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Abstract-A common structure of key stream 
generator for stream ciphers consisting of  several 
linear feedback shift registers(LFSR) combined by a 
combining function. The combining function plays 
an important role in the cryptographic security of 
stream ciphers. Most combining functions are 
resilient functions. In this paper we first show some 
lemmas about the cryptographic properties of 
functions over the Galois Field GF(p) where p is a 
prime. These lemmas are useful for demonstrations 
and constructions of resilient functions. Finally, we 
propose a new strategy to construct resilient 
functions. The nonlinearity, algebraic degree, and 
the order of correlation immunity of these resilient 
functions are also discussed. 
 
Keywords: Stream Cipher, Resilient Function, 
Affine function, Nonlinearity, Correlation Immunity. 
 
1. Introduction 
 

The main component of a stream cipher is a key 
stream generator which consists of several linear 
feedback shift registers(LFSR) and functions. Filter 
generators, combination generators and clock-
control generators are three common kinds of key 
stream generators for stream ciphers. Among these 
three kinds of generators, combination generators are 
most widely used. This kind of generator uses 
several LFSRs combined by a nonlinear function, i.e., 
combining function f. If the function f is not properly 
chosen, then the combination generator combined by 
f can be attacked from common attacks, such as 
linear synthesis attack[8], correlation attack[10], and 
best affine approximation attack[3]. There are at 
least four criteria that f should fulfill. These criteria 
are balancedness, high algebraic degree, high 
nonlinearity, and high order of correlation immunity. 

All of these criteria are important in resisting 
various kinds of attacks. Many research results have 
been published on these criteria. Firstly, K. 
Gopalakrishnan and D. R. Stinson [4] demonstrated 
 

that three different characterizations of t th-order 
correlation immune functions and resilient functions 
where the random variable is over the Galois Field 
GF(q) and q is a prime power. In the following year 
P. Camion and A. Canteaut[1] generalized the results 
of Gopalakrishnan and Stinson. They gave an 
orthogonal array characterization and a Fourier 
transform characterization for resilient functions 
over any finite field. Moreover, they also constructed 
new resilient functions by composition of resilient 
functions of small order. Next in 1998, M. Liu, P. Lu, 
and G. L. Mullen[7] showed the tradeoff among 
algebraic degree and order of correlation immunity 
over some special finite fields. They proved that (n-
1)-th resilient functions with n variables over GF(3) 
have a unique algebraic degree 1. Besides, they also 
designed a kind of (n-1)-th resilient functions with n 
variables over GF(q), where q is greater than 3. 
However, the most recent papers written by Y. Hu 
and G. Xiao[5][6] concentrate on the construction of 
resilient functions which have some restrictions on 
order of correlation immunity. The authors design 
not only 1-output functions but also m-output 
functions over GF(q), where m is greater than 1. 

In this correspondence, we first show some 
lemmas about the cryptographic properties of 
functions over GF(p) where p is a prime. These 
lemmas are useful for demonstrations and 
constructions of resilient functions. Furthermore, we 
give a new construction method for constructing 
resilient functions. The nonlinearity, algebraic 
degree, and the order of correlation immunity of 
these resilient functions are also discussed. 

This paper is organized as follows. In Section 2, 
we introduce some basic definitions and notations. In 
Section 3, we give new results for resilient functions 
over GF(p). In Section 4, we propose a new 
construction of resilient functions over GF(p). We 
also discuss the nonlinearity, algebraic degree, and 
the order of correlation immunity of these resilient 
functions. In Section 5 we make a conclusion. 
 
2. Basic Notations 
 This work was supported by the National Science Council, R.O.C. , under
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We review some relevant definitions, notations 
and former results in the area of our concern. By 
GF(p) we mean the Galois Field with p elements, 
where p is a prime. Let [GF(p)]n denote the set of n-
tuples of elements from GF(p). Let u = (u1,u2,…,un) 
and x = (x1, x2, …,xn) be two vectors in GF(p). The 
scalar product of u and x, denoted by u‧ x, is 
defined by u ‧ x = u1x1+u2x2+…+unxn, where 
multiplication and addition are over GF(p). We 
interpret a function f: [GF(p)]n→GF(p) as f(x). Then 
f can be uniquely expressed in algebraic normal 
form(ANF): 
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where each coefficient is a constant in GF(p). The 
algebraic degree of f, denoted by deg(f), is defined 
as the number of variables in its longest term when it 
is represented in the algebraic normal form. 

