
Rotation Distance between Two Binary Trees

Yen-Ju Chen1, Jou–Ming Chang2, Yue-Li Wang1,∗

1 Department of Information Management, National Taiwan University of Science and Technology,

Taipei, Taiwan, ROC

2 Department of Information Management, National Taipei College of Business, Taipei, Taiwan, ROC

Abstract

There are a number of ways to measure the dif-
ference in shape between two rooted binary trees
with the same number of leaves. Pallo introduced a
left weight sequence, which is a sequence of positive
integers, to characterize the structure of a binary
tree. By applying the AVL tree transformation on
binary trees, we develop an algorithm to transform
the left weight sequences between two binary trees
efficiently.

Keywords: Binary trees; Rotation distance; AVL
trees; Algorithms

1. Introduction

Binary trees are a fundamental data structure in
computer science and has been extensively studied
over the past forty years [1, 2, 3, 28]. There are a
number of ways to measure the difference in shape
between two binary trees with the same number of
leaves. In particular, the rooted binary trees with
a specific ordering on nodes is interesting in tree
balancing, such as binary search trees. One of the
most common operations to carry out the distance
measures on trees is the use of rotations. A rotation
in a binary tree is a local restructuring that changes
the tree into another tree and preserves the inorder
(or symmetric order) of the tree [7, 8].

The combinatorial properties of binary trees re-
lated to rotations have been the focus of extensive
researches. For example, enumerating binary trees
with a Gray code with respect to rotations was
studied in [13], [14], and [32]. There exists a well-
known one-to-one correspondence between a binary
tree with n internal nodes and a triangulation of a
convex polygon with n+2 vertices [30]. Under this
bijection, flipping an edge in a triangulation corre-
sponds precisely to a rotation in the corresponding
binary tree [30] (see also [10] and [13]). In [19],

∗All correspondence should be addressed to Professor
Yue-Li Wang, Department of Information Management, Na-
tional Taiwan University of Science and Technology, No.
43, Section 4, Kee-Lung Road, Taipei, Taiwan, Republic
of China. (Phone: 886–2–27376768, Fax: 886–2–27376777,
Email: ylwang@cs.ntust.edu.tw).

Pallo introduced the left weight sequences for bi-
nary trees and showed that every binary tree can be
characterized by a left weight sequence (the formal
definition of left weight sequence will be given in
Section 2). In that paper, Pallo also proved that ro-
tations on binary trees with n internal nodes induce
a combinatorial structure which is the so-called nth
Tamari lattice, i.e., an n-element partially ordered
set with a unique maximum and minimum. As a
result, coding binary trees by left weight sequences
is a suitable tool for the study of Tamari lattice
[20, 21, 23].

The rotation distance d(T, T ′) between two bi-
nary trees T and T ′ with the same number of
leaves is the minimum number of rotations needed
to transform T into T ′. However, it still remains
an open problem whether the rotation distance be-
tween any two binary trees can be computed in
polynomial time [29]. Pallo [22] and Rogers [27]
gave approximation algorithms to estimate rotation
distance of two trees. On the other hand, Culik
and Wood [7] showed an upper bound to 2n− 2 on
rotation distance between any pair of binary trees
with n internal nodes. This bound was improved
to 2n − 6 for n ≥ 11 [17, 18, 30]. Some properties
of rotations in binary trees were studied by Hanke,
Ottmann and Schuierer [9], Hurtado and Noy [10],
Hurtado, Noy and Urrutia [11], and Rogers and
Dutton [25, 26]. These authors obtained their re-
sults using the equivalence between rotations on
binary trees and the diagonal-flipping in triangu-
lations of a convex polygon.

Many researchers have focused on the study of
various restrictions on rotations. In [4], Bonnin
and Pallo introduced a special case of rotations
on binary trees where rotations are restricted at
nodes whose parent has a leaf as left subtree. They
showed that the corresponding distance between
two binary trees can be computed in quadratic
time. Sundar [31] studied transformations of binary
trees when only a single direction of rotation called
right rotation is permitted. Recently, Cleary [5] in-
troduced another restricted rotation on binary trees
where rotations are allowed at one of the two nodes,
namely the root or the right child of the root. Using
the metric properties on Thompson’s group, Cleary
obtained a linear upper bound and lower bound for
this restricted rotation distance in terms of n, the

Int. Computer Symposium, Dec. 15-17, 2004, Taipei, Taiwan.

