationships 
between the variables. A Conditional 
Probability Table (CPT) is associated with 
each node to denote such casual influence. 
The node representing a variable A with 
parent nodes representing variables B1, 
B2, ..Bn is assigned a CPT:  P(A| B1, 
B2, ..Bn). CPT's are filled with a mixture of 
empirical/benchmarking data and subjective 
judgments.  When the probabilities of 
nodes without parents are unknown, current 
tools usually assign evenly distributed 
probabilities to them. Once new evidence is 
obtained, evidence can be plugged in the 
graph to update the states of related nodes. 
Then, the calculation is propagated from 

parent nodes to child nodes and vice versa.  
The BBN graph can be expanded into an 
influence diagram by adding decision nodes 
and utility (cost, or profit) nodes, 
represented by rectangles and diamonds 
respectively. Hadar Ziv[14] has used BBN 
in software testing and maintenance. 
Fenton[3] proposed that BBN would be the 
promising approach for representing and 
calculating complex software metrics. 
 

3. BBN-based software project risk 
management 

 
Our risk management scheme uses 

BBNs’ clear causal dependency to identify risk 
source, and  their estimation power to predict 
resource effectiveness. Our method provides a 
simple and visible analytical solution for risk 
management problems; it can be combined 
with other methods such as simulation to assist 
human experts.   The system context of our 
method is shown in Fig.1, where the algorithm 
utilizes BBNs to analyze risks and generates 
information to the manager, while the manager 
may input evidence or decisions to the BBNs 
for further estimation.  A risk profile and a 
knowledge base of risks are the associated data 
structures. The   proposed algorithm is given 
in Fig. 2. General speaking, software risk 
management process, as indicated in IEEE 
standard 1540 [6], should include the 
following tasks: 

(a) Planning Risk Management 
(b) Managing the Project Risk Profile 
(c) Performing Risk Analysis 
(d) Performing Risk Treatment 
(e) Performing Risk Monitoring  
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Thus, we may categorize our steps similarly. 
The following is a simple explanation. 
 
Steps 1 to 4 (Planning and initialization): 
Construct a BBN and initialize it.  

A basic BBN including general factors 
[8,9] influencing project risks can be 
developed first as a template for our method. 
The first step will expand this basic BBN to 
further comprise factors specific to the 
examined project.  The manager may use this 
expanded BBN to answer various "what-if" 
questions for resource planning.  
Assumptions may be used for initializing root 
nodes; then, the related expectation states may 
be saved in a separate file. Nodes to be 
monitored are also set.  For example, if the 
assumption is that verifiers' capability is high, 
then the expected state is that the defects 
detection rate is high. 

Manager 
 
 
 

 
 

 
 
 
 
 
 
 
 
 
Step 5 (Risk Profile): Keep chronological 

records of the BBN’s state probabilities 
and evidence inputs.  
Once the project starts, a continuously 

monitoring loop will start. Whenever new 
evidence is obtained, evidence will be plugged 
into the BBN for analysis.  

 
Steps 6-8 (risk monitoring and analysis)     
   To be able to perform risk analysis, various 
pre-assumptions should be correct in the first 
place.  When evidence is gathered, it is 
plugged in the network to recalculate 
probabilities of its related ancestors or 
descendants. Tracing Module in our algorithm 
will be invoked when the average of previous 
N units of evidence conflict with original 
expectation.  The Tracing Module shown in  
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Fig.1.  System context
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(a)  

1. Construct BBN for the examined case 

2. BBN initialization 

3. Resource planning (what-if) 

4.  Set expectation states & nodes to observe 

5. Record evidence (risk profile) 

8. adjust resource utilization:

 

Periodically: 

For each of current activities X  

Call Saturation Module() ; 

For the set of observed activities 

Call Ranking Module() 

 

7. Perform Risk Analysis: 

IF Average product quality of past N2 records 

< threshold1 

Call Tracing Module () 

IF Average Stage delay of past N2 records > 

threshold2 

Call Tracing Module()  