Let ),,,( 21 sεεεδ K= be a vector in [GF(p)]s with 
s≧1. Then the notation 'δ  is defined as follows 

∑
=
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j p

1

' εδ . 

Suppose f is an n-variable function over GF(p) and w 
is the p-th root of unity in the field of complex 
numbers C. Then the truth table of f, denoted by Tf , 
is defined as follows 

))(,),(),(( 110 −npfff δδδ K  

where 
jδ  is in [GF(p)]n. The  and 

fTb ⋅ fTb +  are 

defined as follows 
))(,),(),((

110 −
⋅⋅⋅ np

fbfbfb δδδ K  

and  
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110 −
+++ np

fbfbfb δδδ K  

where multiplication and addition are over GF(p) 
and b is a constant in GF(p). In addition, the walsh-
hadamard transform for an n-variable function f 
over GF(p) is defined as follows 

∑ +⋅=
x

xbfxau
f wubaF )(),,(  

where a is a nonzero constant in GF(p), b is a 
constant in GF(p). 

An n-variable affine function l over GF(p) is a 
function that has algebraic degree at most one, i.e., it 
takes the form of l(x) = u‧ x+c, where c is a 
constant in GF(p). Furthermore, l is called a linear 
function if c=0. By Ap(n) (respectively Lp(n)) we 
denote the set of all affine(respectively linear) 
functions over GF(p). The Hamming weight of a 
string s in GF(p), denoted by HW(s), is the number 
of nonzero elements in s. The Hamming distance 
between two string s1 and s2, denoted by HD(s1,s2), 
is the number of the different elements in the same 
position. The Hamming distance between two n-
variable functions f(x) and g(x) over GF(p) is 
defined by HD(f,g) = HD(Tf , Tg). Then the 
nonlinearity of n-variable function f, denoted by Nf, 
is defined as follows 

{ }),(min
)( lfnAlf TTHDN

p∈
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Furthermore, suppose that f be a function over 
GF(p). If , then f is said to be 
balanced. And then f is a t-th order correlation 
immune function if for any vector 
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where t≧1. f is said to be a t-resilient function if f is 
t-th order correlation immune and balanced. 

Finally we introduce a notation which is used 
throughout the rest of the paper. Given any vectors 

, we define a s-variable 
function over GF(p) by  

s
s pGF )]([),...,,( 21 ∈= εεεδ
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where multiplication and subtraction are over GF(p) , 
y = (y1,y2,…,yn) and 'δ  is defined before. Note that 
since 1)(' =yZδ  if and only if y = 'δ . 
 
3. New Results for Resilient functions 
 

In [5], the authors did not discuss the nonlinearity 
of the constructing functions presented at the 
theorem 5. From the definition of nonlinearity 
mentioned above, it is not difficult to compute a 
lower bound of nonlinearity for this construction 
method. The following lemma explains this result. 

Lemma1: Let 2≦ t≦n and A be any subset of 
GF(p). Suppose that nonlinearity of f1 and f2 be 
denoted by 

1
and 

2
respectively, where f

fN fN 1and f2 

are two n-variable functions over GF(p). If we 
construct an (n+1)-variable function f defined as 
follows 
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then 
21

)#(# fff NApNAN ⋅−+⋅≥ , where #A is the 

number of elements in set A. 
Proof: 
Note that for any affine function )1( +∈ nApγ , we 

can write the truth table of γ  in the form 
bpTbTbTT llll )1(||||2|||| −+++ L , 

where )(nAl p∈ , b = 0, 1, …, p-1 and || is a 

concatenation operator. And from the constructing 
method of function f, we can also write the truth 
table of f in the form 