1139

number of internal nodes in the trees. Furthermore,
he also provided an efficient algorithm for comput-
ing the restricted rotation distance between two bi-
nary trees. Lately, a significantly improved upper
bound and lower bound for this type of restricted
rotation distance can be found in [6, 15]. Pallo [24]
generalized this case to the situation where rota-
tions are permitted only at nodes along the right
arm of the tree (i.e., the path from the root to its
rightmost leaf). In this case, an efficient algorithm
to compute this right-arm rotation distance was es-
tablished. Lucas [16] recently presented a polyno-
mial time algorithm for finding the exact rotation
distance between any two binary trees that are of a
restricted form (each node has at most one child).

In this paper, we propose an algorithm that takes
the left weight sequences as input, but uses the
full operations provided in the AVL trees to con-
struct a sequence of rotations for estimating the
rotation distance. Consequently, our algorithm can
be run in O(∆n) time, where ∆ denotes the sum of
weight differences between two binary trees T and
T ′ with n internal nodes. The proposed algorithm
is more efficient than Pallo’s since ∆ is at most n2

and Pallo’s algorithm requires O(n4) time [20].

2. Left weight sequences

A binary tree T considered here is a rooted, or-
dered tree with n internal nodes v1, v2, . . . , vn where
the indices are numbered by the inorder traver-
sal of T and such that each internal node is re-
stricted to having two children, a left child and a
right child. The tree is sometimes called an ex-
tended binary tree [12], and we will refer it as a
binary tree for convenience. The weight of T , de-
noted by w(T), is the number of leaves (exter-
nal nodes) in the tree. For each internal node
vi ∈ T , the subtree rooted at vi is denoted by Ti.
The left subtree (respectively, right subtree) of vi is
the subtree rooted at the left child (respectively,
right child) of vi and is denoted by Li (respec-
tively, Ri). The weight w

T
(i) = w(Li) is called

the left weight of vi in T and the integer sequence
w

T
= (w

T
(i))n

i=1 = (w
T
(1), w

T
(2), . . . , w

T
(n)) is

called the left weight sequence (LW-sequence for
short) of T [19]. Note that the subtree Li contains
w

T
(i) − 1 internal nodes. For example, Figure 1

shows a tree T containing six internal nodes whose
left weights are 1,2,1,2,1, and 6 respectively. Thus
the LW-sequence of T is (1, 2, 1, 2, 1, 6).

In [19], Pallo characterized an integer sequence
to be an LW-sequence of a binary tree and gave the
following theorem.

Theorem 1 An integer sequence (w1,w2, . . . ,wn)
is the LW-sequence of a binary tree T with n in-
ternal nodes v1, v2, . . . , vn if and only if for all
i∈{1, . . . , n} the following conditions are satisfied:
(1) 1 ≤ wi = w

T
(i) ≤ i, and

(2) i− wi ≤ j − wj for all j ∈ [i− wi + 1, i].

In the following, we will show that every binary
tree T has an interval representation corresponding

v1

v2

v3

v4

v5

v6

T

Figure 1: The LW-sequence of T is (1, 2, 1, 2, 1, 6).

to the LW-sequence of T . This representation con-
tains a set of intervals such that for each internal
node vi ∈ T , there is a corresponding interval with
the starting point S

T
(i) and the end point D

T
(i) on

a line which are defined as follows: S
T
(i) = i−w

T
(i)

and D
T
(i) = i. For example, Figure 2(a) shows the

starting points and the end points of intervals corre-
sponding to the LW-sequence (1, 2, 1, 2, 1, 6). Also
we draw the interval representation in Figure 2(b).

1 0 1
2 0 2
1 2 3
2 2 4
1 4 5
6 0 6v6

v5

v4

v3

v2

v1

vi ST (i) DT (i)

1 2 3 4 5 60

v6

v5

v4

v3

v2

v1

(a)

(b)

wT (i)

Figure 2: (a) The starting points and the end points
of intervals; (b) The interval representation.

Throughout the rest, we write pre
T
(k) = i (or

pre−1
T

(i) = k) to mean that the position of node vi

in the preorder traversal of T is k. For instance,
using the binary tree T in Figure 1 as an example,
we can easily set up (pre

T
(i))6i=1 = (6, 2, 1, 4, 3, 5)

and (pre−1
T

(i))6i=1 = (3, 2, 5, 4, 6, 1).
Given the LW-sequence of a binary tree T , we

now show that the preorder of T can be deter-
mined by using the above interval representation.