IF  Average Over budget of past N2 records 

> threshold3 

Call Tracing Module() 

9. risk management decision  (may refer to the knowledge base ) 

10. BBN prediction of the effectiveness of the decision 

11. perform the action 

6. Correct estimates: 

 

IF average of past  N1 

evidence conflict with 

expectation  

Call Tracing Module () 

Human adjustment of 

incorrect estimates 

Fig.2.   Risk management Procedure 



 

  

Fig. 3 traces the current evidence back to its 
leading causes and interactively display them 
to the user, so that the user can identify the 
erroneous pre-assumptions and correct them. 
 
 
 

 

 

 

 

 

 

 

Fig 3.  Tracing Module 
 
Step 7 ( Risk Analysis) 

We analyze the average of the previous 
N risk profile data to identify whether there 
exist such risks as behind schedule, over 
budget, and poor quality. Assume that the basic 
BBN contains nodes stage delay, over budget, 
and quality. Then, these nodes are examined 
against the predefined thresholds. Once 
potential hazards are identified, our algorithm 
will invoke Tracing Module for the user to 
locate its major causes so as to assist the user 
to make risk treatment decision. 

 
Step 8 ( Resource adjustment) 

Resources utilized in software activities 
may have their diminishing return points or 
saturation points; i.e., from a certain point on, 
the more resource spent, the less return it will 
yield.  Thus, if project managers can realize 
such saturation points in time, they can 
reallocate these resources to alternative 
activities or save them for other more  

productive activities at later stages.  

Fig. 4  Saturation Module 
 
BBN risk profile can be used in revealing the 
falling cost-effectiveness of a certain activity, 
and identify its potential saturation points. 
Periodically, say daily or weekly, our algorithm 
invokes Saturation Module (Fig. 4) to check 
saturation points of the observed activities and 
ranking their cost-effectiveness (Fig. 5). In the 
Saturation Module, performance of observed 
activity X is examined; if its average value is 
less than the expected threshold, the saturation 
may be reached. To avoid possible transient 
situation, our algorithm continues to monitor 
the following M time units before reaching a 
final conclusion. Then the user will be 
informed.  

Moreover, to better utilize resources, 

Enter new evidence of activity X, update BBN

Average performance of  X’s observed node
in the last N records worse than threshold

Observed node is still worse

Start to monitor X for the next M units

Reached saturation point of X,  display the message

Y

Y

Next step

M times

Next step

N

N
For evidence node X, trace it back to  

its parent nodes and display 

next level of causes ? 

yes 

no 

Enter new evidence of activity X, update BBN

Average performance of  X’s observed node
in the last N records worse than threshold

Observed node is still worse

Start to monitor X for the next M units

Reached saturation point of X,  display the message

Y

Y

Next step

M times

Next step

N

N



 

  

Ranking Module (Fig. 5) is invoked 
periodically to compare and rank related 
activities.  There are two different cases. If 
the set of activities have quantitative evidence 
in the risk profile; their effects per thousand 
dollars can be calculated straightforwardly; 
then, the ranking of these activities' 
cost-effectiveness are obtained and shown to 
the user. On the other hand, if there are no 
direct quantitative data for these activities, then, 
BBN should be used to estimate the 
effectiveness.  Both the ranking of 
effectiveness and the ranking of their costs are 
sorted in separate sets.  The best situation is 
that the ranking order of costs should be 
identical to that of their effectiveness; 
otherwise, resource adjustment may be needed 
to achieve better cost-effectiveness. 

 
Steps 9 to 11 ( risk treatment) 

After the above analyses have been done, 
the manager may make decisions to treat 
possible risks.  The knowledge base keeping 

rules of thumb for risk treatment can be 
consulted.  BBN calculation can be used to 
estimate the effectiveness of decided risk 
treatment. 

   

4. Implementation and Test Cases 
 
We have implemented the above 

algorithm and tested it in a simulation 
environment.  We have used a simple 
simulator to simulate the progress of the 
examined project and fed the resulting data to 
BBN for risk analysis.  
 

