Int. Computer Symposium, Dec. 15-17, 2004, Taipei, Taiwan.

An Algorithm for Detecting Z-cyclesin Distributed
Computing System

Chin-Lin Kuo and Yuo-Ming Yeh
Fault Tolerance Lab. of National Taiwan Normal University
{ gene, ymyeh } @ice.ntnu.edu.tw

Abstract- The checkpointing approach of rollback-
recovery has been widely used for fault-tolerance in
distributed computing system. There are many com-
munication messages resulting in much dependency
during the time of program running. Once a process
generates faults, many processes that are directly or
indirectly related with the faulting process will be in-
fluenced. These processesin turn rollback to some pre-
viously stored state, respectively. What's worse, the
rollback action may repeatedly trigger another roll-
back action of other dependent processes. Thisiswhat
we know as the domino effect[11]. The main cause of
generating domino effect is Z-cycleq[2]. So far there
is no effective method to detect Z-cycles with length
more than two. In this paper, we propose a distributed
algorithmto detect Z-cycleswith long length.

Keywords: fault tolerance, checkpoints, domino ef-
fect , Z-cycles, rollback-recovery.

1. Introduction

In distributed computing system, checkpointing
and rollback-recovery[17] is an important mechanism
for fault tolerance. A checkpoint is a stable memory
record of a process state. Each process could take a
checkpoint whenever process favors. The simplest so-
lution for a process to achieve this is to take a check-
point periodically and it will work efficiently in only
one processor. But in messaging passing system with
many processors, such an action are likely to gen-
erate domino effect and waste much time and com-
putation for rollback-recovery. Every process takes
checkpoints independently without considering other
processes. Although this uncoordinated checkpoint
method is easily implemented and allows each process
to flexibly take checkpoints, it must pay much over-
head, such as rollback extent, complex recovery and
garbage collection.

A consistent global recovery lineis a set of check-
points, one per process, which form a recovery line.
When there are faults happening on a process or pro-
cesses, the process or processes in question immedi-
ately launch the rollback-recovery mechanism. If there
is no valid recovery line, this action may repeatedly
trigger another rollback action of other dependent pro-
cesses, and the rollback distance may be unbounded

and unpredictable. Many processes may have to roll-
back to their own initia state. This is what we call
"domino effect”, the worst case we would not like to
encounter. In order to determine a consistent global
checkpoint, the processes haveto record the dependen-
cies relation among their checkpoints during failure-
free operation. However, processes cannot determine
whether or not specific checkpoints are part of a con-
sistent state.

One of the most serious problems in uncoordi-
nated checkpointing is useless checkpoints. The pro-
cesses may easily take useless checkpoints which are
never part of any global consistent recovery line. Use-
less checkpoints are undesirable and waste much sta-
ble storage space. So applications with frequent out-
put commits are not suitable since they could easily
form many orphan messages between two checkpoints
taken by two different processes and dependency re-
lation between the states of different processes. De-
pendency between many processes may be occurred
by message communication and there have been many
papers[9,12,13] discussed about it. Another disad-
vantage is that determining a consistent state may
be laborious and the rollback mechanism will be-
come more complicated. Therefore most research is
concentrated on coordinated checkpointing[14,15] and
communication-induced checkpointing[4] schemes.

Communication-induced protocols reserves Z-
cycle-free property by inserting forced checkpoints
based on communication events. Hence, minimiz-
ing the number of forced checkpointsis becoming the
most important topic. The main cause of generating
domino effect is attributed to Z-cycles. So far, detect-
ing Z-cycleswith long length in distributed computing
system is still a difficult problem. In Taesoon Park
and Heon Y.Yeon's paper[3], they propose an scheme
of detecting Z-cycles with length two and of taking
forced checkpoints to break them under many special
communication patterns. In this paper, we propose an
distributed algorithm to detect all Z-cycles with long
length and their involved checkpoints.

2. System Model and Background

A distributed computation consists of a finite set
P of n processes {Py, P,,---, P,} that interact by

1124

Int. Computer Symposium, Dec. 15-17, 2004, Taipei, Taiwan.

means of messages sent over channelswhich transmis-
sion times are unpredictable but finite. Processes do
not share any common memory and a common clock
value, that is, they are asynchronous. The communi-
cation pattern among these processes in P could be
arbitrary and the communication channel between two
processes is reliable, FIFO(first-in-first-out) and bidi-
rectional (undirectional).

Execution of a process produces a sequence of
events which can be classified as: send events, receive
events, and internal events. Aninterna statement does
not involve communication. The casual ordering of

eventsin adistributed executionis based on Lamport’s

happened-before relation[1] denoted by * 22"

A process may fail, lose its volatile state and stop
execution according to the fail-stop model[16]. A lo-
cal checkpoint recordsthe current process state on sta-
ble storage. The k-th checkpoint in process P; is de-
noted as C; , , where k is an non-negative integer
and we assume that each process P; takes an initial
checkpoint C; o immediately before execution begins.
Let I; , denote the interval between the consecutive
checkpoints C; o1 and C; o Wherea = 1,2,3,---.
In this paper, we assume each process only take local
checkpoints at its own pace (for example, using a pe-
riodic algorithm) without taking forced checkpoints.

A message m sent by P; to P; iscalled an orphan
withrespectto apair (C; ., Cj,«,) iff itsreceive event
happened before C; ., while its send event happened
after C; . A global consistent checkpoint C'is a set
of local checkpoints (C1 4., C2 45, - - -, Ch 5,) Which
no orphan messages exists in any pair of local check-
points belonging to C'. The processes are said to roll-
back to the consistent recovery line if there is no or-
phan interval after the rollback-recovery. Sometimes,
the processes have to rollback recursively to reach a
consistent recovery line due to the domino effect and
the rollback distance may be unbounded. In the worst
case, the only consistent recovery line consists of a set
of the initial checkpoints, that is, the total loss of the
computation in spite of checkpointing efforts. So there
are many papers talking about how to prevent domino-
effect[5] or useless checkpoints]6,7].

