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Abstract

In this paper, we propose a variation of honey-
comb meshes, called spider web networks. As-
sume that m and n are positive even integers with
m > 4. A spider web network SW(m,n) is a 3-
regular bipartite planar graph with bipartition C
and D. We prove that the honeycomb rectangu-
lar mesh HREM (m,n) is a spanning subgraph of
SW(m,n). We also prove that SW(m,n) — e is
hamiltonian for any e € E and SW(m,n) — {c,d}
remains hamiltonian for any ¢ € C' and d € D.

These hamiltonian properties are optimal.

1 Introduction

Throughout this paper, we assume that m,n are
positive even integers with m > 4. We use [r]; to

denote r (mod s).

Network topology is a crucial factor for an in-

terconnection network since it determines the per-
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formance of the network. Many interconnection
network topologies have been proposed in the lit-
erature for the purpose of connecting a large num-
ber of processing elements. Network topology is
always represented by a graph where nodes repre-
sent processors and edges represent links between
processors. One of the most popular architecture
is the mesh connected computers [7]. Each pro-
cessor is placed in a square or rectangular grid

and is connected by a communication link to its

neighbors up to four directions.

It is well known that there are three possible
tessellations of a plane with regular polygons of
the same kind: square, triangular, and hexago-
nal, corresponding to dividing a plane into regu-
lar squares, triangles, and hexagons, respectively.
Based on this observation, some computer and
communication networks has been built. The
square tessellation is the basis for mesh-connected
computers. The triangle tessellation is the basis
to define hexagonal mesh multiprocessors [2], [15].
The hexagonal tessellation is the basis to define

the honeycomb meshes [1], [11].



Actually, Stojmenovic [11] introduced three dif-
ferent honeycomb meshes, namely honeycomb
rectangular mesh, honeycomb rhombic mesh, and
honeycomb hexagonal mesh. Most of theses
meshes are not regular. To remedy these draw-
backs, honeycomb rectangular torus, honeycomb
rhombic torus, and honeycomb hexagonal torus
are proposed [11]. Any such torus is 3-regular.
Yet such torus is not hamiltonian unless it is small
in size [8]. Moreover, all honeycomb tori are not

planar. In this paper, we propose a variation of

honeycomb meshes, called spider webs.

In the following section, we give some graph
terms that are used in this paper and a for-
mal definition of spider web networks. The spi-
der graph SW(m,n) is a bipartite graph with
bipartition C' and D. Moreover, the honey-
comb mesh HREM (m,n) forms a spanning sub-
graph of SW(m,n). In section 3, we prove that
SW (m,n)—e is hamiltonian for any e € E. In sec-
tion 4, we prove that SW(m,n) — {c¢,d} remains
hamiltonian for any ¢ € C and d € D. These

hamiltonian properties are optimal. A conclusion

is given in the final section.

2 Spider web networks

Usually, computer networks are represented by
graphs where nodes represent processors and
edges represent links between processors. In this
paper, a network is represented as an undirected
graph. For the graph definition and notation, we
follow [3]. G = (V, E) is a graph if V is a finite set
and E is a subset of {(a,b) | (a,b) is an unordered
pair of V'}. We say that V is the node set and E is

the edge set of G. Two nodes a and b are adjacent
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Figure 1: HREM(8,6).

if (a,b) € E.

The honeycomb rectangular mesh HREM (m, n)
is the graph with the node set {(i,7) | 0 < i <
m,0 < j < n} such that (i,j) and (k,l) are adja-
cent, if they satisfy one of the following conditions:

l.i=kand j=1+£1;

2. j=land k=1i+1if i+ j is odd; and

3.j=land k=i—1if i+ j is even.

For example, the honeycomb rectangular mesh

HREDM(8,6) is shown in Figure 1.