4.1. Simulation Formulae 
The proposed algorithm is implemented 

in ANSI C, using Hugin’s APIs [5];  while the  
results are plotted by Borland C++.  There 
exist some implementation issues.  BBN 
variable states are discrete, yet input data to 
BBNs and various thresholds are numerical. 
Thus, conversion between numerical values 
and discrete probability states are needed.  To 

Set the costs of the set of observed activities 

Quantitative evidence of effectiveness exit?

Calculate and rank their cost-effectiveness

Use BBN to predict their risk contributions

Sort risk contributions 

Display the ranking to the user

Sort and rank costs

Fig. 5.  Ranking Module



 

  

convert quantitative numbers to BBN variable 
state probabilities, we use fuzzy triangular 
functions.  Fig. 6 is a simple three-state 
example, where the value 0.6 is mapped to 
probabilities of State high=0.2, mid=0.8, and 
low=0. In our test runs, we generally use 
three-state variables. On the other hand, to 
convert a BBN node's current state 
probabilities to a value, we use weighted 
summation.  Currently we assign the 
continuous weights 1,2,3, etc. to the states low, 
mid, high, etc.  For example, for a node with 
probability of State high=0.2, and mid=0.8, it 
will be quantified into (0.2×3 +0.8×2 + 0×

1)=2.2.  Thus, for a three-state node, its state 
probabilities are converted into a number 
between 1 to 3. 

 
We have constructed a process simulator 

to generate continuous project data as evidence 
for the BBN diagram.  The inputs to the 
simulator include the following: 
Project size (function points) 
Schedule 
Personnel (numbers of experts, average staff, 
and novices) 

Productivity ( function points/week) 
Defect generation (numbers/week)  
Defect detection rate for V&V activities (% of 
defects detected /week) 
Observed nodes 
Thresholds 

 
The formulae  we used in this simulator are 
given below [11]: 
 

(1) Weekly team productivity =  
(Σi=novice..expert Pi*Si)*C(S)*L(T)* COV 

Where 
Pi =weekly productivity of employees of type i  
Si= numbers of employees of type i 
S= total numbers of employees 

Communication overhead C(S)=1-t(S) 
t(S)=1-{1.03exp(-0.02S)}  [13] 
Learning factor at time T =L(T)   We used it 
when adding or changing staff after the project 
starts. 
Coefficient of Variation COV=±10%  It is 

generated by random numbers. 

(2) numbers of defects produced weekly = 
(Σi=novice..expert S i * Di )* Pressure (delay) * COV 

Where   
Di =Defect generation rate  
Pressure factor Pressure(delay) is determined 
by current delay percentage. 

(3) remaining defect numbers at time t  
Rt=  

max (Rt-1* (1- average defect removal rate), r) 

Where r = total number of defects * maximum 

detection efficiency 
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X=0.6
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Fig. 6. Triangular function example

Y=2x-1
Y= -2x+2

0.2

0.8



 

  

4.2  Test case 1 : tracing causes and risk 
analysis 

 
We used the BBN diagram in Fig.7 to 

test tracing and risk analysis modules. The test 
data are shown in Table 1. When our risk 
management scheme was used, at week 6, 
project delay caused Tracing Module to be 
invoked.  The associated Hugin’s monitor 
window is shown in Fig. 8; while the simulator 
called Hugin’s APIs and got trace output 

shown in Fig. 9. It suggested that the potential 
causes for the delay might be staff numbers, 
capability, experience, and workload.  
Assume that the manager at this point decided 
to adjust and improve staff members’ 
capability to be 10 experts, 10 average ones, 
and none novice. The performance with and 
with such adjustment is shown in Fig. 10. It is 
obvious that project delay and product quality 
were significantly improved.   