3. Z-cycle Definition and Properties

First, we recall the Z-path definition introduced by
Netzer and Xu[2].

Definition 1: AZ-path existsfromC; , to C; , iff there
aremessagesm , ma , -+ , myg, (¢ > 1) such that :
1. m, issent by process P; after C; ,,

2. ifmy(1 <k < ¢) isreceived by process P, , then
my+1 1S Sent by P, in the same or a later check-
point interval (although m 1 may be sent before
or after my, isreceived).

3. my isreceived by process P; before C; .
Definition 2: If there is a Z-path from C; ,;, to itself ,
then this is a Z-cycle which the checkpoint C; . isin-
volved.

Assertion 1. The length of a Z-cycle(or Z-path) is
¢ if the Z-cycle(or Z-path) is formed by ¢ messages
mi, Mo, - ,My.

Consider some process P; in a Z-cycle. Suppose
that message m and m’ are consecutive two mes-
sages contained in this Z-cycle, and message m is
received by P; and message m’ is sent by the same
process P;. If receive(m) b send(m’), we say
the interval between receive(m) and send(m’) on
P; in this Z-cycle is casual. On the other hand, if

send(m’) ht receive(m), we say the interval be-
tween them is non-casual and they must occur in
the same checkpoint interval to satisfy the definition
of Z-cycle. For example, consider figurel. The Z-
cycleis consisted of 4 messages m 1, mo, ms, m4. ON

Py, receive(my) h4 send(mq) so the interval is ca

sual. But on P , send(ms) L receive(ms) and
the two events occur at the same checkpoint interval
s0 it’s a non-casual situation. For a Z-cycle, asso-
ciated with a sequence of messages m1, ms, ..., my,
its length is ¢ and has ¢ intervals(¢ > 2). By defi-
nition of Z-cycle, we can obtain that the interval be-
tween any two events receive(m;) and send(m;41)
forl1 < ¢ < ¢ — 1 has to be either a casual or
non-casual interval. But there must be at least one
of these intervals to be a non-casual interval[10].
In addition, the interval between receive(m,) and
send(my) must be a casua interval and the check-
points between them are involved in this Z-cycle.

Cio Ci
Pllj—lf
1
C
P (I B

P /m4 ma
gl
<,

Pk /
Figure 1.
Assertion 2: For a Z-cycle, there may be more than
one checkpoint involved in this Z-cycle and these
checkpoints may be distributed in one or more pro-
Cesses.

Obviously, the length of a Z-cycle must be at least
two. In this condition, Z-cycles with length two are
easy to be detected and destroied[3]. Figure 1 illus-
trates an example of Z-cycle with length 4 and the
checkpoints C; ; and Cs» are involved in it. Intu-
itively, the longer Z-cycle is, the more difficult it can
be detected and broken. According to Netzer and Xu's
theorem, a checkpoint is said to be usdlessif it isin-
volvedinaZ-cycle[2], that is, it can not beincludedin
any consistent recovery line.

1125

Int. Computer Symposium, Dec. 15-17, 2004, Taipei, Taiwan.

4, Detecting Z-cycles Algorithm
4.1. The notation and data structures

A Z-cycleisformed by aZ-path while starting with
a checkpoint and terminating at the same checkpoint.
From the global view of all processes, Wang[8,9] de-
finesagraph called the rollback — dependency graph
(or R — graph) which shows Z-paths in a distributed
computation that has terminated or stopped execu-
tion. It is easy to find Z-paths from such a graph.
In distributed algorithm, each process only has its lo-
cal memory and knows the (send and receive) events
relative to itself but does not know other messages
transmission in other processes. Hence a process may
not have ability to accumulate sufficient information
of message transmission to concatenate them into Z-
paths without piggybacked information. So the most
critical problem to detect Z-cycles is how to collect
necessary messagesmy, ma, - - - , my Which may have
any possihility of forming aZ-cycle. First, we haveto
conceptualize an appropriate data structure to express
Z-path and Z-cycle.

For a single message m, its important four char-
acterigtics are the two processes which send, receive
m and the two checkpoint interval s while the sending,
receiving events occurring. There are totally four nat-
ural numbers, send_Pid, £c,,; On process send-Pid,
receive_Pid, and {c;, on process receive-Pid to de-
scribe the message m. For example, if thereis ames-
sage m which was sent by process P; in checkpoint
interval I; ., and received by process P; in I; 3, then
send_Pid = i, receive_Pid = j, Lcoyuy IN P; IS and
leip in P; is 5. We use the symbol [Dz' , Jj] toex-

& 3.1
press m. The lower-left OJ of ¢ and lower-right (I of 5
mean a checkpoint interval number of a message de-
livery event in P; and a checkpoint interval number of
another message sending event occurring in P; respec-
tively. These two (s are written out for the purpose of
connecting messages to form a Z-path.

Notation : A message m which is sent by P; in I;
and received by P; in I; 5 is denoted by [Di , jD].
B,

The symbol (O means unknown or not occurred yet
and o, § are natural numbers.

This notation of a single message can completely
express relative information in a Z-path and from that
we can only pay attention to the notation instead of
R — graph.

