
Automatic Electronic Book Construction from Scanned
Page Images by Image Analysis Techniques

Jung-Kuang Hsu(許榮光) and Wen-Hsiang Tsai(蔡文祥)

Department of Computer & Information Science
National Chiao Tung University

1001 Ta Hsueh Rd., Hsinchu, Taiwan 300, R.O.C.
Tel: 886-3-5712121 Ext. 56650
Email: whtsai@cis.nctu.edu.tw

Abstract

Based on the use of image analysis
techniques, a system for automatic construction
and display of electronic book contents from
scanned page images is proposed. First, the
Hough transform is employed to estimate the
skew angles of scanned page images, and adjust
their orientations. The resulting image is then
decomposed into basic blocks using
moment-preserving thresholding and region
growing techniques. An automatic method is
proposed next to estimate the threshold
parameters for the size and point density features
of the basic blocks. These parameters are used to
classify basic blocks into three types: text,
graphic, and line blocks. Furthermore, a
systematic repetitive pattern detection method is
proposed to find common parts among different
page images, which improves book content
compression. For page images with pictorial
backgrounds, also proposed is a method for
extracting texts on pictorial backgrounds to gain
more text information. Finally, a user-friendly
interface is designed for displaying the
electronic book content according to a proposed
book content organization structure.

Keywords: electronic book, basic block,
pictorial background, repetitive pattern,
moment-preserving thresholding.

1 Introduction
1.1 Motivation

Electronic books are becoming more and
more popular for reading various kinds of digital
contents. An advantage of the use of electronic
books is its ease for archiving and retrieval,
compared with printed books. Therefore,
automatic digitization of printed book contents
into electronic forms for use in electronic book
applications has become an important research
subject.

Usually, the pages of a book contain
pictures and line drawings, along with texts. An
important procedure in digital image processing
of books is page layout analysis whose goal is to
segment texts, graphics, and line drawings out of
page backgrounds. Appropriate parameter values

involved in the analysis yield better page image
segmentation results. The parameters usually are
selected after observing intermediate processing
results in most studies [1-3]. If wrong parameter
values are selected, erroneous page image
analysis results will be produced. But up to now,
there still lack systematic and automatic methods
for calculating these parameters, especially for
complex page contents or pictorial backgrounds,
so it is desired in this study to find a solution to
such a problem.

Data compression is essential for efficient
transmission and archiving. After the layout of a
given page image is analyzed, different types of
components in the image will be obtained. Many
algorithms have been proposed to compress
these components respectively in single page
images [3, 4]. But few methods have been
proposed to compress all the page images of an
entire book. In a book, there often exist various
types of common parts among different page
contents in a book. Saving these common parts
only once will improve further the content
compression effect. It is desired to detect such
repetitive patterns in books systematically, and
save them efficiently in this study.

In summary, in this paper we try to design
a system to digitize and display book contents by
image analysis techniques, and propose
algorithms to calculate image-processing
parameter values automatically, to handle
repetitive patterns systematically, to segment
page components effectively, etc.
1.2 Overview of Proposed System

First we use an automatic document feeder
(ADF) to scan all pages in a book into images.
Image orientation adjustment is next conducted
on the scanned page images. Moment-preserving
thresholding and region growing [5, 6] are then
applied to find all the basic blocks of the page
images. Two types of features are used to
classify the basic blocks into three types, namely,
text, graphic, and line drawing. We also propose
methods to calculate automatically the threshold
parameters for using these features in basic
block classification.

After all blocks in the page image are

classified, different methods are applied to
process them. For text blocks, we propose a
method to merge text blocks into text frames
without overlapping the graphic blocks. Each
text frame contains multiple text lines, and we
segment each text line to obtain the characters in
the line. Then we apply an OCR system to
recognize the characters in the text frame [9].
For graphic blocks, the JPEG compression
algorithm [7, 8] is applied to compress them. For
line blocks, their positions and thickness are
extracted and stored. When an electronic book is
displayed, a graphic line is drawn at the original
position to replace the original image line. In
addition, there exist common parts, called
repetitive patterns in this paper, between the
pages in the book. We propose a hierarchical
method to detect repetitive patterns and store
them to improve the compression rate further.

When a page image includes a pictorial
background, there often exist texts on the
background to describe the content of the picture.
We also propose a method to extract texts on
pictorial backgrounds, and restore the pictures.

After the above processes are performed,
the page images of the book are converted into
the electronic format. We also set up a book data
structure and provide further a friendly interface
for displaying and reading the electronic book
pages, based on the use of the book data
structure. The overall procedure of the system
operations is shown in Fig. 1.

Start

Page Image
Input

Basic Block
Extraction

Graphic
Frame

Construction

Text Line
Extraction

Text Frame
Construction

Character
Segmentation

Character
Recogniton

Compression of Block Contents
 and Repetitive Patterns

End

Recogniton of
Repetitive
Patterns
Among

 Page Images

 Book Content
Scanning

Image
Orientation
Adjustment

Repetitive
Pattern

Database
Construction

Graphic
Frame

Compression
by JPEG

Basic Block
Recognition

Text Blocks Graphic
Blocks Line Blocks

Display of
Contents

Line Block
Information

Storage

Text
Detection and
Removal on

Pictorial
Background

Background
Picture

Restoration

Character
Extraction

from Pictoral
Background

Fig.1. Flowchart of proposed system for electronic book
construction and display.

