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Abstract

Warshall proposed an algorithm to compute the tran-
sitive closure matrix for any directed graph in 1962.
Over the past four decades, it has been widely applied
to various applications. However, no matter what
kind of directed graph it is, this algorithm requires
O(n?) time. In fact, there are many applications of
the transitive closure matrix just for acyclic directed
graph, and so finding it efficiently is important. In
this paper, a fast algorithm is proposed to compute
the transitive closure for the acyclic directed graph.
This algorithm takes O(k x n) time for an acyclic
directed graph with n vertices and k edges.

Keywords: Directed Graph, Transitive Closure Ma-
trix

1 Introduction

Given a directed graph G = (V, E), the transitive
closure T = (V, F) of G is a directed graph such that
there is an edge (v,w) in T if and only if there is
a directed path from v to w in G. Over the past
four decades, there were two approaches to solve the
problem. The first one was proposed by Warshall in
1962 [1]. Warshall proposed a Theorem on Boolean
Matrices, which presented an algorithm to compute
the transitive closure matrix for any directed graph.
The original use of boolean matrices was to represent
program topology [4, 5]. In consequence, it led to
interest in algorithms for transforming the boolean
matrix to the transitive closure matrix. The other
is to transform the all-pairs shortest-paths problem
directly into the transitive closure problem. Many
researches showed the solution to the the all-pairs
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shortest-paths problem can be transformed directly
into the solution for transitive closure problem [2]. In
fact, the modified algorithm of the all-pairs shortest-
paths problem to a transitive closure algorithm is the
same as Warshall’s algorithm [3].

However no matter what kind of directed graph
it is, Warshall’s algorithm requires O(n?) time. Even
an acyclic graph or a tree structure takes O(n?) time.
In fact, there are many applications of the transitive
closure just for acyclic directed graph, and so finding
it efficiently is important. The purpose of this paper
is to develop a fast algorithm to compute the tran-
sitive closure matrix for the acyclic directed graph.
The paper is laid out as follows. In Section 2, we
introduce briefly the Warshall’s algorithm and some
basic definitions related to transitive closure matrix.
In Section 3, we propose this fast algorithm and prove
it to be correct. In Section 4, we analyze the com-
plexity of this algorithm, and finally in Section 5, we
show the conclusion.

2 Background

Let G = (V, E) be a directed graph with n vertices
and k edges, where n > 1 and £ > 1. G may be
represented by an adjacency matrix, which is a 2-
dimensional n x n array, say M, with the property
that M[i, j] = 1iff the edge v; — v, isin E. M|[i,j] =
0 if there is no such edge in E, and where 1 < i,5 < n.
This adjacency matrix M may be defined as follows:

_ B ’Uij =1
M = [vijlnxn { vi; =0 otherwise

The transitive closure matrix M with respect to
M can be defined as follows:

ifv,sv;eFE,and1<4,j<n
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M+

n—1

S

k=1

— M1+M2___+Mn—1 (1)
In the following, we introduce briefly Warshall’s al-

gorithm to compute the transitive closure matrix [1].

Using adjacency matrix Warshall’s algorithm will re-

quires at least O(n3) as n® — n entries of the matrix

have to be examined. Note that when the input ma-

trix is a sparse matrix (i.e., most entries are zero),

this algorithm is very inefficient.

Warshall’s Theorem : Given a square ( d X d)
matrix G each of whose elements mz is 0 or 1,
define G* = 1 by m;; = 1 if and only if either
m;; = 1 or there exist integers ki,---, ky, such that
Mk,
m;; = 0, otherwise. Define G* by the following con-
struction:

= Mgy, = 0 = My gk, = My, = L

1. Set Gt =G

2. Seti=1

3. (Vj > m; = 1)(Vk) set mjk = mjk Amj,
4. Increment i by 1

5. If i < d, goto step 2; otherwise, stop.

Proof: See [1].

3 'Transitive closure algorithm
for acyclic directed graph

The problem: Given an acyclic directed graph G =
(V,E) with n vertices and k edges, where V =
{v1,v2,---,v,} and E = {ey,eq, -,er}, compute
the transitive closure F(E, k) of G.

Before solving the problem, we introduce some ba-
sic definitions of directed graph and its adjacency ma-
trix.

Definition 1: For an acyclic directed graph G =
(V, E), suppose that v; and v; are two vertices in
V. Then v; is a predecessor of vertex v; iff there is a
directed path from vertex v; to vertex v;. The path is

k .
denoted as v; =+ v;, where k represents the distance
between v; and v; and k > 1. wv; is an immediate
predecessor of v; iff v; = v; is an edge in G.

Lemma 1: An acyclic directed graph always con-
tains a vertex with no predecessor ( i.e., indegree 0).