Lemma 1: For aprocess P;, if there are two messages
mq, ma, Whicharedenotedby | ¢ , j Jand[j , k]

U,a 5,0 O,y 6,0
respectively ,where o, 3,v,0 € N(natural number),

then we check whether 5 < ~. If 8 < ~ holds, then
the second condition of Z-path’s definition is satisfied
and so we can merge(connect) these two messagesinto

aZ-path, representedby [i , j, k]

Dz,a B8,y 0,0

proof : These two messages mi,mo, denoted
by [i, 7] and [j, k] respectively ,where
o g0 O,y 0,0

a,B,v,0 € N, mean that P; sends my in I;, to
Pj in I; 3 and P; sends my in I, t0 Py in Iy .
When 8 = v, it means m; is received by P; and
my is sent by P; in the same checkpoint interval no

matter receive(msy) L4 send(mz) or send(ms) L4

receive(my). The interval between the two events
probably could be casual or non-casual. When 5 < ~,

it means receive(my) hY send(mg) and send(mz)
occursin alater checkpoint interval. So by the second
condition of Z-path’s definition, if one of the above
two conditions(3 = ~ or 3 < ~) holds, then m and
mz could be merged intoaZ-path [¢ , j, k|. But
O« B,y 0,0
if 8 > =, m; and ms could not be merged since these
two checkpoint intervals I, 3 and I; , contradict the
definition 2 of Z-path. X

From above discussion, the length of a Z-path
can gradually increase by merging messages one by
one or merging other Z-paths. Contrarily, a Z-path

[-+, 4,7 ,ek , - - -] could be decomposed into two
e By O
Z-paths, [---, i , j]ad[j, k,---]. Therules
e g0 Oy 9

of merging two Z-paths path1 and path?2 areto check
(1) whether the last Pid of pathl is equal to the first
Pid of path2 and (2) whether the ¢c;, of the last
Pid of pathl is equal to or smaller than the fc,,,; of
the first P_id of path2. If satisfied, then these two
Z-paths could be merged into a single Z-path [- - - ,
ia, j,ek +--]. Weusenotation[1 , 2, 3

Gy 05 O,b1 as,bs’ as,bs’
, n , k_]toexpressaZ-path from checkpoint
an, by a0

Cip—1 10 Ckq,. Certainly a;,b; are natural num-
bers and the relation a; < b; must holds for ev-

ery process. If £ = 1 and ap < b; then Z-cycle
(1,2, 3, , n)forms
a1,b1 az,b2 as,bs Qn,bn

The length of a Z-path is not fixed, so for data
structure representation, the way of utilizing queue can
appropriately express the meaning of Z-path. Each
element of the queue has three integers Pid, fcin
and lc_out, where Pid € {1,2,...,n} means pro-
cess ID and lc_in,lc_out means the checkpoint inter-
val Ip;q,cin Of the receive event and the checkpoint
interval Ip;q ¢cout Of the send event on the same pro-
cess Pid respectively.

Assertion 3:The data structure " queue of Z-path” we

define can appropriately express the meaning of Z-

path.

Assertion 4:For a Z-path [- -, iﬁ’ -++], where o <
(e}

8, a and B8 means the checkpdint interval I, of
event receive(ms) and I; 3 of event send(m;) re-
spectively for some s,t € N. If a = (3, then these

1126

Int. Computer Symposium, Dec. 15-17, 2004, Taipei, Taiwan.

two events, receive(ms) and send(m), occur in the
same checkpoint interval. If a < g, then there are
B — a checkpoints C; o, C; a41, - -+, Ci,3—1 between
receive(ms) and send(m;). For thecase a < S, if
the Z-path can form a Z-cycle in the future, then the
checkpoints C; o, Ci a+1, - - - , Ci,3—1 areinvolved in
thisZ-cycle. For example, infigure 1 thereisaZ-cycle

(14711, 1}2, 2?3, 1:?1) inwhich checkpoints{C} 1, C3 2} are

involved.

The following paragraph lists the notations and
data structures used in our algorithm. There are n pro-
cesses and for each process P; it has

e /lc; : aninteger and alogical counter which means
current checkpoint interval index between two con-
secutive checkpointsand itsinitia valueis 1.

le; =1 le;, =2 le; =3
P l— — I
Cio Ci Ci2
Figure 2.

e 7 _Queue; : A queue which each element of it is
still aqueue z _path containing Z-path information,
for example [D4 ,222, 1D]. In a node of z_path,

22,2 1,

there are three integers which mean process's id
Pid anditstwo subscriptsbelow, £c_in and £c_out.
If one of them are O , it means unknown, which
could only appear at the fcin of the first Pid
and the fc_out of the last Pid in a Z-path. The
[Dl , 2, 3 ,...] meansZ-path from process P,

to7P2 , PS , e . The ¢c_in is smaler or equa
to the ¢c_out. Maybe there are many Z-paths in-
cludedinthe Z_Queue;. Its structureis as the fol-

lowing figure and itsinitial valueisnull.

Z _Quene;

!
zpath 0 | o {10 |
Lo =L F—t 2 a0 |

Figure 3.

o 7 Queuedbufferl; : A Z-path queue buffer
which stores the Z-path queue piggybacked from
other processes and is used to merge them with its
own Z_Queue;.

o 7 Queuedbuffer2; : A Z-path queue buffer
which aso stores a queue of Z-paths. If P;
needs to send z-path request message to other pro-
cesses, then P; must wait to receive for replying
z-paths from them and store these z paths into
Z _Queue buf fer2;.

e csn; . checkpointlinewhichisan array of n check-
point sequence numbers(csn) and csn;[j] repre-
sents the largest checkpoint sequence number of

P; that P; knows. The value of csn;[i] is dways
equal to (¢c; — 1). Itsinitial vaueis|0,0,--- ,0].

e Z _cycle; : An Z-cycle list which each element
storesa Z-cycle. Initial values are none