A spider web network SW(m,n) is the graph
with the vertex set {(i,7) | 0 <i < m,0 < j <
n} such that (i,7) and (k,l) are adjacent if they

satisfy one of the following conditions:
l.i=kand j=1+£1,;

2.j =land k = [i + 1] if i +j is odd or
j=n—1;and

3. j=landk=[i—1],ifi+jisevenorj=0.

For example, the spider graph SW(8,6) is

shown in Figure 2(a). Another layout of SW(8,6)
is shown in Figure 2(b) with the dashed lines
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Figure 2: SW(8,6).

indicating those edges of SW(m,n) that is not
in HREM (m,n). Obviouslyy, HREM (m,n) is a
spanning subgraph of SW(m,n). The inner cycle
of SW(m,n) is ((0,0),(1,0),...,(m—1,0),(0,0))
whereas the outer cycle of SW(m,n) is ((0,n —
1),1,n—=1),...,(m—1,n—1),(0,n —1)). It is
obvious that any spider web network is a planar
3-regular bipartite graph. A vertex (7, j) is labeled

black when ¢ + j is even and white if otherwise.

The hamiltonian properties of a network are the
major requirement in designing the topology of
networks. For example, “token ring” approach is
used in distributed operating systems. Fault tol-
erance is also desirable in massive parallel systems

that have a relatively high probability of failure.

A path is a sequence of nodes such that two con-
secutive nodes are adjacent. A path is delimited
by (zo,z1,Z2,...,Tn_1). We use P~! to denote
the path (z,—1,%n—2,...,21,20) if P is the path
(z0,21,%2,...,Tn—1). A path is called a hamilto-
nian path if its nodes are distinct and span V. A
cycle is a path of at least three nodes such that the
first node is the same as the last node. A cycle is
called a hamiltonian cycle if its nodes are distinct
except for the first node and the last node and if

they span V. A hamiltonian graph is a graph with

a hamiltonian cycle. The honeycomb rectangu-

lar mesh HREM (8, 6) is not hamiltonian because
degHREM(&S) (0,0)=1.

A graph G = (V,E) is 1l-edge hamiltonian if
G — e is hamiltonian for any e € E. Obviously,
any l-edge hamiltonian graph is hamiltonian. A
1-edge hamiltonian graph G is optimal if it con-
tains the least number of edges among all 1-edge
hamiltonian graphs with the same number of ver-
tices as G. A graph G = (V, E) is 1-node hamil-
tonian if G — v is hamiltonian for any v € V. A
1-node hamiltonian graph G is optimal if it con-
tains the least number of edges among all 1-node
hamiltonian graphs with the same number of ver-
tices as G. A graph G = (V, E) is 1-hamiltonian
if it is 1-edge hamiltonian and 1-node hamilto-
nian. A 1-hamiltonian graph G is optimal if it
contains the least number of edges among all 1-
hamiltonian graphs with the same number of ver-
tices as G. The study of optimal 1-hamiltonian
graphs is motivated by the design of optimal fault-
tolerant token rings in computer networks. A lot
of optimal 1-hamiltonian graphs have been pro-
posed [6, 10, 12]. Obviously, degg(z) > 3 for any
vertex z in a 1-edge hamiltonian, 1-node hamilto-
nian, or 1-hamiltonian graph G.

However, any bipartite graph is not 1-
hamiltonian. Any cycle of a bipartite graph con-
tains the same number of vertices in each par-
tite set. Thus, the deletion of a vertex from
a hamiltonian bipartite graph results in a non-
hamiltonian graph. Let G be a bipartite graph
with bipartition C' and D. We use F(G) to de-
note {{c,d} | ¢ € C,d € D}. A hamiltonian



bipartite graph is 1,-hamiltonian if G — F re-
mains hamiltonian for any F € F(G). Obviously,
degg(z) > 3 for any vertex z in a 1,-hamiltonian
graph G. A 1,-hamiltonian graph G is optimal if
it contains the least number of edges among all
1p,-hamiltonian graphs with the same number of

vertices as G.