 
Table 1  Simulation runs for case 1 

Size (function points FP) 800 

Schedule (weeks) 52 

Personnel (expert, average, novice) 2, 10, 8 

Productivity (FP/week) 1, 0.5, 0.2 

Defect generation (# / week) 0.02, 0.05, 0.1 

Observed nodes Delay, quality, over budget 

Learning factors L(T)  0.7 for 2 months when T <=10%  
0.6 for 3 months when 10% < T <= 
50% 
0.4 for 4 months when T > 50%  
1 otherwise 

Pressure (delay) 0.7 when delay <0% 
1 when delay=0 
1.3 when 0%<delay <50% 
1.5 when delay > 50% 

Tracing module()  invoked at week 6 (Fig.8,9) 

Staff adjusted  
(expert, average, novice) 

10, 10, 0 at week 6  (Fig. 10) 
10, 10,. 0 at week 35 (Fig.10 ) 

Time adjusted Expand to 100 weeks at week 6 (Fig. 
11) 
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Fig. 7  Simplified BBN used in Case Study 
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Fig. 8  Tracing back to causes 



 

  

 

Fig. 9 Trace module output 
 
 
 
 
 

 
Fig.10 . Delay and Quality Nodes with and without risk management 
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Fig. 11.  Delay and Quality nodes with and without risk management 
(Adding time to 100 weeks) 

Note that changing staff at week 6 incurred 
learning overhead, which is shown by the 
higher delay and lower quality in Fig. 10 
immediately after the change. However, since 
it was still at the early development stage of 
the development, eventually the adjusted one 
outperformed the original one.   

To compare the effect of changing staff at 
different stages, we also tested the personnel 
adjustment at a much later stage, say at 35th 
week in this case. The results are also shown in 
Fig. 10.  As can be seen in the figure, there 
may have little improvement due to learning 
factors and the timing. 

Another possibility for risk treatment at 
week 6 is to allocate extra time extension since 
Trace module indicated work load was not 
justified. Suppose that the completion time was 
adjusted to be 100 weeks.  The resulting 
performance is shown in Fig. 11.  Due to the 

fact that time pressure was lifted, the number 
of generated defects was reduced.  Thus, 
delay and quality nodes were much better than 
the original ones.  

In both cases, our algorithm could warn 
the manager of the potential risks at an early 
stage. Thus, proper measures could be taken to 
greatly improve the probability of project 
success. 

 
5.2  Test case 2: Saturation point 
identification 
 
   We have tested Saturation module using a 
past problematic software project, the Sizewell 
B project [12]. This Britain’s digital reactor 
protection system was developed by Westing 
House in early 90’s with huge V&V effort. To 
ensure its safety, besides Westing House’s 
V&V, the system was verified by the following 

Original 

Add time at week 6

Original 

Add time at week 6



 

  

Independent Verification and Validation 
(IV&V): NNC Ltd.’s Independent Design 
Assessment, TA Consultancy Services’ 
MALPAS (TCAS’s IV&V), NE Technology’s 
source to code comparison, as well as Rolls 
Royce and Associates’ testing (RR&A’s 
IV&V). The project spent 200 man-years 
development effort, and yet 50 man-year V&V 
effort, which did not find any significant 
defects. . 

The BBN diagram of a Sizewell B-like 
case is shown in Fig.12. The data are given in 
Table 2. In the original execution, the BBN’s 
product quality would have the numerical 
curve depicted in Fig. 13.  If our algorithm 
was used, when software quality could not be 
improved, Saturation Module was activated 
and would inform the manager of this situation.  
Suppose that the manager decided to terminate 
the V&V activities (Fig. 14); then extra 
resources were saved.  The comparison can 

be seen from Fig. 13 and 14, where product 
quality was the same, while with saturation 
identified, 14-week resources could be saved. 
With our risk management scheme, warning of 
potential risks for appropriate resource saving 
or adjustment is possible.  