Int. Computer Symposium, Dec. 15-17, 2004, Taipei, Taiwan.

1140

To achieve the preorder, we first sort vi ∈ T accord-
ing to their S

T
(i) in increasing order. If more than

one interval have the same starting point, a node
with a larger index in inorder traversal is smaller
than a node with a smaller index. Consequently,
the sorted sequence of nodes, called the α-sequence
of T , is the resulting preorder of T . We summarize
the rules as follows:

(R1) if S
T
(j) < S

T
(i) then pre−1

T
(j) < pre−1

T
(i)

(R2) if S
T
(j) = S

T
(i) and i < j then pre−1

T
(j) <

pre−1
T

(i)

For example, consider the binary tree T in Fig-
ure 1 again. Scanning the starting points of in-
tervals from left to right and then from bottom to
up in the representation of Figure 2(b), gives the
preorder v6, v2, v1, v4, v3, v5 of T .

Theorem 2 Given the LW-sequence of a binary
tree T with n internal nodes, the preorder of T can
be determined in O(n) time.

Proof. Obviously, the starting points of intervals
can be computed in O(n) time and the α-sequence
of T can also be obtained in O(n) time by using
the counting sort. To show the α-sequence of T
is the preorder of T , we need to show that, from
rules (R1) and (R2), if pre−1

T
(i) < pre−1

T
(j) then

either S
T
(i) < S

T
(j) or S

T
(i) = S

T
(j) and j < i.

Consider two internal nodes vi, vj ∈ T and without
loss of generality assume that pre−1

T
(i) < pre−1

T
(j).

There are three possibilities for the positions of vi

and vj as follows.
Case 1: Node vj is located in the left subtree of

vi (i.e., vj ∈ Li). In this case, j ∈ [i−w
T
(i)+1, i−

1]. By Theorem 1, i − w
T
(i) ≤ j − w

T
(j). Thus

S
T
(i) ≤ S

T
(j). In particular, j < i holds whenever

S
T
(i) = S

T
(j).

Case 2: Node vj is located in the right subtree of
vi (i.e., vj ∈ Ri). Let vj′ ∈ Tj be the node that has
the smallest index in inorder traversal of T . Then
j′ = j−w

T
(j)+1. Clearly, vj′ ∈ Ri and thus i < j′.

This implies that i−w
T
(i) < i ≤ j′−1 = j−w

T
(j).

Thus S
T
(i) < S

T
(j).

Case 3: There is a common ancestor of vi and
vj , say vk, in T such that vi ∈ Lk and vj ∈ Rk.
Choose vi′ ∈ Ti and vj′ ∈ Tj with the smallest
index in inorder traversal of T , respectively. Then
i′ = i − w

T
(i) + 1 and j′ = j − w

T
(j) + 1. Since

vi′ ∈ Lk and vj′ ∈ Rk, i′ < k < j′. This implies
that i − w

T
(i) < j − w

T
(j). Thus S

T
(i) < S

T
(j).

�

3. Types of rotations

Rotations are commonly used as primitive steps
in tree balancing such as AVL-trees and splay trees
[12]. A rotation can be performed at any internal
node of a binary tree, and it is classified by two
kinds of operations: the left rotation and the right
rotation. A left rotation, applied to a node y which

is the right child of another node x, is an operation
that raises y to the place of x such that x becomes
the new left child of y and the left subtree of y be-
comes the new right subtree of x, while the rest
trees remain unchanged. A right rotation is sym-
metric to the left rotation, i.e., if we apply a right
rotation to the former node x after the left rotation,
it reconstructs the original tree.

In this paper, we use more general rotations:
LL-, RR-, LR- and RL-rotations, which are re-
quired for balancing AVL trees, to transform the
LW-sequences between two binary trees. An AVL
tree, introduced by Adelson-Velskii and Landis [1],
is a height-balanced binary search tree in which the
height difference between the two subtrees of each
node is no more than 1. To carry out the tree being
balanced, four types of rotations at a node vi are
shown in Figure 4.