4.2. The algorithm

We distinguish two kinds of messages: compu-
tation messages and system messages. Computa
tion messages are sent for their application purposes.
In our protocol there are two kinds of system mes-
sage, " z-path request” and " z-path reply”. This al-
gorithm mainly adopt piggyback approach and re-
quest Z-paths from other processes to accumulate
sufficient information. Then process merges its own
Z-paths with them to check whether Z-cycles form
or not. Not every time P; has to send z-path
request to collect another process's Z-paths. When
there were sending events occurred after the latest
checkpoint in P; and the P; receives a computation
message (non-casual), P; needs to do so. By the
definition of Z-cycle formed by mq,mo,--- ,my ,
the checkpoint interval between m, and m, must be
casual and there must exist at least one non-casual
interval[10] in a Z-cycle. For our agorithm, the
less number of non-casual intervals, the more ef-
ficient performance we have. So there are briefly
three different cases of Z-cycles(best, worst, average).
The figures 4,5 and 1 illustrate the three situations.

N

Py

3
it
3

Figure 4 : best case
For the best case like the above figure 4, there is
only one non-casual interval(between m s and my)
in the Z-cycle. When P receives my, it checks
there is a computation message my sent to P;
in the current checkpoint interval. So, Ps must
send a z-path request message to P; for obtaining
[D5 , 1 ,---]. Inthe best case, most of these in-

send z-path request for more Z-path information.
Cl,x

S AT
AT
I ms[\ms
AT

Figure 5 : worst case

1127

Int. Computer Symposium, Dec. 15-17, 2004, Taipei, Taiwan.

But in the worst case like figure 5, most of the inter-
valsare non-casual. Hence most processes(Ps, Py, Ps,
P,) have to send z-path request to other processes for
more Z-path information. The performance would be
decreased. Each time of computation message-passing
occurring the message must bring many Z-paths data,
which may be tremendous, to target process and then
the target process connects these received Z-paths data
withitsown. Therewill generate many new Z-pathsin
the connecting action and Z-cycle(s) will be detected.
Thefollowing part isthe explanation of our algorithm.

Sending a computation message: P; sends a
computation message to P;. Let the computation mes-
sage be denoted by [Dz , j). Foreach Z-path in

0,0

Z _Queue; we only duplicate the front part of the Z-

WX Ci

path, [------ , 4], for some a, to mergewith [i ,

a,0d O,2c;
j].Then P; obtainsanew Z-path [- - - - - - vty g,
0,0 alei OO

where o« < /le;. There probably are many such new
Z-paths and al of them piggyback the computation
message forwarding to P;.

Reception of a computation message and pig-
gybacked information: When P; receives a compu-
tation message M and piggybacked information(Z-
paths) from Py, each of them as [---

[k, im]'

backed Z-paths. That is, P; can move checkpoint line
forward to the latest checkpoint index which P; can
know. After updating csn;, P; can also prune these
piggybacked Z-paths. In Z_Queue; if there exists
Z-paths like |- - -, iec ,DjD], which means there is a

computation message sendi ng from P; to P; in the
current checkpoint interval of index ¢c;, then P; hasto
send a z-path request for P; in order to obtain suffi-

cient information of Z—pathas[Dz‘e . 7 ,--]. Then
Lei o

P,canconnect[---, kK, ¢ , j|with] i , j,

R P ¢ 0,0 O le; ...

~linto[---, kK, 4, 7 ,--] Ifthereisany

L Lep

Z-cycle formed due to the message [Dk , 1], then

we can detect the Z-cycle containing it.

Procedure PruneZ-path(csn;,Z_Queue;):The
data of csn; in P; means the checkpoaint line that P;
already knows. When the csn; is updated, P; checks
each Z-path in Z _Queue; whether its £c_out of first
Pid is equal to or smaller than csn;[Pid]. That is,
the event send(m) of the first message m in the Z-
path occurred before checkpoint C pig, csn,[pid), the
left side of the checkpoint line csn;. If so, it implies
that there could not be any messages received by Pp;g
at that checkpoint interval in the future. Then the first
message of the Z-path should be deleted. Repeat such
pruning action till the £c_out of first Pid inthisZ-path

islarger than csn;[Pid].
When P, receives a z-path request([¢ , i])
O,lcq 0.
from P,: If P; receives such z-path request and its
parameter [¢ , ¢ |, it meansthat there was a com-
O,lcq
putation message sent by P, to P;. But P, doesn't
know the checkpoint interval index of the computation
message arrived at P;. For P; there must be a Z-path
[, q , iﬁ, -+-]in Z_Queue;, for some «, 5. We
Leqg @
dupllcatethe back part,[¢ , i,
O,bcqy @B
for P,. After collecting such Z-paths, [¢ , i ,---],
O,4cq a,p
P, can connect them with its own Z-paths, [- -, ¢ |.
.0

-+] and reply them

So P, can check whether Z-cycles form or not. We
demonstrate our algorithm by an example.

Example : In this example figure 6, there are totally
two Z—CyCIeS,{m3, ms, ml} and {777147 ms,ms, mg}.
The checkpointsinvolved are {C' 1, C3 2} and {C| 2,
Cj3.2} respectively. So we can observe that messages
mg and my are associated with these two Z-cycles
simultaneously.

/s

P hl
P /03]/C2 . \‘m3
LTI

Figure 6.
We illustrate this example by the order of messages
occurring time and present the csn and Z _Queue data
of Z-paths for all processes at the time of sending, re-
ceiving and checkpointing. The concatenation of two
Z-pathsis expressed by pathy + pathy = - - -.