3 A recursive property of
SW(m,n)

By the definition of the spider web network,
SW (m,n +2) can be constructed from SW(m,n)
as follows: Let S denote the edge subset {((i,n —
D, (i = Umyn — 1)) | i = 0,2,4,..,m —
2} of SW(m,n). Let SW*(m,n) denote the
spanning subgraph of SW(m,n) with edge set
E(SW(m,n)) — S. Let V™ = {(i,k) | 0 <
i < myk =mn,n+ 1}, and E™ = {((i,k), (i, k +
D) 10 <i<mk =n—1n} U{Gn), (i -
1m,n)) |1 =0,2,4,..,m — 2} U{((¢,n + 1), ([i +
1m,n+1)) | 0 <i < m}. Then V(SW(m,n +
2)) = V(SW(m,n)) V"™, E(SW(m,n + 2)) =
(E(SW(m,n))—S)|J E™. For this reason, we can
view SW(m,n) as a substructure of SW(m,n+2)

if there is no confusion.

Suppose that C is a hamiltonian cycle of
SW(m,n) — F' for some faulty set F' C
V(SW*(m,n))UE(SW*(m,n)) such that (i,n—1)
is fault free for some 0 < i < m. Now, we are going
to construct a hamiltonian cycle of SW (m,n + 2)
as follows:

Case 1: there is some edge in SN E(C).
Then we can pick an edge ((r,n—1), ([r —1]m,n —

1) € C for some even integer 0 < r < m — 1. For
0 <i<m-—2, we define e* = (([r + i|m,n —

1),([r+i+1]m,n—1)), and Q; as

If[r+i.=0

when e* € C
Qi = (([r + ilm,n + 1), ([r + i]m, n),

(Ir+i+1m,n),([r+i+1]m,n+1))

when e” ¢ C.

Then set the path Q as ((r,n+1), Qo, ([r+1]m,n+
1),Q1,([7"+2]m,n+1)"'([T—Z]m,n+1),Qm_2,([T—
m,n+1)).

Then, we perform the following algorithm on C:

Algorithm3 Extend(C)

1. Replace those edges ((¢,n — 1), ([i — 1]m,n —
1)) € C, where i # r and i is even, with the
path ((i,n—1), (i,n), ([i—1]m,n), ([—1]m,n—

1)).

2. Replace the edge ((r,n—1), (r—1,n—1)) with
the path <(7“,TL - 1)7 (T,TL), (r,n + 1)7Qa (7" -
]_,1’L+].),(T‘—].,TL),(T‘— ].,TL—].)>.

Obviously, the resultant of Algorithm 3 is a
hamiltonian cycle of SW(m,n +2) — F.

Case 2: there is no edge in SN E(C). Ob-
viously, ((i,m — 1),(i — 1,n — 1)) € C for ev-
ery odd ¢ with 1 < 4 < m. The hamiltonian
cycle of SW(m,n + 2) — F can be easily con-
structed by replacing every ((i,n—1), (i—1,n—1)),
where i is odd and 1 < i < m, with the path
((i,n—1),(i,n), (i,n+1), (i—1,n+1),(i—1,n), (i—
1,n—1)).

Thus, we have the following theorem.

Theorem 3.1 Assume that F' is a faulty subset
of V(SW*(m,n))UE(SW*(m,n)) such that some

Qi = ((Ir + ilmyn+ 1), ([ + i + Ly n + 1))
Iffr+il=1 : Qi=/((r+idmn+1),(r+i+lmn+1)



(i,n — 1) with 0 < i < m is faulty free. Then
SW(m,n+2)—F" is hamiltonian if SW (m,n)—F'

is hamiltonian.