Proof. see [3]. O
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Lemma 2: Given an acyclic directed graph G =
(V, E) with its transitive closure matrix M, suppose
that v; is a vertex in V. Then, all the predecessors
of v; corresponds to the nonzero entries in the jth
column of M.

Proof. Suppose that the predecessors of v; is a set of
vertices called ©, where 0 < |Q2] < n. By definition
1, for all the predecessor v; € 2, there must exist a

path v; LA vj between v; and v;. By equation (1),
the definition of transitive closure matrix , v; - vj
corresponds to MTi, j| = 1, which can be obtained by
MP¥*. Hence all the predecessors of v; are respect to
the nonzero entries in the jth column of M. O

Instead of proceeding on the vertices like Warshall’s
algorithm, our algorithm proceeds on the edges of E,
which has been sorted in the topological order. The
problem involves k edges and is solved by induction.
The first attempt is to reduce the problem by remov-
ing one edge. Let G =G—e¢ represent, that the kg,
edge ey, is removed from G. In an inductive approach,
if we have computed the transitive closure of G al-
ready, the transitive closure of G' can be achieved by
means of adding e, to G'. Let F(E,k) denote the
transitive closure matrix of G and F(E — ey, k — 1)
be the transitive closure matrix of G . Now we try to
find a matrix function called §(ey), which can trans-
form F(E — ey, k — 1) to F(E, k) by adding ey, to G .
This matrix function ¢(ey) is defined as follows.

Definition 2: Let e, = v; — v; and §(v; — v;) is
a matrix function, which consists of two operations :
(1) Set Myxnli,j] = 1, where i < n, and j < n. (2)
Add the ith column of M to jth column of M.

After adding v; = v; to G, all the predecessors of
v; can reach v; transitively. By Lemma 2, the pre-
decessors of vertex v; are kept in the ith column of
M. Therefore, we can obtain the transitive closure
matrix F(E,k) by adding the ith column of M to
jth column of M. To achieve the transitive closure
matrix F(E, k), an induction hypothesis is proposed.

Induction hypothesis: we have computed the tran-
sitive closure matrix F(E — e,k — 1) of G, and
F(E,k)= F(E —ep, k—1) + $(ex)

Hence we can obtain the transitive closure of GG if and
only if we can prove that F(E, k)= F(E —ep, k—1)
+ $(ex) holds.
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Theorem 1: For an acyclic directed graph G =
(V,E) with |E| = k and |V| = n. Let G =G — ey,
where e, be the kth edge in E, which has been sorted
in the topological order. Suppose that F(E—ey, k—1)
is the transitive closure matrix of G'. Then F(E, k)=
F(E — ek, k—1) + §(ex) holds.

Proof. Let ey, denotes the kth edge v; — v; in E. Af-
ter adding v; — v; to G, there are four cases between
v; =+ v; and G

1. v; belongs to GI, but v; is a new vertex and
not in G’ (see Figure 1): Because v; is the im-
mediate predecessor of v;, all the predecessors
of v; can reach v; by transitivity. By Lemma 2,
we see that the predecessors of vertex v; corre-
spond to the nonzero entries in the jth column
of M. Hence the predecessors of vertex v; can
be obtained from the ith column of M. By def-
inition 2, we can transform F(E — ey, k — 1) to
F(E, k) by means of performing the matrix func-
tion ¢(v; — v;). Thus, F(E, k)= F(E—ey, k—1)
+ $(ex) holds.

G
add vi--->v;
- >

DV

Figure 1: Add v; — v; to G, where v; is a new vertex

2. both v; and v; belongs to G' already (see Figure
2): After adding v; — v; to G, v; inherits all
the predecessors from v;. This case has the same
result as case 1. Thus, F(E, k)= F(E—ep, k—1)
+ $(ex) holds.

Figure 2: Add v; = vj to G, where v; and v; belongs
to G’

3. both v; and v; do not belong G’ (see Figure 3):
Because v; and v; are two newly added vertices,
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it means that they do not have any predeces-
sors, so all the entries of ¢th column and jth
column of M,,«,, must be zero originally. There-
fore, whether or not add ith column of M,
to jth column of M, «, do not affect the result.
Thus, F(E, k)= F(E — e, k—1) + §(ex) holds.

G G

add vi--->v;
_—

Figure 3: Add v; — v; to Gl, where v; and v; do not
belong to G’

4. v; belongs to GI, but v; is a newly added ver-
tex (see Figure 4): This case will never occur
because E has been sorted in the topological or-
der. By the property of topological sorting, if
the edges in F have been sorted in the topologi-
cal order, any edge in E containing vertex with
indegree 0 must appear before than those which
does not contain vertex with indegree 0.

v G

add vi--->v;
B — e

Figure 4: Add v; = v; to GI, where v; is a new vertex

O

Before describing the algorithm, we define three
functions, which will be used to design the transitive
closure algorithm.