The rest of this paper is organized as
follows. In Section 2, some methods for
extracting basic blocks of page images are
proposed. In Section 3, some methods for
classifying basic blocks and constructing text,
graphic and outer frames are described.
Moreover, the method for segmentation of
characters in text frames is described. In Section
4, the proposed features and method for
detecting repetitive patterns among page images
are described. In Section 5, the proposed
methods for detecting texts on pictorial
backgrounds automatically are described. In
Section 6, some methods proposed to organize
and compress electronic book contents, and
display them are described. Finally, some
experimental results are shown in Section 7, and
some conclusions are given in Section 8.

2 Automatic Basic Block Construction
2.1 Image Orientation Adjustment by Hough
Transform

A page image obtained from scanning is
sometimes skewed. It is necessary to adjust the
orientation of the page image. The Hough
transform is often used for detecting lines. The
page images we want to process always consist
of texts and graphics. Although they do not
always include lines, but texts in the page image
usually form several parallel-textured thick lines.
Based on the use of this feature, we employ the
Hough transform [6] to detect the skew angle of
the page image. We then use a back
transformation method to adjust the page image
orientation. The advantage of using the back
transformation is that it can avoid “hole” pixels
in the created new image.
2.2 Meaningless Background Elimination by
Moment-Preserving Thresholding

Thresholding is one of the most important
approaches to image segmentation. The image
thresholding technique adopted in this paper is
based on an approach proposed by Tsai [5],
which can automatically select threshold values
by the moment-preserving principle. After
executing the procedure, the meaningful
contents are represented by black pixels. It will
help us to devote our attention to process these
meaningful contents of the page image.
2.3 Basic Block Segmentation by Region
Growing and Merge by Geometric Position
Analysis

In this paper, the region-growing algorithm
[6] is used to construct basic blocks. After
executing the procedure, the connected
components of the page image are enclosed as
rectangles. It helps us to devote our attention to
processing these rectangles.

After segmenting the basic blocks, we get

many blocks. Some of them overlap on another
and some of them are very close to each other.
Therefore, we merge these basic blocks into
larger regions by closeness in their geometrical
positions. The details are omitted here.

3 Automatic Image Content
Segmentation

3.1 Features for Recognition of Basic Blocks
Basic blocks can be classified into text,

graphic, and line blocks by their sizes and
contents. Three size features are employed in
this study:

1. the height of the basic block;
2. the width of the basic block;
3. the ratio of the height to the width or the

ratio of the width to the height;
Based on our observations, if the size of a

basic block is too large, the block may be a
graphic block, and if the size of a basic block is
too small, the block may be a noise block. If the
ratio of the height to the width or the width to
the height is too large, the block may be a line
block.

The point density feature used in this study
is as follows:

.
block basic theof pixels ofnumber totalthe

block basic ain pixelsblack ofnumber the

densityPoint =

 (1)

Based on our observations, the point
densities of text blocks are higher than those of
graphic blocks. Therefore, in this study if the
point density of a basic block is higher than a
threshold, this block is classified as a text block;
otherwise, it is classified as a graphic block.
3.2 Classification of Text, Graphic, and Line
Blocks
Algorithm 3.1 Classification of basic blocks.
Step 1: Classify an input basic block by the size

features. If the ratio of the height to the
width is smaller than a threshold t1 or if
the width to the height of the basic block
is smaller than another threshold value t2,
go to Step 3. Otherwise, continue.

Step 2: If the width of the basic block is larger
than a threshold t3 or its height is larger
than a threshold value t4, then classify this
block as a line block, go to Step 1, and
continue classification with the next basic
block as input. Otherwise, continue.

Step 3: Classify the basic block by the size
features. If both the width and the length
features of the block are smaller than a
threshold value t5, it is regarded as a noise
block, go to Step 1, and continue
classification with the next basic block as
input. Otherwise, continue.

Step 4: Classify the basic block by the size
features. If the width of the block is larger
than threshold t3 and its length is larger
than threshold t4, then it is regarded as a
graphic block, go to Step 1, and continue
classification with the next basic block as
input. Otherwise, continue.

Step 5: Classify the basic block by the point
density feature. If the value of the point
density of the basic block is smaller than a
threshold value t6 or larger than another
threshold value t7, it is regarded as a
graphic block, go to Step 1, and continue
classification with the next basic block as
input. Otherwise, continue.

Step 6: The block is regarded as a text block, go
to Step 1, and continue classification with
the next basic block as input.

The threshold value t5 is selected by our
experimental experience, and it is set to 1 pixel
in this study. In the next section, a systematic
method to calculate automatically the threshold
values of t1 through t7 except t5 is described.
3.3 Automatic Calculation of Classification
Threshold Parameters

The threshold values we use in Algorithm
3.1 are the keys to good classifications of basic
blocks. In general, these values are selected by
experimental experiences after observing the
page images. But it is time consuming to do so.
Therefore, we propose systematic methods in
this paper to calculate these threshold values
automatically.
3.3.1 Calculation of size threshold parameters

The size features of a block include the
height and the width of the block. According to
our observations on the distributions of the
widths and lengths of a lot of sample basic
blocks in a width-length feature space shown in
Fig. 2, a phenomenon of sample clustering is
seen, that is, text blocks and noise blocks form a
cluster and the other types of blocks on the
contrary are spread all over the other part of the
feature space. We found in this study that this
phenomenon can be utilized to compute
automatically some of threshold values used in
Algorithm 3.1.