01,2

send(my) :

Py esny 2 (0000) ; empty

Py: csng : (0000) ; empty

P5: csng : (0000) ; empty

Py: csny 2 (0000) ; [o DZD]
receive(ms): [] piggybacked to P
Pi:csng : (OOOO) : empty

Py: csng : (0000) ; [5471, 1%3]

Ps5: csng : (0000) ; empty

Py: csny : (0000) ; [D4,1’D?D]

P takes 0371 ,CSN3 :
P takeSCLl ,CSNY -

(0010); empty
(1000); empty

send(mz):

Py esny : (1000) ; empty

Py: csng 2 (0000) ; [17‘]]

Ps: csng - (0010) ; empty

Py: esny 2 (0000) ; [2]Jand[4, 1]
0,0 0,1 0,0

receive(ms): [D v] plggybacked to P,

1128

Int. Computer Symposium, Dec. 15-17, 2004, Taipei, Taiwan.

Py esny : (1000) ; [D o D]
Py: csngy : (0000) ; [D o D]
Ps: csng : (0010) ; empty
Py esng 1 (0000) 5[4, 2 Jand[4, 1]
0,1 0,0 0,1 0,0
Py takes 0271, csno (0100) X [4 , 2]
0,1 1,0
send(ms):
Py:esng 2 (1000) 5[4, 1]
0,1 2,0

s s

(0100) ; [4.2] + (2, 3] =

Py csno
0,2’ 0,0

7

[4,] piggybacked to P3

O, v 1 2
Ps:csng : (0010) ; empty
Py esny 2 (0000) 5[4,] and[4, 1]
0,1 0,0 D,l 0,0
P takes 0172, csny - (2000) [4 1]
0O, 1 2,0

receive(ms): [D4 ,122, 23‘:'] piggybacked to Ps

s

Py:esng i (2000) 5[4, 1]
O, i 2,0
Ps: : (01 4 2
% esng : (0100) ; [DSD]
P5: Update csnsg : (0110) [4 122 23]

Py: csng : (0000) ;[4, 2]and[4, 1]
0,1 0,0 0,1 0,0
send(my):
Pi: esm (2000) ; [4,1]+[1,2] =
0,1 2,0 0,3 0,0
4, 1, 2]which piggybacks
[t 2 piggybacks m.4
Py: csng : (0100) ; [4 2 3]
D O
Ps: csng : (0110) ; [4 122 QSIZI]

(0000) ; [541’ DQD] and [D41, D1D]

s s

Pycsny :

piggybacked to P

receive(my): [D41 Ly

2]
£ (2000) ; [D 1 2]

,1 D,D
P,: Update csng : (2100) ; Sendsrequest([DQ , 3])
to P; to get[, 3]

Pi:esng

0.0

s s

2,0
So[4,1] (2, 3]=14,1,2, 3]
D1232D 2,0 0,1 2,322 2,0
and | 4 3]+[2 3] (4,2, 3]
0,1 12EIEI 0,2 2,0 01’12’20
Ps: 0110 4,2, 3
5 csng ¢ (0110) 5 [4 a2 QD]
Py: : 4 2
1 csny : (0000) ; [s] [,1 D,D]
Pstakes Cs55 0120
3 3,2, ¢sm3 ¢ () [O 12 QD]
send(ms):
Pi:esng 1 (2000) 5[4, 1, 2]
0,123 0,0
Py csna : (2100) ; [m4,1’ o 2 ng]
and[4,2, 3]
011,220
Ps: : 120) ; [4, 2 4
5t csng o (0 O)_ ' [;,1’1,2’2,?6] + [D?fg’m,m] =
[D 2y 23 4]whlch piggybacksm s
Py esny - (0000) 4, 2 Jand[4, 1]

s) s s

receive(ms): [4] piggybacked to Py

0,1’ 1 2 2 3
Pyiesng : (2000) [4 1 2]
0,1 2,3 DD
P2:05n22(2100)[4 1 2,3]and[4,2,3]
2,2 2|:| 0,11,220
Py: esng ¢ (0120) ; [4 203 A

Py . (012 4 2 41+ 4, 2
. Updatecsny (0 0)[235“:'] [DlDD]
=[4,2,3,4, 2]

011,223 1,1 0,0

[(4,2,3, 444, 1]=[4,2,3,4, 1]

01'1223"1,0 0100 ‘01712237 1,1 0,0
Since there are [- -, QD] and [---, 1D], P, sends

t42toP’toet42’3
request((4, 2)toPytoget[4 .2 3]
P, sends request([4, 1]) to P;.When

0,1’ 0,0

P, receives the request,P; plans to reply
[4,1, 2].Butthereis[--, 2], P, hasto send
0,1 2,3 0,0 0,0

t12t0Pt0et123.InP,
reques ([D,S,D,D]) 2 g [’)] 1
(4,1, 2]+ 1 23][23]80131
01’23’00 0,322 20 512522
I‘eplle's[‘:h1 2}3 2?2 2?13] for Py’srequest.
Then P, hasthe following action :
[4)273)472]+[47253]
011,223 1,1 0,0 ‘0,1 1,2 2,0
=[4,2,3,4,2,3]

0,1 1,2°2,3°1,1°1,2 2.0

[4,2,3,4, 1]+#4,1,2,3]
0,1 1,2'2,3° 1,1'0,0 0,1 2,3 2,2 2,0
= [4,2,3,4,1,2, 3]. So Z-cycles

0,1 1,2° 2,3 1,172,322’ 2.0

(42,3) (2 3. 4. 1) will be detected and in-
11 1225 222

volved checkpoints are {Cg 1,032}, {C32,C1 2} re-
spectively.