4 SW(m,n) is 1-edge hamilto-
nian

For j = 0 or n — 1, I;(i, k) denotes ((¢,7), ([{ +
s 75 (i + 2Dms i)y - (6,9)), and I7(3, k) de-
notes ((k,7), ([ = Uy 1), (15 = 2, 1) i, ).
In addition, let H;(j,k) denote the path ((7,j),
(6,5 +1),(i,5 +2),...,(i,k)), and H; *(j, k) =
(G k), ik — 1),...,(6,5)) for 0 < i < m, 0 <
J, k <n.

Theorem 4.1 Any SW(m,n) is 1-edge hamilto-

nian.

Proof. We prove this theorem by induction.
We first prove SW(m,2) is 1-edge hamiltonian.
Let e be an edge of SW(m,2). By the symmet-
ric property of SW(m,2), we may assume that e
is either ((0,0),(m — 1,0)) or ((4,0), (i,1)) with
i # 0,m — 1. Obviously, ((0,0), Io(0,m — 1), (m —
1,0),(m — 1,1),I;*(0,m — 1),(0,1),(0,0)) forms a

hamiltonian cycle of SW(m,2) — e.

Let P, = <(Z + 150)7(170)7Hl(07n -
1),6i—1,n-1),H

1), (i,n —
~1(0,n —1),(i — 1,0)). Now,
we consider the case n = 4 with e = ((i,1), (¢,2))
for some 0 < i < m. By the symmetric property of
SW(m,4), we may assume that i = 0. Obviously,
((0,0),(0,1), (1,1), Hi(1,3), (1,3),(0,3),(0,2), (m  —
1,2),(m—1,3),(m—2,3), H." ,(1,3),(m—2,1), (m—
1,1), (m—1,0), (n—2,0), Pr_3, (m—4,0), P
6,0),...,Ps,(2,0),(1,0),(0,0)) forms a hamiltonian
cycle of SW(m,4) — e.

m—5, (m_

NN O

Figure 3: Illustration of Theorem 4.1.

By inductive assumption, suppose that the the-
orem is true for n = k with £ > 2, and & > 4
with e = ((4,k —3), (i, k — 2)) for some 0 < i < m.
Suppose that e is an edge of SW(m, k + 2). Since
the inner cycle and the outer cycle of SW(m, k +
2) are symmetric, we may assume that e is in
SW*(m, k). Then there exists a hamiltonian cy-
cle of SW(m,n) — e.
SW(m,n + 2) — e is hamiltonian.

Applying Theorem 3.1,

Hence any spider web network SW(m,n) is 1-
edge hamiltonian. Figure 3 gives an illustration.

O

5 SW(m,n) is 1,-hamiltonian

Lemma 5.1 SW(m,2) is 1p-hamiltonian for
m > 4.

Proof. Let F € F(SW(m,2)). By the symmet-
ric property of SW(m,2), we may assume that
(0,0) € F. So, the other vertex in F is (z,vy),
where = + y is odd. Define two paths:

pilk,k+1) = ((i—1k),(i—1,k+1),(,k+1),
(¢, k), (i + 1, k))

gk +1,k) = ((—1,k+1),(6—1,k), k),
(i,k+1), (i + 1,k +1))

To simplify the notation, p; = p;(0,1) and ¢; =



Suppose that y = 1. Then we have a hamilto-
nian cycle of SW(m,2) — F:

((170)7 (270)7p37 (470)7p57 (670)7 sy (.T,O),
('T + 170)7pz+27 (l‘ + 370)7pm+47 s
(m —1,1),(0,1),(1,1),(1,0)).

Suppose that y = 0. There exists a hamiltonian

cycle of SW(m,2) — F:

((07 1)7 (17 1)7 g2, (37 1)7q4a (57 1)7 ) (:L‘, 1)7

(ZL' + 17 1)7 qz+2, ({I? + 37 1)’ sy qm-3, (m - 27 1

(’ITL - 25 0)7 (m - 15 0)7 (m - 15 1)7 (Oa 1)>
Hence SW(m,2) is 1p,-hamiltonian. a

