

 1

Cryptanalysis of an
Enhanced Authentication Key Exchange Protocol

 Fuw-Yi Yang Jinn-Ke Jan
Department of Applied Mathematics Department of Computer Science

National Chung Hsing University National Chung Hsing University
E-mail:yangfy@ms7.hinet.net E-mail:jkjan@cs.nchu.edu.tw

Abstract-An enhanced authentication key

exchange protocol was proposed to exchange

multiple session keys between two participants at

a time. This paper shows that this enhanced

protocol is insecure under the known session key

attack, the known long-term private key attack,

and the signature forgery attack.

Keywords: Authentication, Diffie-Hellman key

exchange, forward secrecy.

1. Introduction

In order to achieve secret communication over

an insecure channel, the messages must be

transmitted in cipher. Therefore, two participants

must agree on a shared session key before starting

to transmit/receive messages. The shared session

key is used to encrypt plaintext or decrypt

ciphertext. The famous Diffie-Hellman key

exchange protocol [1] is often used to establish a

shared session key for every protocol execution.

However, this protocol does not authenticate the

participants engaging in exchanging their session

keys. This gives chance to an adversary to

impersonate one of the participants. Thus, this

protocol is suffered from the middleman attacks.

An enhanced protocol is proposed in [2],

henceforth called H-protocol. To resist the attack

of middleman, H-protocol has been furnished with

the capability of authenticating participants. In

addition, the participants can exchange multiple

session keys at one execution of the H-protocol.

Therefore, the users of H-protocol have an

efficient way to share a set of session keys.

However, H-protocol lacks rigorous treatment

on security. Section 3 will present three attacks on

the H-protocol, i.e., the known session key attack,

the known long-term private key attack, and the

signature forgery attack. The first two attacks

concern information leakage when losing session

keys and long-term private key. The third attack

considers forging the signatures without the

knowledge of user’s signing key. The paper show

that H-protocol cannot withstand any of these

attacks.

2. Review of H-protocol

The system authority chooses a large prime p to

initialize the system. Let g be the generator of the

finite field GF(p). Assume the participants Alice

and Bob have registered at the system. Therefore,

Alice has a long-term private key xa, long-term

public key ya = axg mod p, and a certificate

cert(ya). The certificate cert(ya) is a signature of a

trust third party (TTP) on the public key ya.

Similarly, Bob has a long-term private key xb,

long-term public key yb = bxg mod p, and a

certificate cert(yb). After registering on the system,

Int. Computer Symposium, Dec. 15-17, 2004, Taipei, Taiwan.

853

 2

these two participants can exchange a set of

authenticated Diffie-Hellman keys by executing

the H-protocol. The following steps describe the

details of the H-protocol.

Step 1. Alice randomly selects two elements, ka1

and ka2, from the finite field GF(p). The quantities

ra1 = 1akg mod p, ra2 = 2akg mod p, and sa = xa

(ra1 ⊕ ra2) + ka1 ra2 mod p-1 are computed,

respectively. Then, the initiator Alice sends the

message ma1 = {ra1, ra2, sa, cert(ya)} to the

recipient Bob.

Step 2. Upon receiving the message ma1, Bob first

verifies the certificate cert(ya). Then he starts on

verifying the validity of ma1 by checking asg =

2ar1ar
ay ⊕ 2ar

1ar mod p. A valid verification leads

Bob to construct a response message mb1;

otherwise, Bob stops this instance of H-protocol.

To form a response message, Bob picks two

random elements, kb1 and kb2, from the finite field

GF(p). The quantities rb1 = 1bkg mod p, rb2 =

2bkg mod p, and sb = xb (rb1 ⊕ rb2) + kb1 rb2 mod

p-1 are computed, respectively. Then, Bob sends

the response message mb1 = {rb1, rb2, sb, cert(yb)}

to Alice. While constructing a response message,

Bob also computes a set of Diffie-Hellman keys,

i.e., the shared session keys K1 = 1bk
1ar mod p, K2

= 1bk
2ar mod p, K3 = 2bk

1ar mod p, and K4 = 2bk
2ar

mod p.