These are graphic

blocks and line

blocks.

(ClassB)

These are

text blocks and

noise blocks.

(ClassA)

Fig. 2. Distributions of samples from the text, graphic,
line, and noise blocks of page images.

More specifically, we design a classifier
with the decision boundary of two line segments

21CC and 32CC to classify the basic blocks
into ClassA containing text blocks and noise
blocks; and ClassB containing graphic blocks
and line blocks. Let the equations of the two line
segments 21CC and 32CC be y = y0 and x =
x0, respectively. Then a detailed comparison of
the decision boundary and the threshold values t1
through t4 reveals that these threshold values are
related to the values of x and y by the following
formula:

t1 = 25×y0 / x0;
t2 = 25×x0 / y0;
t3 = x0;
t4 = y0.
Based on the above idea, we propose the

following algorithm to calculate the classifier.
Algorithm 3.2 Automatic calculation of size
threshold parameters.
ClassA: A class containing text blocks and noise

blocks in the width-length feature space.
ClassB: A class containing graphic blocks and

line blocks in the width-length feature
space.

Heightavg: The average height of the basic blocks
in ClassA.

Widthavg: The average width of the basic blocks
in ClassA.

Step 1: Initially, assign all basic blocks to ClassA,
and set Heightavg and Widthavg to zero.

Step 2: Calculate the average height and the
average width of the blocks in ClassA. If
the average height is equal to Heightavg
and the average width is equal to Widthavg,
stop the iterations and go to Step 4.
Otherwise, compute the new average
height and the average width of all the
blocks in ClassA and take them as the
new values for Heightavg and Widthavg,
respectively, and then continue.

Step 3: Check all the basic blocks in the page
image and discard those blocks whose
heights and widths differ from Heightavg
and Widthavg, respectively, for a value
larger than a threshold t1. Go to Step 2.

Step 4: Take the values of Heightavg + t1 and
Widthavg + t1 as the values for y0 and x0
mentioned previously, which may be
taken to find the two segments 21CC
and 32CC , respectively, of the decision
boundary of the classifier for assigning
basic blocks into ClassA and ClassB.

In Step 3 and 4, the threshold t1 is selected
by experimental experience. Generally speaking,
a book contains many fonts with different styles
and sizes. But the difference in size between the
biggest one and the smallest one does not exceed

a range. So, t1 is set to 10 pixels in this study.
An example of computing the size

threshold parameters is shown in Fig. 3. The
average height and average width were
calculated three times before the iterations
converged.

Fig. 3. An example of automatic calculation of size
threshold parameters.

3.3.2 Calculation of point density threshold
parameter

The point density of the basic block is
another feature for classifying basic blocks. In
general, text blocks have higher point density
values than graphic ones. Line blocks have
higher point density values than text blocks. So,
we can design a classifier with two boundaries to
classify the basic blocks into two classes. Let the
two boundaries be specified by the two
equations y = y1 and y = y2 with y1 < y2. Then a
detailed investigation of Algorithm 3.1 reveals
that the threshold values of t6 and t7 are related to
the values of y1 and y2 by the following formula:

t6 = y2; t7 = y1.
Algorithm 3.3 Automatic calculation of point
density threshold parameter.
UpperBound: The upper bound of the point

density values of text blocks.
LowerBound: The lower bound of the point

density values of text blocks.
ClassA: A class containing text blocks in the

page image.
PointDensityavg: The average point density of the

basic block in ClassA.

Step 1: Initially, all basic blocks are regarded to
belong to ClassA. And the values of
PointDensityavg, UpperBound, and
LowerBound are set to be zero.

Step 2: Calculate the average point density of the
blocks in ClassA. If the average point
density is equal to PointDensityavg, stop
the iterations and go to Step 4. Otherwise,
compute the new average point density of
all the blocks in ClassA and take it as the
new value of PointDensityavg, and then go
to Step 3.

Step 3: Check all the basic blocks in the page
image and discard those blocks whose
point density differs from
PointDensityaverage for a value larger than a
threshold t1. Then go to Step 2.

Step 4: Take the values of PointDensityavg − t1
and PointDensityavg + t1 as the values of y2
and y1 mentioned previously, which can
be used to find the decision boundaries
Upperbound and LowerBound,
respectively, of the classifier to classify
basic blocks.

In Step 3 and Step 4, the threshold t1 is
selected by our experimental experience. An
example of computing the point density
threshold parameters is shown in Fig. 4.