T4

T4
T4

T1

T1

T1 T2 T2

T2

T3

T3 T3

T4

T1

T2 T3

T4

T1

T2 T3

T1 T2 T3 T4
T4

T1

T2 T3

T1 T2 T3 T4

LR-rotation RL-rotation

LL-rotation (right rotation) RR-rotation (left rotation)

vivi

vi

vl

vl

vpvp

vi
vp

vp

vq

vqvq

vi

vi

vpvp vq

vq vi

vi

vp
vp

vq

Figure 3: The LL-rotation, RR-rotation, LR-
rotation, and RL-rotation at a node vi.

The LL-rotation is similar to the right rotation
and the RR-rotation is similar to the left rotation.
The LR-rotation is a combination of two rotations:
we perform an RR-rotation at the node vi followed
by an LL-rotation of the new tree at vq. The RL-
rotation is the mirror image of the LR-rotation, i.e.,
we perform an LL-rotation at the node vp followed
by an RR-rotation of the new tree at vi. The fol-
lowing lemma describes the change of left weights
in each of the four types of rotations. We omit the
proof since its validity can easily be checked from
Figure 4.

Lemma 3 Let T be a binary tree and vi ∈ T be an
internal node. If we perform a rotation < at vi to
transform T into T ′, then the left weight w

T ′ (i) can
be determined by the following cases:
(1) If < is an LL-rotation, then w

T ′ (i) = w
T
(i)−

w
T
(l) where vl is the left child of vi in T .

(2) If < is an RR-rotation, then w
T ′ (i) = w

T
(i)+

w
T
(p) where vi is the right child of vp in T .

(3) If < is an LR-rotation, then w
T ′ (i) = w

T
(i) +

w
T
(p) and w

T ′ (q) = w
T
(q) − w

T ′ (i), where vi

is the right child of vp and vp is the left child
of vq in T .

Int. Computer Symposium, Dec. 15-17, 2004, Taipei, Taiwan.

1141

(4) If < is an RL-rotation, then w
T ′ (i) = w

T
(i) +

w
T
(q) and w

T ′ (p) = w
T
(p) − w

T
(i), where vi

is the left child of vp and vp is the right child
of vq in T .

From Lemma 3, we can see that performing a
rotation < at a node vi ∈ T will increase w

T
(i) if

< is an RR-, LR-, or RL-rotation. Contrastively,
w

T
(i) will be decreased if < is an LL-rotation. For

convenience to refer vl, vp, and vq in Lemma 3, we
use the following auxiliary lemmas.

Lemma 4 Let T be a binary tree and vi, vl ∈ T
be internal nodes. If vl is the left child of vi, then
l = pre

T
(pre−1

T
(i) + 1).

Lemma 5 Let T be a binary tree and vi, vp ∈ T be
internal nodes. If vi is the right child of vp, then
p = i− w

T
(i).

Lemma 6 Let T be a binary tree and vi, vp, vq ∈ T
be internal nodes. If vi is the right child of vp and
vp is the left child of vq, then p = i − w

T
(i) and

q = pre
T
(pre−1

T
(p)− 1).

Lemma 7 Let T be a binary tree and vi, vp, vq ∈ T
be internal nodes. If vi is the left child of vp and vp

is the right child of vq, then p = pre
T
(pre−1

T
(i)−1)

and q = i− w
T
(i).

4. The algorithm

In this section, we present an algorithm to trans-
form the LW-sequences between two binary trees T
and T ′. For convenience, we call T the source tree
and T ′ the destination tree. Note that T and T ′

have the same inorder. Define δ(i) = w
T ′ (i)−w

T
(i)

as the weight difference of node vi in the trees. Our
strategy adjusts δ(i) to become zero by using the
mentioned rotations. Thus, if the left weight of a
node vi is changed by a rotation, then we need to
revise δ(i). According to Lemma 3 and the aux-
iliary lemmas (from Lemma 4 to Lemma 7), each
of the four types of rotations can be implemented
as follows (where the argument i of each function
indicates that the rotation is performed at node vi

in the current tree):

Function LL-rotation(i)
Step 1. By Lemma 4, vl is the left child of vi and

compute l = pre
T
(pre−1

T
(i) + 1).

Step 2. According to Statement (1) of Lemma 3,
update left weight w

T
(i) = w

T
(i)− w

T
(l).