Step 3. Alice verifies the certificate cert(yb) when

receiving the message mb1. In order to certify that

mb1 is sent from Bob, Alice must check whether

bsg = 2br1br
by ⊕ 2br

1br mod p holds true. Alice stops

the execution if the check is invalid; otherwise,

Alice also computes a set of shared session keys

K1 = 1ak
1br mod p, K2 = 2ak

1br mod p, K3 = 1ak
2br

mod p, and K4 = 2ak
2br mod p.

 Therefore, Bob and Alice have agreed on a set

of four session keys after executing the protocol

cooperatively. If both participants have chosen n

random elements from the finite field GF(p)

during executing the protocol, then they will agree

on a set of n2 session keys. In order to achieve

perfect forward secrecy, only n2-1 session keys are

available to participants.

3. Cryptanalysis

In order to investigate the security of

H-protocol, three famous attacks are mounted to

attack it. The details are shown in the following

subsections.

3.1 Known session key attack

The known session key attack considers what

are the side effects if some previous session keys

are disclosed. No secret information of the

participants or system must be revealed by the

disclosure of previous session keys. In the

followings, we show how to compute the

long-term Diffie-Hellman key yab = bxaxg mod p if

the session key K1 is compromised. Express sa and

sb in (1) and (2).

sa = xa (ra1 ⊕ ra2) + ka1 ra2 mod (p-1) (1)

sb = xb (rb1 ⊕ rb2) + kb1 rb2 mod (p-1) (2)

xa xb (ra1 ⊕ ra2) (rb1 ⊕ rb2) = (sa sb - ka1 ra2 sb -

 kb1 rb2 sa + ka1 ra2 kb1 rb2) mod (p-1) (3)
)2br1br)(2ar1ar(

aby ⊕⊕ = bsasg bs2ar
1ar
− as2br

1br
− 2br2ar

1K

mod p (4)

u = 1 / ((ra1 ⊕ ra2) (rb1 ⊕ rb2)) mod (p – 1) (5)

yab = (bsasg bs2ar
1ar
− as2br

1br
− 2br2ar

1K)u mod p (6)

Equation (3) is obtained by multiplying (1) by

(2). Raising both sides of (3) to the exponentials of

the generator g, (4) is obtained. As can be seen in

(5) and (6), given the quantity of the session key

Int. Computer Symposium, Dec. 15-17, 2004, Taipei, Taiwan.

854

 3

K1, the long-term Diffie-Hellman key yab is

derived, where the quantities sa, sb, ra1, ra2, rb1, and

rb2 are obtained by listening on the public channel.

3.2 Perfect forward secrecy (Known long-term

secret key attack)

A very desirable security property of key

exchange protocol is the perfect forward secrecy.

Communications are usually among insecure

channels. The insecure channels have many

unacceptable properties, e.g., the adversaries can

eavesdrop on, intercept, and modify data over the

channels. Therefore, the shared session keys are

used to encrypt the confidential messages before

putting them in an insecure transmission channel.

Suppose that a secure encryption function is used.

Then, the adversaries cannot learn any information

about the confidential messages since they do not

know the session keys used.

Assume that an adversary has recorded some

ciphertext from an insecure channel; and further,

the exposure of participant’s long-term secret key

lead the session keys to be revealed. Thus, the

adversary is able to decrypt those intercepted

ciphertext and thereby reads the confidential

messages that were sent in the past sessions. This

result would be undesirable. Hence, a stronger

security property is required. This is the property

of perfect forward secrecy. It requires that the

session keys should be concealed even the

participant’s long-term secret key is disclosed.

From (4), anyone can compute the session key

K1 if yab is available.

From (7), the adversary listening on the public

channel can compute the session key K1 if yab is

available. The details are as follows.

v = 1 / (ra2 rb2) mod (p–1)

K1 = ()2br1br)(2ar1ar(
aby ⊕⊕ bsasg − bs2ar

1ar
as2br

1br)v

 mod p (7)

From (1), the adversary can compute the

quantity ka1 if Alice’s private key xa is available.