Definition 3:

1. adjacent(v;): is a set of edges which are adjacent
to vertex v;.

2. F(E,k) is a recursive function defined as fol-
lows, which compute the transitive closure on
the edges of E:

f(E—(’Ui —)’l}j),k—l)-*—f(’l}i —)’Uj)

if v; with indegree 0 and v; — v;
€ adjacent(v;);
¢if k=0or E = ¢;

F(E, k) =
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3. For each edge v; —» v; € E, f(vZ — U]B consists 4. vy # vy and v, # vy. F(E,2) has the same

of two matrix operations defined as follows: result as Warshall’s algorithm:

$(v; = vj) ={M | M[i,j] =1 and

f(E,Q) = .7:(E — €y — 61,0) + f(@g) + f(el) =
MJjth column] = MT[ith Vg 010 0
column] + M[jth column | } v, |0 0 0 O
v, 0 001
Let E = {e1,ea, --,er} be a set of edges sorted v 00 0 0
by topological sorting. By induction, the transi- e
ti 1 i ily obtained by th ion:
gl(: ¢ fo(s;;ezlsf ((;ajlj_’ fo(e ;;1:1_(3- - f § (ee)expressmn According to the above four cases, we can obtain
i=1 F % ! 2 k- that F(E,2)= §(e1) + §(es) holds.

Theorem 2: Let G = (V,E) be an acyclic graph

and E has been sorted by topological sorting, where > B >
|[E| = k and E = {ej,ea,-- ek} Then the F(E,2) = FE-enl)+ ple)
transitive closure matrix F(E, k) = >/, §(e;
$ler) + $(e2) + +§ek,wheref(Ek)7é¢ - f(E_erel’O”%(ez’)W{(el)
Proof. This proof is by induction on k. — 7{(62) + 7{(61)
Il’l(illctlon Ba];e t:hLZG ]fi .:t.l agd E= {elgt’ \.;v}-lere Induction hypothesis: For all j, 1 < J <k, the
€1 =01 = Uz. Dy the delinition 2, we can obtain: transitive closure matrix F(FE, j) _, $(e;) hold.
F(E,1)=F(E —e1,0)+ §(e1) = §(e1) Inductive Step: The transitive closure matrlx
v [0 01 F(E, k) = Ele $(e;) is true by the induction
T vy 0 0 hypothesis. Let E =F+ ex+1. Now consider
This is the same result as Warshall’s algorithm has. F(E,k+1):
Thus, F(E,1) = F(E —e1,0) + $(e1). Likewise, con-
sider the base case k = 2: let E = {ej,e2}, where
e1 = vy — vy and ez = v, — v,. According to F(E k+1) = F(E _€k+1;k)+7((ek+l)
topological order, we have to consider the following
— F(ED+ Plews)
1. vy, = v; : F(E,2) has the same result as War-
shall’s algorithm: = F(E—-erk-1)+ 7{(%4-1) + ?{(ek)
F(E,2) = F(E —e3,1) + §(e2) = F(E — ez —e1,0)+
Vg 0 1 1 .
$(ea)+$(e1)= vy=v, [0 0 1 _ 1 7{ .
UV 0 0 0 - ‘7:(617 ) + ; (el)
Lo k41
2. vy = v, : we get F(E,2), which is the same _ Z (e3)
result as Warshall’s algorithm: o — €
.7:(E,2):f(E—eg,].)-l-f(@Q):.7:(E—62—61,0) |:|
Vy = Uy 0 11
+ $(e2) + $(e1) = y 0 0 O Here we introduce the algorithm briefly. For an
Vw 00 O acyclic directed graph, we can find a vertex with in-

degree 0 by Lemma 1. Once we find it, remove it
3. vy = vy : F(E,2) has the same result as War- and adjust the indegree of its adjacent vertices for
shall’s algorithm: the resulting graph. For all its adjacent edges, ex-
ecute matrix function f(adjacent edge) to compute
F(E,2) =F(E — ez —e1,0) + §(e2) + $(e1) the transitive closure matrix step by step. Repeat the
Uz 0 10 process until there are no more vertex with indegree
= Uy =Uw 0 00 0. In Figure 5, we propose the fast transitive closure
Vz 0 10 algorithm for the acyclic directed graph.
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Input: an acyclic directed graph G = (V, E)
Output: At the end, matrix M, «, represents the
transitive closure with respect to the directed graph
G.
begin
Let @ be the set of vertices with indegree 0
initialize the matrix M, «, with zero (i.e.,
Mli,j]=0fori,j=1,---,n).
While ® is not empty
choose a vertex v from @ (i.e., with indegree 0).
®=2—{v};
for all edges v = w € F leading out of v do
remove v — w from E;
if w with indegree 0, then ® = ® U {w}.