Step 3. Update weight difference
δ(i) = w

T ′ (i)− w
T
(i).

end LL-rotation

Function RR-rotation(i)
Step 1. By Lemma 5, vi is the right child of vp

and compute p = i− w
T
(i).

Step 2. According to Statement (2) of Lemma 3,

update left weight w
T
(i) = w

T
(i) + w

T
(p).

Step 3. Update weight difference
δ(i) = w

T ′ (i)− w
T
(i).

end RR-rotation

Function LR-rotation(i)
Step 1. By Lemma 6, vi is the right child of vp and

vp is the left child of vq and compute
p = i− w

T
(i) and q = pre

T
(pre−1

T
(p)− 1).

Step 2. According to Statement (3) of Lemma 3,
update left weights w

T
(i) = w

T
(i) + w

T
(p)

and w
T
(q) = w

T
(q)− w

T
(i).

Step 3. Update weight differences
δ(i) = w

T ′ (i)− w
T
(i) and

δ(q) = w
T ′ (q)− w

T
(q).

end LR-rotation

Function RL-rotation(i)
Step 1. By Lemma 7, vi is the left child of vp and

vp is the right child of vq and compute
p = pre

T
(pre−1

T
(i)−1) and q = i− w

T
(i).

Step 2. According to Statement (4) of Lemma 3,
update left weights w

T
(p) = w

T
(p)−w

T
(i)

and w
T
(i) = w

T
(i) + w

T
(q).

Step 3. Update weight differences
δ(i) = w

T ′ (i)− w
T
(i) and

δ(p) = w
T ′ (p)− w

T
(p).

end RL-rotation

We now list our algorithm to transform two bi-
nary trees as follows.

Algorithm A
Input: LW-sequences w

T
and w

T ′ of source tree T
and destination tree T ′, respectively.

Output: dist(T, T ′), an estimated rotation
distance between T and T ′.

Step 1. Let dist(T, T ′)=0, and compute (δ(i))n
i=1,

(pre
T
(i))n

i=1, and (pre−1
T

(i))n
i=1.

Step 2. while δ(i) 6=0 for some i∈{1, . . . , n} do
Step 2.1. if there exist vi, vp and vq in the current

tree such that vi is the right child of
vp and vp is the left child of vq for
some i∈{1, . . . , n} and δ(i)>0>δ(q)

then do LR-rotation(i);
Step 2.2. else if there exist vi, vp and vq in the

current tree such that vi is the left
child of vp and vp is the right child
of vq for some i ∈ {1, . . . , n} and
δ(i) > 0 > δ(p)

then do RL-rotation(i);
Step 2.3. else if there exist vi and vp in the current

tree such that vi is the right child of vp

for some i ∈ {1, . . . , n} and δ(i) > 0
then do RR-rotation(i);

Step 2.4. else if there exist vi and vl in the current

Int. Computer Symposium, Dec. 15-17, 2004, Taipei, Taiwan.

1142

tree such that vl is the left child of
vi for some i∈{1, . . . , n} and δ(i)<0

then do LL-rotation(i);
end if

Step 2.5. dist(T, T ′) = dist(T, T ′) + 1 and
recompute (pre

T
(i))n

i=1 and
(pre−1

T
(i))n

i=1.
end while

Step 3. Output dist(T, T ′).

Theorem 8 Given the LW-sequences of two bi-
nary trees T and T ′ with the same number of inter-
nal nodes, say n, Algorithm A produces a sequence
of rotations to convert T into T ′ correctly in O(∆n)
time, where ∆ =

∑n
i=1 |wT ′ (i)− w

T
(i)|.

Proof. The correctness of Algorithm A follows im-
mediately from Lemma 3 and its auxiliary lemmas
(from Lemma 4 to Lemma 7).

In what follows, we analyze the time complex-
ity of Algorithm A. Initially, (δ(i))n

i=1 can be set
up in O(n) time. By Theorem 2, (pre

T
(i))n

i=1
and (pre−1

T
(i))n

i=1 are attainable by using a count-
ing sort. Thus each of Step 1 and Step 2.5 takes
O(n) time. We now show that testing the condi-
tion of Step 2 in the main loop only needs a con-
stant time. We use two variables namely upper and
lower which are defined as upper = maxn

i=1 δ(i)
and lower = minn

i=1 δ(i) for testing. Since the con-
tents of two variables are updated in each round of
the loop, we only need to compare the difference
upper − lower for checking the conditions of Step
2. If the comparing result is equal to zero, it means
that δ(i) = 0 for all i = 1, . . . , n, and we output the
estimated distance between T and T ′. Otherwise,
it occurs that δ(i) 6= 0 for some i ∈ {1, . . . , n}. Let
∆ =