5. Proof of correctness

5.1. Theorem : Our algorithm can detect all Z-cycles
in distributed computing system.

For Z-cycle detection agorithm, the crucial ques-
tionisthat a process should accumulate necessary and
sufficient information of messages passing and merge
these data to check Z-cycle.
proof : Without losing generality, we assume there
is a Z-cycle associated with a sequence of messages

my,ma, ..., my and the representation of the Z-cycle
is[1,2 ,-,¢,1] wherel > 2. We prove
0,b1 az,b2 ag,be at,

this theorem by induction on the length ¢ of Z-cycle.
When ¢ = 2, thefigure of such Z-cycleisasfigure7.

ter =q9La poy =g 41

P
ma m
P i leg = «
Figure 7.
For Ps, when mo is sent to P a 1270(, meo = [2,

O«

1129

Int. Computer Symposium, Dec. 15-17, 2004, Taipei, Taiwan.

1D] is placed in Z_Queues. Till Py receives meo

from Ps, ms is piggybacked to P; and P, can fill
lc; = g value into mg, that is, my = [DQ ,1]in

,a q,0
Z _Queue,. After Py taki ng a checkpoint Cy 4, P1
sendsm; = [1 ,
O,q+1 0,0

] to P». Before the send-

ing event, P, merges m, with Z Queuel and then
there will be a Z-path [2, 1] generated in

D,a q,q
7 _Queuer. When my arrives Py, it plggybacks the
Z-pathto P, and so P, canfill £co = « into the lower-

left O of 2 ThentherelsaZpath[1,2]
qq+1aD

contai ned in Z Queues. SO P, can detect theZ -cycle

[2, 1 , 2]thatis(2, 1). By thisnotation
O, ¢,9+1 0 a,a q,q+1

we can also induct that the checkpoint C 4 isinvolved
inthis Z-cycle.

Suppose when ¢ = k, thetheoremistrue. That is, a
Z-cycle associated with k£ messages my , ma , -+ ,
mkdenotedby[, 2 ,--+, k ,1]canbede

0,61 a2,b2 ar,br a1,00

tected at process P;, for some .

Then when ¢ = k + 1, we must show a Z-cycle as-
sociated with k& + 1 messagesmy, ma, -+ - , Mk, Mi41
could be detected at some process. Let m; and my
be the neighbor messages of m 1 and the Z-cycleis
{-+-, mg, mgy1, m1 ,--- }. According to the time of
events my, mg1, m1 occurring, there are four cases.
Assume P receives my, and sends my1 , and P; re-

ceives my1 and sendsm; to P,.
) hb
case | : For Ps, receive(my) — send(myy1) and

on Py, receive(my41) it send(my). Thatis, Py is
casua and P; isaso casudl.

%mk
Ps ME41

P,
—

Figure 8.
For P,, when P, receives m;, it contains
. . . hb
[1,---, s]inZ_Queues. Sincereceive(my) —
0,by as,]

send(mg+1), SO when the event send(my.1) occurs,
the Z-path will be merged with [b o D] and then

becomes [1 ,---, s ,
O,by Tas,b, 0,0

backed to P,. For P, it recewes[1, t]
0,by ab,b DD

lc; into the lower-left OJ

t] which will be piggy-

and it can fill a; =

of P.. Since receive(myy1) bt send(m1),
so when P, sends mj,denoted by [¢t , r],

O,4c, O,
[1,---, s, t, r], wheeb, = fle, will be
0,6y as,bs a,by 0,0

piggybacked to its target process P,.. For P,., when P,
receivesm,, itcanhave[1 ,---, s , ¢t , r_]in

b1 as,bs” at,be ar,0

Z Queue,. So by our algorithm, the message m ;11
could be completely inserted into the Z-cycle which
could be detected.

case Il : On Py, receive(my,) L4 send(my4+1) and

on P;, send(my) it receive(myy1). Thatis, Ps is
casual and P; is non-casual.

%m k
P

P*t \mk+1

m
A
Figure 9.
By case |, when P, receives my11, Z-Queue; CON-
tans [1 ,---, s, t |, where a; = {¢;. But
O,b1 as,bs a0

my has aready been sent, so Z_Queue; contains
[Dt ,DTD] and after merge action, Z _Queue; will

sat

generate| 1 ,---, t, rD],inwhichthereare

b1 as,bs7 at,ar [,
two [0 symbols at processr. So Pt will send a request
messagefor Z_Queue,. to obtain [Dt , r ,---]from

Pr. And then Pt merges again, Z_Quéuet will get

[, 5, t, r ,---]. So the message my.1
As,0s5 Qt,at Qr,bp

could be aso inserted into the Z-cycle.

caselll : For Ps, send(my+1) b send(my,) and for

P, receive(my41) L4 send(my). Thatis, Ps is non-
casual and P; is casual.

p,—te=2 z\m’“

Mi41

P, \m1
P,)f
Figure 10.a

L. R
Pg les o&mlﬁkl k
Pt \ml
P, }j

Figure 10.b

. hb .
For P,, since send(myt+1) — receive(my), SO
Z _Queues contans [---, s, t]. When P re
0, 0,0
ceives my, Z_Queues Will contains [-- -, sD]. So
O(,

D]. Becausethere

they will bemergedinto|--- , s ,Dt

aretwo [J symbolsin P, P will send P, arequest and

then merges with Z_Queue, to obtain [---, s , ¢ |.
a,o 3,0

For P;, when P; receives my11, Z-Queue; contains
[Ds ’gtm]’ for some beta. Later when P; sends m; to

P, Z_Queue; contains [Dtﬁl, DrD], where 3/ > . So

1130

Int. Computer Symposium, Dec. 15-17, 2004, Taipei, Taiwan.

P, coudhave| s , t , r |. When P, receivesm,
O, B, 0,0

[s, t, r], forsome#, will beobtained. Asfigure
O,a 8,8’ 6,0
10, there are two distinct situations.