Fig. 4 An example of computing the point density
threshold parameters.
3.4 Construction of Text, Graphic and Outer
Frames

In order to process the page image content
in more detail, we construct text, graphic and
outer frames.
3.4.1 Graphic frame construction

A graphic block may have some related
text blocks as its captions. These captions
describe the content of the graphic. So we
propose a method to select the text blocks that
are the captions of graphic blocks and create a
graphic frame to store the graphic block together
with its captions.
3.4.2 Outer frame construction

In order to devote our attention to
processing principal graphic and text blocks in
the page image, the outer frame of a page need

be segmented from the page image. Usually, the
outer frame contains much information,
including the page number, the footnote, the title
of a chapter, the repetitive patterns, etc. An outer
frame is constructed by four boundaries,
UpperBoundary, LowerBoundary, LeftBoundary
and RightBoundary. These boundary values are
selected by experimental experience,
3.4.3 Text frame construction

We cannot gain much useful information
from these small text blocks with incomplete
knowledge of the contents of the page image.
Therefore, how to merge these blocks into larger
text frames is an important subject. We propose
a method in this paper to merge text blocks into
larger text frames.
3.5 Segmentation of Characters in Text
Frames

Most OCR systems are applied to
individual characters. Therefore we have to
segment the characters in text frames. The
projection method widely used for segmentation
of characters is employed here.
3.5.1 Document orientation detection in text
frames

In general, text frames have two text line
directions: vertical and horizontal. The text line
directions must be known first. Based on our
observations, in a vertical text frame, the vertical
projections can be divided more clearly; while in
a horizontal text frame, the horizontal
projections can be divided more clearly. We can
use these properties to decide the orientations of
text frames in page images.
VWhiteLength: the average length of gaps with

zero values in the vertical projections.
HWhiteLength: the average length of gaps with

zero values in the horizontal projections.
The decision rule based on the two types of
average lengths is described as follows:

.horizontal otherwise,
 vertical;be toframe text thedecide

th,HWhiteLengthVWhiteLeng if >
 (5)

3.5.2 Text-line segmentation in text frames
The projection method can be used to

segment text-lines in text frames further. The
steps are described as follows, for the case of
processing the vertical text frame.
Step 1: Apply the vertical projection method to

get the vertical projection profiles of the
text frame.

Step 2: Find the gaps in the profiles with zero
projection values and record the boundary
positions of the gaps.

Step 3: Use the middle points between the
boundary positions to decompose the text
frame into multiple text-lines.

The segmentation for the case of the

horizontal text frame can be accomplished with
similar steps. We apply the horizontal projection
method first, and execute the other two steps
described above.
3.5.3 Character segmentation in text-line blocks

The projection function can be used to get
the profiles of the text-lines. Using a threshold
value for these profiles, the margins of the
characters can be extracted. Some characteristics
of Chinese characters like being of rectangular
shapes are used. The steps are described as
follows, for the case of processing the vertical
text-lines.
Step 1: Apply the horizontal projection method

to get the horizontal projection profiles of
the text-line.

Step 2: Find the gaps of the horizontal projection
profiles with zero values and record their
positions. Set these positions as the
margins of characters.

Step 3: Select the first margin from top to
bottom in the text-line as the base margin.

Step 4: Discard those margins whose positions
differ from the position of the base margin
by a distance smaller than a threshold t1.

Step 5: If all margins of the characters have been
processed, go to Step 6. Otherwise, select
the next margin as the base margin, and
go to Step 4.

Step 6: Record the remaining margins and use
them as boundaries to segment the
characters.

The segmentation for the case of
processing horizontal text-lines can be
accomplished by similar steps. We apply the
vertical projection method first, and execute the
steps described above.

4 Automatic Repetitive Pattern
Detection in Pages

4.1 Features for Detection of Repetitive
Patterns

In this section, some proposed features that
are used to detect the repetitive patterns among
different pages in a book are described.
4.1.1 Size feature

The size of the block or frame is the main
properties to detect repetitive patterns. It is
impossible to decide two blocks with different
sizes as repetitive patterns. Two size features of
blocks or frames are used in this paper:
1. the height of the block or frame;
2. the width of the block or frame.

Based on our observations, similar parts
among pages have similar size features.
Therefore, if the heights and widths of two
blocks or frames in different page images are
similar, these two blocks or frames may be
repetitive patterns.

4.1.2 Block content feature
The content feature is not an absolute

necessary feature for deciding repetitive patterns.
The page number is an example of this
phenomenon. The page numbers contain similar
block sizes, but their contents are different
actually. Therefore, we can detect and classify
the repetitive patterns by the content feature as
follows.
Full repetitive pattern: the patterns, which

contain similar block sizes and identical
contents.

Semi-repetitive pattern: the patterns, which only
contain similar block sizes but different
contents.

4.1.3 Continuity feature
Based on our observations, most repetitive

patterns appear in each consecutive page image.
However, the repetitive patterns may sometimes
appear only in odd page images or only in even
page images. Therefore, the continuity of the
repetitive pattern is a feature to detect and
classify repetitive patterns.
Continuous repetitive pattern: the patterns,

which appear in continuous page images.
Skipping repetitive pattern: the patterns, which

appear only in odd page images or even
page images.

4.1.4 Geometric position feature
In general, the repetitive patterns between

two pages always have similar geometric
positions. But sometimes the repetitive patterns
might have symmetrical geometric positions
between two pages. Therefore, the geometric
position of the repetitive pattern is a feature to
detect and classify the repetitive patterns.
Identical-positioned repetitive pattern: The

repetitive patterns have similar geometric
positions.

Reflective repetitive pattern: The repetitive
patterns have symmetrical geometric
positions.

4.2 Classification of Repetitive Patterns
The features for classification of repetitive

patterns we described above are all independent.
Therefore, we can combine any three types of
them to form a new type of repetitive pattern.
Type 1: Continuous identical-positioned full
repetitive pattern.