∑n
i=1 |δ(i)|. Obviously, ∆ ≤ O(n2). Since

there is at least one of the weight difference δ(i)
that is revised to approach zero in each round of
the main loop in Step 2, the loop is repeated at
most ∆ times. We now look into the detail of the
main loop. Obviously, one of LR-, RL-, RR-, or LL-
rotation must be performed in the current tree for
each round of the loop. Note that, the LR-rotation
and RL-rotation have the higher priority for testing
and accomplishing in our implementation. Each of
the testing from Step 2.1 to 2.4 requires O(n) time,
and each rotation can be accomplished in a con-
stant time. Also, we can see easily that Step 2.1 to
2.4 are exclusive with each other in each round of
the loop. Therefore, the total complexity of Algo-
rithm A is bounded in O(∆n) time. �

5. Conclusion

In this paper, we propose an efficient algorithm
that takes O(∆n) time to construct a sequence of
rotations for estimating rotation distance, where ∆
denotes the sum of weight differences between two

binary trees T and T ′ with n internal nodes. Since
∆ can be bounded in O(n2), the time complexity
of our algorithm is therefore O(n3). By using an
amortized analysis to evaluate the time complex-
ity of Algorithm A, then we believe that ∆ can be
diminished and will be less than O(n2).

In [20], Pallo introduced the lattice of binary
trees to study the rotation distance between binary
trees. In this paper we provide two extra rotations
LR-rotation and RL-rotation used on tree transfor-
mations. An interesting question is what the effect
on the lattice of binary trees will be if the two ad-
ditional rotations are included. For instance, Fig-
ure 6 shows the lattice of binary trees with n=3 in-
ternal nodes, where an LL-rotation or RR-rotation
is represented by a directed solid arcs, and an LR-
rotation or RL-rotation is represented by a directed
dashed arcs.

v1

v2

v3

WT = (1, 1, 3)

v1

v2

v3

WT = (1, 1, 2)

v1

v2

v3

WT = (1, 1, 1)

v1

v2

v3

WT = (1, 2, 1)

v1

v2

v3

WT = (1, 2, 3)

RR

RR

RR

RR

RR

RL

LR

LL

LL

LL

LL

LL

Figure 4: The lattice of binary trees with n=3 in-
ternal nodes.

Recall that the number of binary trees with n
nodes is the well-known Catalan numbers, denoted

by Bn = 1
n+1

(
2n

n

)
. Let R(n) denote the directed

graph induced by the lattice of binary trees with
n internal nodes. Now we can compute the aver-
age rotation distance of R(n), which is defined as
follows:

µ(n) =

∑
T,T ′∈Rn;T 6=T ′ dist(T, T ′)

2
(

Bn

2

)

=

∑
T,T ′∈Rn;T 6=T ′ dist(T, T ′)

Bn(Bn − 1)

Int. Computer Symposium, Dec. 15-17, 2004, Taipei, Taiwan.

1143

where dist(T, T ′) denotes the distance (i.e., the
number of arcs of a shortest path) between two
binary trees T and T ′ in R(n). Note that
dist(T, T ′) 6= dist(T ′, T). For example µ(3) = 1.5
if the computation of rotation distance only uses
the LL-rotation and RR-rotation. Contrastively, if
the excess LR-rotation and RL-rotation are allowed
to use in the computation of rotation distance, we
have the result µ(3) = 1.4. Thus, the study of the
variation of µ(n) for these two cases is interesting,
especially for the larger value of n.

References

[1] G. M. Adelson-Velsky and E, M. Landis, An
algorithm for organization of information, So-
viet Mathematics Doklady 3 (1962) 1259–1263.

[2] A. Andersson, General balanced trees, Journal
of Algorithms 30 (1999) 1–18.

[3] R. Bayer, Symmetric binary B-trees: data
structure and maintenance algorithms, Acta
Informatica 1 (1972) 290–306.

[4] A. Bonnin and J. Pallo, A shortest path metric
on unlabeled binary trees, Pattern Recognition
Letters 13 (1992) 411–415.