If receive(my) L receivr(my), as figure 10.a,
then Z_Queues has [---, s Jand [s , ¢t , r , -]

o, O,a 8,8 6,
after requesting P;. So Ps couldobtain[---, s , ¢ ,
a,a 3,6

7” ,- ..].
0,

If receive(my) L4 receivr(my), as figure 10.b,
then Z_Queue, has| s , t , r]. When P, receives

O,a 3,6" 6,0

) ’)

my, it sends a request for some process P, to get

[Du sD]. So after connection, P, could ob-

[«,

tan|[w ,--,s, t, r]. Forthetwo conditions,
g, aa B,8 6,00

[-+, s, 6%/, o -] could be obtained in P;(figure
10.9) or P;A(figfjre 10.b). So my41 could also be in-
serted into the Z-cycle.

case |V : For Ps, send(my41) L receive(my,) and

for P, send(my) L4 send(my41). Thatis, Ps and P,
are non-casual.

Figure 11.
For P;, when P; sendsm to P.. Z_Queue; contains
[Dt ,DrD].When P; receives my1, Z-Queue; CON-

tans [s , t |. So after merge action, Z_Queue;
0,8 «,00

could contain [s,t,r] and then P; requests
B8 aa 0,0
P, and merges again to obtain [s , ¢ , 7 , -],
0,8 o, v,y

For P,, when P, receives my,
And Z_Queues

for some ~'.
Z _Queueg could have |- ’,BSD]'
s, t].
O, 0,0

Z _Queue, would contains [---, s, ¢t].
Queues [ﬁ_ﬂ,m]

there are two O symbols, P requests Z _Queuey,

which dready contains [s , ¢, r ,---], to merge
0,8 ao v,y

again. So in Z_Queues 7the7re will be a Z-cycle

[---,656, t,r ,--]. Hence my; could aso bein-
B ooy,

serted into the Z-cycle.

From above discussion of four distinct cases, the
theorem still holdswhen the length of Z-cycleisk +1.
By induction the proof is completed. X

aready contains | So after merge action

Since

6. Conclusions

1131

The task of detecting Z-cycles has never been im-
plemented before, so there is not any evaluation of
such a scheme as this. In this paper, we innovate
an appropriate data structure expressing Z-path and
detecting algorithm in distributed computing system.
Although the algorithm demands much piggybacked
Z-paths information, we can detect Z-cycles and in-
volved checkpoints accurately. By Netzer, Xu's the-
orem and this algorithm we can distinguish useless
checkpoints(involved in a Z-cycle) from other check-
points. Hence the objective of breaking Z-cycles could
be accessible by inserting minimal number of forced
checkpoints. In the future, we can eliminate useless
checkpoints or rearrange their position to make Z-
cycle free for decreasing the number of forced check-
pointsto destroy Z-cyclesis till an important issue.

7. References

[1] L.Lamport. Time, Clocks and the Ordering of
Evevts in a Distributed System. Comm. ACM,
vol.21, no.7, pp.558-565, 1978

[2] R.H.B Netzer and J. Xu. Necessary and Sufficient
Conditions for Consistent Global Snapshots. |IEEE
Trans. on Parallel and Distributed Systems, vol.6,
no.2, pp.165-169, 1995

[3] Taesoon Park. Heon Y. Yeon. Application
Controlled Checkpointing Coordination for Fault-
Tolerant Distributed Computing Systems. Dept of
Computer Engineer Sejong University. Parallel
Computing, vol.26, no.4, pp.467-482, 2000

[4] D. Manivannan and M. Singhal. Quasi-
Synchronous Checkpointing: Models, Character-
ization, and Classification. |EEE Trans. on Paral-
lel and Distributed Systems, vol.10, no.7, pp.703-
713, 1999

[5] D. Briatico, A. Ciuffoletti and L. Simoncini, A
distributed domino-effect free recovery algorithm.
In Proc. of the IEEE 4th Symp. on Reliability in
Distributed Software and Database Systems, pp.
207-215, 1984

[6] JM. Helary et al. Communication-based preven-
tion of useless checkpointsin distributed computa-
tions. Distributed Computing, vol.13, no.1, pp.29-
43, 2000

[7] R.Badoni, F. Quaglia, and B. Ciciani. A VP-
accordant checkpointing protocol preventing use-
less checkpoints. In the 17th IEEE Symposium on
Reliable Distributed Systems, pp.61-67. 20-23 Oct.
1998

[8] Yi-Min Wang. Maximum and Minimum Consis-
tent Global Checkpointsand their Applications. In
the 14th IEEE Symposium on Reliable Distributed
Systems, pp.86-95. 13-15 September, 1995

[9] Yi-Min Wang. Consistent Global Checkpoints
that Contain a Given Set of Local Checkpoints.

Int. Computer Symposium, Dec. 15-17, 2004, Taipei, Taiwan.

IEEE Transactions on Computers, vol.46, no.4,
pp.456-468, 1997.

[10] Jane-Feng Chiu and Ge-Ming Chiu. Placing
Forced Checkpointsin Distributed Real-Time Em-
bedded Systems. |EEE Computing & Control En-
gineering Journal, vol.13, issue 4, pp.197-205Aug
2002

[11] B. Randell. System structures for software
fault-tolerance. |EEE Transactions on Software
Eng.,vol.1 no.2, pp.220-232, June, 1975

[12] R. Badoni, J. M. Helary, and M. Raynd.
Rollback-dependency trackability: Visible charac-
terizations. In 18th ACM Symposium on the Prin-
ciples of Distributed Computing(PODC'99), At-
lanta(USA), pp.33-42, May 1999

[13] I. C. Garciaand L. E. Buzato. On the minimal
characterization of rollback-dependency trackabil-
ity property. In Proceedings of the 21th IEEE Int.