M[v, w]=1;
M[wth column] = M[wth column] + M [vth
column];
endif

end

Figure 5: The transitive closure algorithm for the
acyclic directed graph

Next, we illustrate this algorithm with the graph
of Figure 6-a. First, we have to sort the E in the
topological order. Initially, we see that the first ver-
tex to be picked is v; as it is the only one vertex
with no predecessors. Thus, we remove v; and get
adjacent(vy) = {v; — v2,v; — wvsz}. Next, v; and
adjacent(v) are deleted. In the resulting graph Fig-
ure 6-b, vs and vz have no predecessor. Thus, we
can pick vy and w3 in sequence. Repeat the pro-
cess until no more vertex left. In this example,
E = {v; = vg,v; = v3,Us —> Vyg,V3 —> V5,04 —> Us} iS
a set of the edges in topological order, where |E|=5.
Thus, the transitive closure of G' can be obtained by

del ete vertex vi1 o
>
del et e adj acent edges of vi1 e
(a)
o delete v2 and v3 o
>
e del ete adj acent edges of v2 and v3

(b)

Figure 6: Illustrate the algorithm with an acyclic di-
rected graph.
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iwan. 5
the expression: Mt = Y7 | ¢(e;). In the follow-

ing, we illustrate it with the all edges in E. Initially,
My xp is set to zero. vy — wvq is first edge picked
from E. Remove it from FE, and add it to M. Then,
M]J1,2] =1 is set, and the 1st column of M is added
into the 2nd column of M. The corresponding matrix
is shown below:
0 1
0 o)

00
00
Next, v; — vz is added to M. M[1,3] = 1 is set,

and the 1st column of M is added to the 3nd column
of M. The corresponding matrix is shown as follows.

U1
V2

U1
U2

M= ]”1—_”§2M:

0 1 (%] 0 1 1
w= g o= 000
2 vs | 0 0 0O

Thirdly, v — v4 and v3 — v5 are picked. For the
edge va — vy, M[2,4] = 1 is set, and the 2nd column
of M is added to the 4th column of M. For the edge
vz — vz, M[3,5] = 1 is set, and the 3nd column of
M is added to the 5th column of M.

’U1011 U1 0 1 1
M= v |00 0]|2=ppy=" 000
00 o vs | 0 0 0
vs v |0 0 0
v [0 1 1 1
V2 00011}3—”)5
M= "10000]
va |0 0 0 0
v [0 1 1 11
v |00 010
M= v | 0000 1
ve |0 0 00 0
vs L0000 0

Finally, vs — wv5 is picked. M[4,5] = 1 is set, and
the 4th column of M is added to the 5th column of
M. Figure 7 shows the resulting transitive closure
matrix.

4 Complexity Analysis

The time complexity of this algorithm consists of two
parts. The first part is the topological sorting for the
edges in E. For an acyclic directed graph G = (V, E)
with |V| = n and |E| = k, the time complexity of
topological sorting is O(k + n), which is linear in
the size of the input [2]. The second part is to an-
alyze the time complexity of matrix function ¢(e;),
for all the e; in E. Since the matrix function §(e;)

OO = =
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(%] 0 1 1
U2
U3
Vg
Us
U1
U2
U3
Vg
Us

Va—rUs

M = a2y

SO OO H OO OO
OO OO R OO O O

SO DODODODODO O OO
OO O R OO O
O EFEFOOFHO

Figure 7: The transitive closure matrix of the graph
in Figure 5.

takes O(n) time and there are k edges in E, this part
requires O(k x n) time. Hence the overall running
time of this algorithm is O(k x n)+O(k +n). For an
acyclic directed graph, the size k is between n — 1 to
w. When the acyclic directed graph is a tree
structure, the number of edges k is n — 1. The time
complexity isn x (n — 1) +2xn—1=n>+n— 1.
Under this condition, the time complexity is O(n?).
On the other hand, when the number of edges is

7“(3_1), the time complexity of this algorithm is
2
- X(Qnil) 4 nx(nl) +n:"32+1, which requires half as

much as the time complexity of Warshall’s algorithm
approximately. In this worst case, the time complex-
ity takes O(n®). Although the worst case is almost
the same as Warshall’s algorithm, the average time
complexity of our algorithm is between O(n?) and
O(n?) and no matter what kind of acyclic directed
graph it is, our algorithm is apparently faster than
Warshall’s algorithm.

5 Conclusion

Warshall proposed a transitive closure algorithm for
any directed graph in 1962. However, no matter what
kind of directed graph it is, this algorithm requires
O(n?) time. In fact, there are many applications are
just for acyclic directed graph. In this paper, we
present a fast algorithm based on topological sorting
to compute the transitive closure for the acyclic di-
rected graph. This algorithm takes O(k x n) time,
and the average time complexity is between O(n?)
and O(n?). The advantage of this algorithm is that
no matter what kind of acyclic directed graph it is,
this algorithm is faster than Warshall’s algorithm.
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