Thus the session keys K1 and K3 are computed.

Similarly, From (2), the adversary can compute the

quantity kb1 and the session keys K1 and K2 if

Bob’s private key xb is available.

Therefore the H-protocol does not satisfy the

requirement of perfect forward secrecy, since the

disclosure of either Alice’s or Bob’s long-term

private keys xa or xb enables an adversary to

compute the shared session key K1, K2, or K3.

3.3 Signature forgeries attack

Bob verifies the received message ma1 = {ra1,

ra2, sa, cert(ya)} by checking asg = 2ar1ar
ay ⊕ 2ar

1ar

mod p. Similarly, Alice certifies the received

message mb1 = {rb1, rb2, sb, cert(yb)} by the

verification equation bsg = 2br1br
by ⊕ 2br

1br mod p.

Essentially, {ra1, ra2, sa} and {rb1, rb2, sb} are one of

variants of ElGamal signatures [3]. The following

steps show how to counterfeit signatures so as to

pass the verification equation. Assume that an

adversary wants to construct a message ma1 = {ra1,

ra2, sa, cert(ya)}.

Step 1. The certificate cert(ya) is obtained from a

previous intercepted message.

Step 2. Let ra1 = gv ya
u mod p, where v is chosen

randomly from Z(p – 1) and -u = 2 mod (p – 1).

Step 3. Substituting ra1 = gv ya
u mod p into

verification equation (8), (9) is obtained.

Equations (10) and (11) are obtained by

combining the terms with the same base in (9).

asg = 2ar1ar
ay ⊕ 2ar

1ar mod p (8)

Int. Computer Symposium, Dec. 15-17, 2004, Taipei, Taiwan.

855

 4

asg = 2ar1ar
ay ⊕ 2avrg 2aur

ay mod p (9)

ra1 ⊕ ra2 = -u ra2 = 2 ra2 mod (p–1) (10)

sa = v ra2 mod (p–1) (11)

Step 4. Assume that the most significant bit of ra2

is 0 such that the quantity 2 ra2 is derived by

merely left shifting one bit on all bits of ra2 (the

least significant bit of the result is filled by 0).

Please note that this assumption occurs with high

probability. Then, ra2 can be solved from (10) by

the following equations. Let ra2[1] and ra2[|p|]

denote the least significant bit and the most

significant bit of ra2.

ra2[1]= ra1[1],

ra2[2]= ra1[2] ⊕ ra2[1],...,

ra2[j]= ra1[j] ⊕ ra2[j-1],...,

ra2[|p|]= ra1[|p|] ⊕ ra2[|p|-1].

If ra2[|p|] ≠ 0, redo Step 2.

Therefore, without knowing Alice’s long-term

private key the adversary has constructed a

message ma1 = {ra1, ra2, sa, cert(ya)}, which would

pass the verification equation asg = 2ar1ar
ay ⊕ 2ar

1ar

mod p. Although the adversary cannot compute the

shared session keys, this undesired result may still

cause problem, if the shared session keys are used

to encrypt random messages and no further key

confirmation protocol is used.

4. Conclusion

It is shown that H-protocol is vulnerable to the

known session key attack, known long-term secret

key attack, signature forgery attack.

References

1. W. Diffie and M. E. Hellman, “New directions

in cryptography,” IEEE Transactions on

Information Theory, Vol. 22, pp. 644-654, 1976.

2. M. S. Hwang, T. Y. Chang, S. C. Lin, and C. S.

Tsai, “On the security of an enhanced

authentication key exchange protocol,” In

Proceedings of the 18th International

Conference on Advanced Information

Networking and Application (AINA’04), IEEE,

Volume 2, pp. 160-163, 2004.

3. T. ElGamal, “A public key cryptosystem and a

signature scheme based on discrete logarithms,”

IEEE Trans. Inform. Theory, IT-31, (4), pp.

469-472, 1985.

Int. Computer Symposium, Dec. 15-17, 2004, Taipei, Taiwan.

856