The repetitive patterns in this type contain
similar block sizes, geometric positions, and
identical contents. The repetitive patterns appear
in continuous page images. Fig. 5 shows an
example of continuous identical-positioned full
repetitive pattern.
Type 2: Continuous reflective full repetitive
pattern.

Fig. 5 Continuous identical-positioned full repetitive pattern.

The repetitive patterns of this type contain
similar block sizes, symmetrical positions, and
identical contents. The repetitive patterns appear
in continuous page images. Fig. 6 shows an
example of continuous reflective full repetitive
pattern.

Fig. 6 Continuous reflective full repetitive pattern.

Type 3: Skipping identical-positioned full
repetitive pattern.

The repetitive patterns in this type contain
similar block sizes, geometric positions, and
identical contents. The repetitive patterns only
appear in odd page images or even page images.
Fig. 7 shows an example of skipping
identical-positioned full repetitive pattern.

Fig. 7 Skipping identical-positioned full repetitive pattern.

Type 4: Continuous identical-positioned semi-
repetitive pattern.

The repetitive patterns of this type contain
similar block sizes and geometric positions. The
repetitive patterns appear in continuous page
images. But the pattern contents are not identical.
Fig. 8 shows an example of continuous
identical-positioned semi-repetitive pattern.

Fig. 8 Continuous identical-positioned semi-repetitive

pattern.

Type 5: Continuous reflective semi-repetitive
pattern.

The repetitive patterns of this type contain
similar block sizes and symmetrical positions.
The repetitive patterns appear in continuous
page images. But the pattern contents are not
identical. Fig. 9 shows an example of continuous
reflective semi-repetitive pattern.

Fig. 9 Continuous reflective semi-repetitive pattern.

Type 6: Skipping identical-positioned
semi-repetitive pattern.

The repetitive patterns of this type contain
similar block sizes and geometric positions. The
repetitive patterns only appear in odd page
images or even page images. But the pattern
contents are not identical. Fig. 10 shows an
example of skipping identical-positioned
semi-repetitive pattern.

12

 13

14

 15

Fig. 10 Skipping identical-positioned semi-repetitive pattern.

Type 7: Skipping reflective full repetitive
pattern.

The repetitive patterns of this type contain
similar block sizes, symmetrical positions, and
identical contents. The repetitive patterns only
appear in odd page images or even page images.
Based on our observations, we seldom see books
with this type of repetitive pattern. So this type
is not considered in our paper.
Type 8: Skipping reflective semi-repetitive
pattern.

The repetitive patterns of this type contain
similar block sizes and symmetrical positions.
The repetitive patterns only appear in odd page
images or even page images. But the pattern
contents are not identical. Based on our
observations, we seldom see books with this
type of the repetitive pattern. So this type is not
considered in our paper.
4.3 Hierarchical Repetitive Pattern Detection

A hierarchical method is proposed to detect
repetitive patterns among different pages in a
book. This method includes two phases to detect
repetitive patterns. In the first phase, we detect
repetitive patterns based on the size, geometric
position, and content features. In the second
phase, we check the continuity of the repetitive

patterns we have found in the first phase.
Algorithm 4.1 Detection of repetitive patterns
among different pages in a book.
Phase 1:
Step 1: Input all page images of the book. Each

page image must be compared with two
other page images: one is the next page
image, and the other is the page image
after the next page image. We start at the
first page image of the book.

Step 2: Define the first page image of the book
as the base image and denote it as Base,
and denote the next page image of the
base image as Target.

Step 3: Get a block B1 from Base, and a block B2
from Target.

Step 4: Compare B1 and B2 by the size features.
If the sizes of the blocks are similar, go to
Step 5. Otherwise, go to Step 3 and
continue with the next block in Target.

Step 5: Compare B1 and B2 by the content
feature using template matching. If the
content features of these two blocks are
similar, then decide B1 and B2 as full
repetitive patterns and go to Step 6.
Otherwise, decide B1 and B2 as
semi-repetitive patterns and go to Step 7.

Step 6: Compare B1 and B2 by the geometric
position feature. If the geometric positions
of the two blocks are similar, then decide
B1 and B2 as identical-positioned full
repetitive patterns. Otherwise, if the two
blocks are at reflective positions, decide
B1 and B2 as reflective full repetitive
patterns. Go to Step 8.

Step 7: Compare B1 and B2 by the geometric
position feature. If the geometric positions
of the two blocks are similar, then decide
B1 and B2 as identical-positioned
semi-repetitive patterns. Otherwise, if the
two blocks are at reflective positions,
decide B1 and B2 as reflective
semi-repetitive patterns. Go to Step 8.

Step 8: Repeat Steps of 3 through 7, until all
blocks in Base and Target are processed
in pairs.

Step 9: Define the page image after the next
page image as Target, and repeat Steps of
3 through 8.

Step 10: Redefine the next page image of the
base image as Base, and repeat steps of 2
through 9, until all page images of the
book are processed.

In Step 4 and Step 6, several threshold
values are used to describe the similarity
between the blocks. These threshold values are
selected by our experimental experience, and
they are set to 5 pixels in this study.

In Step 5, a block matching method is used
to measure the matching degree of the blocks.