110 110 ||...||||
−

⋅⋅⋅ − phphh TcTcTc , 

where },{
21 ffk TTh ∈ , ck is a nonzero constant in 

GF(p), and k = 0, 1, …, p-1. Then,  
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Since for all k= 0, 1, …, p-1, the inverse of cj 
modulo p is existing. Hence, we can imply as 
follows 
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In [4], K. Gopalakrishnan and D. R. Stinson raise 
a method that can test for correlation immune 
functions over GF(p) by walsh-hadamard transform. 
Here we describe a relationship between the 
nonliearity and walsh-hadamrad transform of a 
function f over GF(p). 

Lemma 2: Let f be an n-variable function over 
GF(p). Then the nonlinearity of the function f can 
express as  
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4. A New Construction of Resilient 
Functions over GF(p) 
 

In this section, we present our construction 
method of resilient functions over GF(p). We use 
lemmas in section 3 to prove the properties of 
resilient functions. 

First we review a result in [4] that can test for 
correlation immune function over GF(p). 

Lemma 3[4]: For all with ,  f is 
a t-th correlation immune function with n variables 
over GF(p) if and only if 

)(, pGFba ∈ 0≠a

0),,( =ubaFf
 

for all  such that 1≦HW(u)≦t.      □ npGFu )]([∈

Now, we construct new resilient functions over 
GF(p). The following theorem explains this 
construction method. 

Theorem1: Let  
(1) n, s and t be three positive integers with n≧4, 1
≦s≦n-3, 1≦t<n-s. 
(2) ' be a t-th resilient function with (n-s) variables 
over GF(p) for all . 

δf
spGF ])[(∈δ

(3)  be the nonlinearity of  for all 
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where y = (y1,y2,…,ys) and x = (x1,x2,…,xn-s). Then 
the following holds: 
(1) f is a t-th resilient function. 
(2) ∑

∈

≥
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'
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. 

Proof: 
(1) First, we show that f(y,x) is balanced. Since  is 
a resilient function. Hence  
for all 

'δf
1
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It is clear that f(y,x) is balanced. 

Next, we prove that f(y,x) is a t-th correlation 
immune function. Let w be the p-th root of unity in C. 
For all )(, pGFba ∈ with and any 

 with , ,  
1≦WH(c,d)≦t, we note that 

0≠a
npGFdc )]([),( ∈ spGFc )]([∈ snpGFd −∈ )]([
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Further, 0≦WH(d)≦ t. To find , we 

consider the following cases: 
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Lemma 3 we obtain 
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for 1≦WH(c,d)≦ t. By Lemma 3, f(y,x) is a t-th 
correlation immune function. 
(2)  Let )(sAp∈κ  and . Note that for 
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Theorem2: Let  

(1) n, s and t be three positive integers with n≧4, 1
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where y = (y1,y2,…,ys) and x = (x1,x2,…,xn-s). Then 
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(1) f is a t-th resilient function. 
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Example1: Choose p = 3, n = 5, s = 1 and t = 2 in 
Theorem 2. Choose  
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Then f is 2-th resilient function and the nonliearty of 
f is  
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By Theorem 2-(3), deg(f) = (3-1)1+1 = 3.         
□ 

      [8] A. Menezes, P. Van Oorschot, and S. Vanstone, 
Handbook of applied cryptography, Boca Raton, 
FL:CRC, 1997. 

For p = 2 the resilient functions constructed by 
Theorem 2 will coincide with those given in [2]. 
 
5. Conclusion 
 

In this paper, we consider functions over GF(p). 
A new relationship between nonlinearity and walsh-
hadamard transform of f has been provided. 
Furthermore, we have constructed new resilient 
functions over GF(p) and discussed the nonlinearity 
and algebraic degree of these functions. In the future, 

we are interested in constructing functions with 
better nonlinearity and algebraic degree than those in 
our method. In addition, we will look for the optimal 
nonlinearity of resilient functions for input 
parameters p, n, t. 
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