Appendix :

Conf. on Distributed Computing Systems, pp.0342-
0349. 16-19 April 2001

[14] K.M. Chandy and L. Lamport. Distributed snap-
shots: determining global states of distributed sys-
tems. ACM Trans. on Computer Systems,vol.3,
no.1, pp.63-75, Feb, 1985

[15] R. Koo and S. Toueg. Checkpointing and
Rollback-recovery for distributed systems. 1EEE
Trans. on Software Eng., vol.13, no.1, pp.23-31,
Jan, 1987

[16] R.D. Schlichting and F.B. Schneider. Fail-
Stop Processors: an Approach to Designing Fault-
Tolerant Computing Systems. ACM Trans. on
Computer Systems, vol.1, no.3, pp.222-238, 1983

[17] EN. Elnozahy, D.B. Johnson and Y.M. Wang.
A Survey of Rollback-Recovery Protocols in
Message-Passing Systems. ACM Computing Sur-
veys(CUR), vol.34, issue 3, pp.375-408, Sep.
2002

The section illustrate our algorithms detailed and we typeset them with one column.

Actions taken when P; sends a message M to P;
. for each Z-path in Z_Queue; do

N P

into Z_Queue_buf ferl;;
end for
. Send (Z_Queue buf ferl; and M) to P;;
: Clear Z_Queue buf ferl;; /l end

a s w

Duplicate the front part [--- - - - , 1,;]}, where a < fc; to merge [Di , j]intoanew Z-path [------ , @ , j]andcopy them
a, yee; 0,0

ate; 00

Actions taken when P; receives a message (M, Z_Queue_bu f ferly) from Py

: Store Z_Queuebuf ferly into Z_Queue buf ferl; ;
: for exch Z-path [---- - - , k ,DiD] in Z_Queue-buf ferl; do
La'O,

i

Write £c; intoit, [-- - - - sk,
o fe; 00
: Update(csn; , Z -Queue buf ferl;);
. PrunezZ-path(csn; , Z_Queue buf ferl;);

1
2
3
4: end for
5
6
7. foreach[---, ¢ , j |appearsinZ-path of Z_Queue; do
cleg o0

o)
!
N
9
2
=

3

]

(=}

I

®

0
=
i

-
,Db.
DL_A
=
S
ey
o
S
o
g
Q.

S
=
=

o
g

8
~

e
2
o
e

)

<.
=}
i

e
2
=
2.

]
=y
@.

=
N
O

<

Q

<

9: Obtain Z-paths [D 12 , J ,---]from other processe jsand connect themwith [---, ¢

sECq
[7 i,] 7}Y
eyl
10: PrunezZ-path(csn; , Z _Queue;);
11: end for
12: for each z — path in Z_Queue_buf ferl; do
13: Takethefrontpart[---, k , z‘D}, where o = flc;
a,

14: for each z — path containing [- - , z[, o+]in Z_Queue; do
b

G

,,,,,,,

, 7]into
e le; 0,0

15: Connect [---, k iD]With[DiZ ,---] and then generateanew Z-path [---, k , ¢ ,---];
a, s ’

Ci

16: CheckZ-cycle(this new Z-path, [Dk

17: endfor

18: end for

19: Clear Z_Queuebuf ferl; and Z_Queue_buf fer2;;
20: Processing M ; // end

v]);
7Zc,;,lj])

1132

Int. Computer Symposium, Dec. 15-17, 2004, Taipei, Taiwan.

Actions taken when P; takes a basic checkpoint
1. P; takes acheckpoint C; 4., ;
2: lei = Lle; + 1,
3 esn;fi] i= Ley;
4: PruneZ-path(csn; , Z _-Queue;); Il end

Actions taken when P; receives a Z-path request([¢ ,DiD}) from P,
O,lcq ’
1: for each Z-path of Z_Queue; do
2. Cutthebackpat| ¢ , @ ,------ | of the Z-path;

O,tcq 0
3. iftheZ-pathisas| ¢ , & ,---, 7

D,Zcq N Q@
4: Send Z-path request([r , s])toall processes s to obtain back part [Dr , S
O,a 0,0 a

for reply;

5: Collect Z-paths [Dr , S s] from other processes and connect with |
o e O,tc

, s | then
0o

7. ese
8: StoretheZ-path| ¢ , & ,----- Jinto Z_Queuebuf ferl;;
0,00,

9 endif
10: end for
11: Send Z_Queuebuf ferl; back to Py for reply.
12: Update(csn;;Z-Queue-buf ferl;);
13: PruneZ-path(csn; , Z_Queue;);
14: Clear Z_Queue-buf ferl; , Z_Queue buf fer2;;/l end

Procedure Update(csn , Z_Queue)
1: for each z — path in Z_Queue do
2: for each Pid.fc_out do
3 csn[Pid] = maz(csn|Pid], Pid.Lc.out — 1);
4: end for

5. endfor // end

Procedure PruneZ-path(csn , Z_Queue)

1: for each Z-path in Z_Queue do
2. while first Pid.lc_out < csn[Pid] do

] of z-paths in their Z_Queue and wait

, then update this Z-path
’Dfu] up is Z-p

3 Delete the first element of the z-path; // The sending of the first message occurred at the left side of checkpoint line ,so first ele-

ment(message) is useless.
4: end while
5: endfor //end

Procedure CheckZ-cycl —path, [k , i
cycle(z — pa [D’a ﬁ,ZDD
1. if thereexistsm inz —path [---, m ,---, , T,
---,out s B in,-

2. if thereexists at least one Pid such that £c.in < Zc_outinthecyclebm oo, k

out T

3 Z-cycle[m ,---, k, i ,---, m |formsand saveit;
O,out i

o By in,0
4: endif
5: endif //end

1133

))
ﬁ7...

-, m ,---]suchthat in < out then

-, m_] then

in,0