Phase 2:
In this phase, we classify the repetitive

patterns based on the continuity feature.
Step 1: Input all page images of the book. Each

page image is compared only with the
next page image. We start at the first page
image of the book.

Step 2: Define the first page image of the book
as the base image and denote it as Base,
and denote the next page image of the
base image as Target.

Step 3: Get an identical-positioned full repetitive
pattern R1 from Base, and an identical-
positioned full repetitive pattern R2 from
Target.

Step 4: Compare R1 and R2 by the geometric
position feature. If the geometric positions
of R1 and R2 are similar, then decide R1
and R2 as continuous identical-positioned
full repetitive patterns. Otherwise, decide
R1 and R2 as skipping identical-positioned
full repetitive patterns. Go to Step 3, and
continue processing next identical-
positioned full repetitive patterns in Base
and Target, until all identical-positioned
full repetitive patterns are processed, then
go to Step 5.

Step 5: Get an identical-positioned semi-
repetitive pattern R3 from Base, and an
identical-positioned semi-repetitive pat-
tern R4 from Target.

Step 6: Compare R3 and R2 by the geometric
position feature. If the geometric positions
of R3 and R4 are similar, then decide R3
and R4 as continuous identical-positioned
semi-repetitive patterns. Otherwise,
decide R3 and R4 as skipping identical-
positioned semi-repetitive patterns. Go to
Step 5, and continue processing next
identical-positioned semi-repetitive pat-
terns in Base and Target, until all
identical-positioned semi-repetitive pat-
terns are processed, then go to Step 7.

Step 7: Get a reflective full repetitive pattern R5
from Base, and a reflective full repetitive
pattern R6 from Target. And decide R5 and
R6 as continuous reflective full repetitive
patterns. Continue until all reflective full
repetitive patterns are processed, and then
go to Step 8.

Step 8: Get a reflective semi-repetitive pattern R7
from Base, and a reflective semi-
repetitive pattern R8 from Target. And
decide R7 and R8 as continuous reflective
semi-repetitive patterns. Continue until all
reflective semi-repetitive patterns are
processed, and then go to Step 9.

Step 9: Redefine the next page image of the base
image as Base, and repeat steps of 2
through 8, until all page images of the

book are processed.
In Step 7 and Step 8, we ignore the

skipping reflective full repetitive pattern and the
skipping reflective semi-repetitive pattern.
Therefore, we can classify the reflective full
repetitive pattern into the continuous reflective
full repetitive pattern and the reflective
semi-repetitive pattern into the continuous
reflective semi-repetitive pattern immediately.

After executing the algorithm, repetitive
patterns with different types are detected and
classified into six types. We show some
experimental results of detecting repetitive
patterns between page images in a book in Fig.
11(a) and Fig. 11(b).

5 Automatic Text Detection on
Pictorial Background

5.1 Text Detection and Removal by Dilation
There often exist texts on the pictorial

background to describe the contents of the
pictorial background. Detection and analysis of
these texts helps gain much useful information.
Therefore we propose an algorithm to detect and
analyze these texts.

(a) (b)
Fig. 11. An example of experimental results of
hierarchical repetitive pattern detection. (a) One page
image in a book. (b) Another page image in a book. The
yellow rectangles in the page images (a) and (b) are the
skipping identical-positioned full repetitive patterns.
Algorithm 5.1 Text detection and removal on
pictorial background.
Step 1: Input a page image including a pictorial

background and apply the Sobel operation
to each of the RGB planes, respectively. If
the average gray values of the RGB
planes at a pixel are larger than a
threshold t1, this pixel is taken as an edge
point.

Step 2: Use the region-growing algorithm to
construct basic blocks from the edge
points found in Step 1. The details are
described in Section 2.3.

Step 3: Classify basic blocks into text and
graphic blocks by the size and point
density features of the blocks that we
described in Section 3.2.

Step 4: After basic blocks are classified, pay
attention to the text blocks. Analyze the

geometric position of the text blocks and
merge the text blocks into more complete
text blocks. Record the positions of these
text blocks. The merge method is
described in Section 2.4.

Step 5: Reload the original page image.
Transform all pixels in the text blocks
from the RGB to the YIQ color model.

Step 6: Get a pixel P in the text block and check
other pixels in the neighborhood of P (the
neighborhood of each pixel is defined to
be a 3 × 3 region with the pixel as the
center) to find the pixel P′ with the
maximum Y values.

Step 7: Replace the R, G, and B color values of
pixel P with the R, G, and B color values
of P′.

Step 8: Repeat Step 6 to Step 7 until all pixels in
the text block are processed.

In Step 1, the threshold t1 is selected by the
moment-preserving method we described in
Section 2.2. In Step 5, we use the YIQ color
model [6] in Algorithm 5.1. An advantage to use
the YIQ color model is that the luminance (Y)
and color information (I and Q) are decomposed.
Thus the color information (I and Q) is
preserved. An example of the results of text
detection and removal is shown in Fig. 12(a)(b).
5.2 Background Picture Restoration

In this section, we propose a method to
restore the contents on the pictorial background.
Algorithm 5.2 Background picture
restoration.
Step 1: Input the picture produced by text

detection and removal in Section 5.1.
Initially, define ∆R, ∆G and ∆B to denote
the average of the color differences
between the text blocks and an outer track
of the text blocks on the RGB planes.