 
Table 2  Simulation run for test case 2 

Size  1200 

Number of defects 125 

Maximum defection 
efficiency 

95% 

V&V schedule  20 

Organization defect 
detection capability 

25% ±5% 

per week 

Without risk 
management 

Fig. 13 

With saturation point 
identified (at week 6) 

Fig. 14 
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Fig. 12  IV&V Case ( test Saturation module) 

 
 



 

  

 
Fig. 13.  Quality node at the original execution 
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Fig .14  Quality node with Saturation identified and process terminate at week 6 
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Fig. 15.  Analysis, Review, and Testing (test saturation and ranking) 

 
 
5.4. Test case 3: test Saturation and Ranking 
Modules together 
 
  The last test case we have tested the 
saturation module and ranking module 
working together.  We assumed that three 
different activities: testing, review, and 
analysis were used. Periodically, the saturation 
and ranking algorithm would be invoked.  
The simplified BBN diagram is shown in 
Fig.15. In general, whether analysis is effective 
depends on analysts' capability; review 
depends on reviewers' experience; while 
testing depends less on capability and 
experience.   

The third test case assumed that given 
analysts are novice or average; thus, very soon, 

the analysis’ saturation point was reached. The 
input data is given in Table 3.  Our algorithm 
would identify that the analysis activity was 
not productive any more and notify the 
manager. The manager might terminate this 
activity and reallocate the resources 
(person/time/budget) to most productive V&V 
activity suggested by the Ranking  Module.  
The original performance is shown in Fig.16, 
where review outperformed testing and 
analysis.  When our algorithm was used, 
Saturation Module was invoked at week 6 and 
found that novice analysis could not progress 
much. The Ranking Module() periodically 
listed the cost-effectiveness ranking among 
these three methods. For this particular set of 
data, testing is most cost-effective since  

 



 

 

Table 3  Simulation run for test case 3 

size 1200 

defect 125 

Maximum detection efficiency 90% 

Saturation threshold  Average 0.5 in the past 3 weeks 

Defect detection rate (expert, average, novice) 
per week  

Analysis: 20%, 10%, 2% 
Review: 20%, 15%, 8% 
Testing: 15%, 12&, 10% 

Team capability Analysis: novice 
Review: average 
Testing: average 

Cost (analysis, review, test) 600, 450, 300 

Observed nodes Number_of_detected_defects 

With risk management  Fig. 16 

With ranking and adjustment Fig. 17 (terminated analysis at week 6, 
reallocated analysis personnel to testing) 
Fig. 18 (numbers of remaining defects) 

 

 

Fig.16. Performance of analysis, test, and review without risk management 
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Fig.17. Resource reallocated to test at week 8  

 
Fig.18  Remaining defects with and without resource adjustment 
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it was cheapest and depended less on personnel 
capability and experience than the other two 
methods.  At week 8 the manager was 
advised that analysis’ saturation had been 
reached. Suppose that the manager also took 
the suggestion from the Ranking Module. Thus, 
he terminated analysis activity and reallocated 
the analysis team to perform testing. This 
adjusted performance is shown in Fig.17. It is 
obvious that testing performance improved 
afterwards. To observe the overall effects of 
with or without risk management, we also plot 
the remaining numbers of defects for both 
cases in Fig. 18.  It is noticeable that with 
dynamic resource allocation outperforms the 
one without it.  

In all of the above cases, we have shown 
significant improvement can be achieved by 
using our BBN-based risk management 
algorithm. Our experiments demonstrated the 
feasibility and effectiveness of our method. 
Moreover, the rationales of manager's decision 
making is visible and repeatable when BBNs 
are used. 

 

 
5. Conclusion  
 

This paper proposed a BBN-based 
project risk management method. We 
utilized BBN's estimation power to predict 
potential risks or activity effects; also, we 
used BBN's causal dependencies to trace 
the potential causes of the risks. The 
BBN-based approach have the virtues in 
visibility and repeatability in the decision 
making process of software risk 
management. Using BBN, our method can 

continuously monitor and predict potential 
problems so as to assist the manager to 
perform risk treatment. We have 
implemented the proposed algorithm and 
tested it in a simulation environment.  
The experiment results show that the 
algorithm is effective. Further application 
of BBNs to other aspects of software 
project assessment seems to be promising. 
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