[5] S. Cleary, Restricted rotation distance between
binary trees, Information Processing Letters
84 (2002) 333–338.

[6] S. Cleary and J. Taback, Bounding restricted
rotation distance, Information Processing Let-
ters 88 (2003) 251–256.

[7] K. Culik and D. Wood, A note on some tree
similarity measures, Information Processing
Letters 15 (1982) 39–42.

[8] C. Germain and J. Pallo, The number of cov-
erings in four Catalan lattices, International
Journal of Computer Mathematics 61 (1996)
19–28.

[9] S. Hanke, T. Ottmann and S. Schuierer, The
edge-flipping distance of triangulations, Jour-
nal of Universal Computer Science 2 (1996)
570–579.

[10] F. Hurtado and M. Noy, Graph of triangula-
tions of a convex polygon and tree of trian-
gulations, Computational Geometry 13 (1999)
179–188.

[11] F. Hurtado, M. Noy and J. Urrutia, Flip-
ping edges in triangulations, Discrete Compu-
tational Geometry 22 (1999) 333–346.

[12] D. E. Knuth, Sorting and Searching, in:
The Art of Computer Programming, Vol. 3,
Addison-Wesley, Reading, MA, 1973.

[13] J. M. Lucas, The rotation graph of binary trees
is hamiltonian, Journal of Algorithms 8 (1987)
503–535.

[14] J. M. Lucas, D. Roelants van Baronaigien, and
F. Ruskey, On rotations and the generation of
binary trees, Journal of Algorithms 15 (1993)
343–366.

[15] J. M. Lucas, A direct algorithm for restricted
rotation distance, Information Processing Let-
ters 90 (2004) 129–134.

[16] J. M. Lucas, Untangling binary trees via rota-
tions, The Computer Journal 47 (2004) 259–
269.

[17] F. Luccio and L. Pagli, On the upper bound
on the rotation distance of binary trees, Infor-
mation Processing Letters 31 (1989) 57–60.

[18] E. Mäkinen, On the rotation distance of bi-
nary trees, Information Processing Letters 26
(1987/88) 271–272.

[19] J. Pallo, Enumerating, ranking and unranking
binary trees, The Computer Journal 29 (1986)
171–175.

[20] J. Pallo, On the rotation distance in the lattice
of binary trees, Information Processing Letters
25 (1987) 369–373.

[21] J. Pallo, Some properties of the rotation lat-
tice of binary trees, The Computer Journal 31
(1988) 564–565.

[22] J. Pallo, An efficient upper bound of the rota-
tion distance of binary trees, Information Pro-
cessing Letters 73 (2000) 87–92.

[23] J. Pallo, Generating binary trees by Glivenko
classes on Tamari lattices, Information Pro-
cessing Letters 85 (2003) 235–238.

[24] J. Pallo, Right-arm rotation distance between
binary trees, Information Processing Letters
87 (2003) 173–177.

[25] R. O. Rogers and R. D. Dutton, Properties of
the rotation graph of binary trees, Congressus
Numerantium 109 (1995) 51–63.

[26] R. O. Rogers and R. D. Dutton, On distance in
the rotation graph of binary trees, Congressus
Numerantium 120 (1996) 103–113.

[27] R. O. Rogers, On finding shortest paths in the
rotation graph of binary trees, Congressus Nu-
merantium 137 (1999) 77–95.

[28] D. D. Sleator and R. E. Tarjan, Self-adjusting
binary search trees, Journal of the ACM 32
(1985) 652–686.

[29] D. D. Sleator, R. E. Tarjan, and W.
R. Thurston, Rotation distance, in: T.M.
Cover, B. Gopinath (Eds.), Open Problems in
Communication and Computation, Springer,
Berlin, 1987, pp. 130–137.

[30] D. D. Sleator, R. E. Tarjan, and W. R.
Thurston, Rotation distance, triangulations
and hyperbolic geometry, Journal of the Amer-
ican Mathematical Society 1 (1988) 647–681.

[31] R. Sundar, On the deque conjecture for the
splay algorithm, Combinatorica 12 (1992) 95–
124.

[32] V. Vajnovszki, On the loopless generation of
binary tree sequences, Information Processing
Letters 68 (1998) 113–117.

Int. Computer Symposium, Dec. 15-17, 2004, Taipei, Taiwan.

1144