Step 2: Compute the average of the color
differences between the text blocks and
the outside track of the text blocks on the
RGB planes as:

,
),(),(

,
),(),(

,
),(),(

),(),(

),(),(

),(),(

OUT

OUTyx

IN

INyx

OUT

OUTyx

IN

INyx

OUT

OUTyx

IN

INyx

N

yxB

N

yxB
B

N

yxG

N

yxG
G

N

yxR

N

yxR
R

∑∑

∑∑

∑∑

∈∈

∈∈

∈∈

−=∆

−=∆

−=∆

 (2)

where IN denotes the region of the text
blocks, and OUT denotes the outer track
region of the text blocks; NIN denotes the
numbers of the pixels in the text blocks;
NOUT denotes the numbers of the pixels in
the outer track of the text blocks; and R(x,

y), G(x, y) and B(x, y) are the three-
channel color values at the position (x, y)
on the RGB planes.

Step 3: Finally, increase the three-channel color
values of each pixel in the text blocks on
the RGB planes by the amounts of ∆R,
∆G and ∆B, respectively, as follows:

.),(),(),(
,),(),(),(
,),(),(),(

INyxByxByxB
INyxGyxGyxG
INyxRyxRyxR

ININ

ININ

ININ

∈∀∆+=
∈∀∆+=
∈∀∆+=

 (3)

In Step 1, the thickness of the outer track
of the text blocks is selected by our experimental
experiences, and is set to 5 pixels in this paper.

An example of the results produced by the
proposed method for background picture
restoration is shown in Fig. 12(b)(c).
5.3 Character Extraction from Pictorial
Background

After restoring the background picture, we
get a pure picture without any text. However, the
texts on the pictorial background contain much
useful information. Therefore, we propose a
method to extract characters from the pictorial
background.
Algorithm 5.3 Extraction of Characters from
pictorial background.

Imageoriginal: the original page image.
Imagepure: the page image after removing the text

blocks and restoring the background
picture obtained by the method described
in Section 5.2.

Imagedifference: the result page image after
extracting characters from the pictorial
background.

Step 1: Transform Imageoriginal and Imagepure into
gray-level images.

Step 2: Thus, for each pixel at row x and column
y in the Imageoriginal, Imagepure, and
Imagedifference, we compute:

,),(),(),(
,),(),(),(
,),(),(),(

pureoriginaldifference

pureoriginaldifference

pureoriginaldifference

yxByxByxB
yxGyxGyxG
yxRyxRyxR

−=

−=

−=

 (4)

where original denotes the original page
image, pure denotes the page image after
restoring the background picture and
difference denotes the resulting page image.

Step 3: Construct the page image from the color
values of Rdifference, Gdifference, and Bdifference
as the result of extracting characters from
the pictorial background.

An example of the results produced by the
proposed method for character extraction from
pictorial background is shown in Fig. 12(d).

(a)

(b)

(c)

(d)
Fig. 12. An example of the results of automatic text
detection on the pictorial background. (a) The original
page image. (b) The page image after detecting and
removing texts. (c) The page image after restoring
background picture. (d) The page image after extracting
characters from the pictorial background.

6 Automatic Page Content
Reconstruction

6.1 Characters Recognition
In Section 3.5, a character data structure is

used to store the information of characters. Then,
we start to recognize these characters. First, we
construct a gray level image for each character.
Then, we apply an OCR system to recognize
these gray level images. Finally, we save the
recognition results in the text file format.

6.2 Compression of Graphic Frames
JPEG[7][8] is a standard for compressing

images. Because of the high compression rate of
the JPEG compression algorithm, we apply it in
this study to compress the graphic frame. But the
captions of the graphic in the graphic frame must
be recognized first. For this, we use the OCR
process described previously and save the result
as part of the graphic frame data.
6.3 Compression of Repetitive Patterns

Each repetitive pattern in page images is a
pattern block, which belongs to one of the types
of text, graphic, and line blocks. Use of different
compression techniques for different types of
blocks can increase the overall compression rate
of the electronic book. Use the OCR system to
recognize all of the characters of each text block.
Apply the JPEG compression algorithm to
compress each graphic block. Compute and save
the position and the thickness of each line block.
These blocks belong to the repetitive patterns.
6.4 Electronic Book Organization and
Compression

Now, each component in the page image is
compressed. In order to reconstruct and display
the electronic book, the attributes of these
components in the page images must be stored.
We construct a file to save the attributes of these
components in the page images.
1. Graphic block attributes: Graphic path and

Graphic position.
2. Text block attributes: Text content and Text

position.
3. Line block attributes: Line thickness, Line

start position and Line end position
4. Repetitive pattern attributes: Repetitive

pattern position, Repetitive pattern index
and Repetitive pattern type.

5. Page attributes: Page image file path, Page
width, Page height, Line number, Graphic
number, and Text number.

6. Repetitive pattern database attributes: Line
number, Text number and Graphic number.

7. Electronic book attributes: Pagination.
These attributes in the INI file form a tree

structure based on the data types of the
components. We construct the electronic book
according to these attributes of components in
the page images.
Algorithm 6.1. Electronic book construction.
Step 1: Define a book container to save the

components of the page images of a book.
Step 2: Input the first page image of the book.

Save the attributes of the text, graphic,
and line blocks of this page image in a file
and store these components in the
electronic book container. Save the
attributes of the repetitive patterns of this
page image in the file and store the

repetitive patterns according to the types
of the repetitive patterns in the repetitive
pattern database, respectively.

Step 3: Input the second page image of the book.
Save the attributes of text, graphic, and
line blocks of this page image in the file
and store these components in the
electronic book container.

Step 4: Get a repetitive pattern R of the second
page image. Compare R and the elements
of the repetitive pattern database. If there
exists an element RP1 in the repetitive
pattern database with its type and
attributes all similar to R, point R toward
RP1 and save the displacement between R
and RP1 in the repetitive pattern database.

Step 5: Repeat Steps of 3 through 4, until all
page images are processed.

The geometric positions of the repetitive
patterns between page images always have a
little difference. Therefore, in Step 4, we must
store the displacement between the blocks and
the element in the repetitive pattern database.

After implementing Algorithm 6.1, the
page images has been organized and compressed
into an electronic book. An illustration of the
proposed organization of the data structure for
the electronic book is shown in Fig. 13. This tree
structure can help us to reconstruct the original
electronic book easily.

Page0

EBook

Page1 Page2 PageN

G
raphic

Text

Line

R
epetitve
Pattern

G
raphic

Text

Line

...... Repetitive
Pattern

Database

Fig. 13 A simple example of organizing the electronic
book.

7 Experimental Results

Some page images of a book were tested
in our experiment. We obtain these page images
from an automatic document feeder of the HP
ScanJet scanner at 150dpi resolution with true
color levels. The proposed system was
implemented on a Pentium III-933 PC with 256
MB RAM and software development was
conducted by the use of VC++ 6.0 in a Windows
2000 Professional platform.

The result of the electronic book is shown
in Fig. 14. Fig. 14(a) shows the source image,
Fig. 14(b) shows the result of segmentation and
classification, and Fig. 14(c) shows the result of

reconstruct the electronic book.

8 Conclusions

A system for automatic construction of
electronic book contents from scanned book
page images has proposed. In the phase of
analysis of page image contents, a method was
proposed to classify page contents into different
types of blocks by the size and point density
features. Furthermore, methods to calculate the
size and point density threshold parameters
automatically were proposed. In the phase of
detection of repetitive patterns in image pages, a
hierarchical method was proposed. The detection
results can be utilized to improve the book
content compression rate. In the phase of
removal of texts on the pictorial background, we
proposed a method to remove these texts.
Furthermore, a method was proposed to extract
characters on the pictorial background using the
pure picture obtained from removing the texts as
well as the original picture. In the phase of
compression of page components, a method was
proposed to construct a repetitive pattern
database to improve the compression rate further.
Finally, a complete data structure of a book was
designed to reconstruct the electronic book for
display and reading. The experimental results
have revealed the feasibility of the proposed
methods.

References
[1] C.J. Park, J.H. Jeon, T.M. Koo, and H.M.

Choi, “An Edge-Based Block Segmentation
and Classification for Document Analysis
with Automatic Character String
Extraction,” Proceedings of IEEE on
International Conference Systems, Man and
Cybernetics, Vol.1, pp.707-712, 1996.

[2] J. H. Bae, L. C. Jung, J. W. Kim, H. J. Kim,
“Segmentation of Touching Character Using
an MLP,” Pattern Recognition Letters, vol.
19, pp. 701-709, 1998.

[3] S. H. Chen and W. H. Tsai, “Book Content
Digitization and Display for Digital Library
by Document Image Analysis and
Compression-By-Classification Techniques”,
Proc. of 2000 IPPR Conf. On CVGIP,
Taipei, Taiwan, ROC, pp. 23-32, 2000.

[4] W. H. Tsai and C. Y. Chan, "A Bottom-Up
Approach to Color Image Document
Analysis and Rearrangement," Department
of Computer and Information Science,
National Chiao Tung University, pp. 7-42,
June 1999.

[5] W. H. Tsai, “Moment-preserving thre-
sholding: a new approach,” Computer Vision,
Graphics, and Image Processing, vol. 29, pp.
377-393, 1985.

[6] R. C. Gonzalez and R. E. Woods, Digital
Image Processing, Addison-Wesley
Publishing Company, U.S.A., 1993.

[7] G. K. Wallace, “The JPEG Still Picture
Compression Standard,” IEEE Transactions
on Consumer Electronics, Vol. 38, No. 1,
February 1992.

[8] JPEG. Digital compression and coding of
continuous tone still images - requirements
and guidelines. ITU recommendation T.81,
ISO/IEC International Standard 10918 -
1,1993.

[9] Y. C. Yang and C. S. Fuh, “ Chinese
Character Segmentation in Machine Printed
Documents,” in 7th Optical Character
Recognition and Document Analysis
Workshop, November 1997, pp. 2.20-2.23.

(a)

Fig. 14. Experimental results. (a) The source image. (b) The
resulting image after document segmentation. (c) The
electronic book page.

(b)

Fig. 14. Experimental results. (a) The source image. (b) The
resulting image after document segmentation. (c) The
electronic book page (continued).

(c)

Fig. 14. Experimental results. (a) The source image. (b) The
resulting image after document segmentation. (c) The
electronic book page (continued).