Lemma 5.2 There erist 7 — 1 disjoint paths,
PPy, ..., Pa_,, that span SW*(m,n)—{(0,0)}
such that P joins (2l,n—1) to (21+1,n—1) for

1<l < -1, and P%—1 joins (0,n — 1) to
(m—2,n—-1).
Proof. We prove this lemma by induc-

2, we set P? as ((21,1), (20 +
11)) for 1 < 1 < m
((0,1), (1,1, (1,0), Ip(1,m — 1), (m — 1,0), (m —
1,1),(m — 2,1). Obviously, P?’s satisfy the re-

tion. For n =

— 1, and set P _, as

quirement of the lemma for 0 <1 < & — 1. Now
assume that the lemma holds for n = k, where
k is even. Then, there exist 5 — 1 disjoint paths,
PE PY ... ,Pk%_l, that span SW*(m, k)—{(0,0)}
such that P} joins (2[,k —1) to (21 + 1,k — 1) for
1 <l<Z-1, and Pk%_1 joins (0,k — 1) to
(m—2,k—1).

Now, we set P2 as (21, k+1), (2l + 1,k + 1))
for1 <1< B —1. Define f; = ((i,k—1), (i, k), (i+

lak)v (’L + 17k - 1)7P(IZ+1)/2, (’L + 2,]6 — 1)> and set,

7(m_ 170)7

),

PE2 as:
2

0,k +1),(1,k+1),(1,k),(2,k), (2,k — 1),
PF 3,k —1), f3,(5,k — 1), f5, (T, k — 1),...,
fm—s,(m =3,k —1),(m = 3,k),(m - 2,k),
(m—2,k—2),(Pa_;)"",(0,k —1),(0, k),
(m—1,k),(m =1,k +1),(m — 2,k +1)).

Pf*21 <1< 2 —1, satisfies the requirement of
lemma. Hence the lemma is proved. See Figure 4

(a) for an illustration. O

Lemma 5.3 Assume that r is an even integer,
0 <r < m—2. There exist 3 disjoint paths,
Qr,QL, .. .,Q’é, that span SW*(m,n) — {(r,0)},
such that Q7 joins (2l,n—1) to (21+1,n—1) for

1<1<5-1, andQ% joins (0,n—1) to (r,n—1).

Proof. We prove this lemma by induction.
For n = 2, we set Q7 as ((2,1),(21,0), (2l +
1,0),(20 + 1,1)) for 1 < I < & — 1,
and set QQ% as {(0,1),(1,1),(1,0),(0,0), (m —
1L,0),(m — 1,1),q50 0, (m — 3,1),q50,, (m —
5,1),...,q7 0, (r + 1,1),(r,1)). Obviously, Q?’s
satisfy the requirement of the lemma for 1 <1 <
5. We assume that the lemma holds for n = k
where k is even. Then, there exist § disjoint paths,
¥, 1 <1 <L, that span SW*(m,k) — {(r,0)}
such that QF joins (21,k —1) to (2 + 1,k — 1) for

1<l<%, and Q’% joins (0,k —1) to (r,k —1).

Now, we set Q; 2

forl1 <<
1L,k=1),(+

QkF2 as:
2

as (20, k+1),(2l+ 1,k + 1))
<(Zak - 1),Q7I:e/2’ (’L +
k),(i+2,k),(i+2,k—1)), and set

5. Define g; =
L,

<(07k + 1)7 (lak + 1)7 (lak)a (Qak)a (Qak - 1)7

g2, (47k - 1)7947 (67k - 1)5 s Gr—2, (T,k - 1)a



(Q%)_lv(oak_1)7(ka)7(m_1ak)7
(m—1,k+1),q," 5(k+1,k),(m -3,k + 1),
--aqr+2(k+1 k) (T‘+1,k+1),(7‘,k+1)).

k+2 for 1 <1 < I satisfies the re-

Obviously, 5

quirement of lemma. Hence the lemma is proved.
See Figure 4 (b) for an illustration, where r = 4.

O

Lemma 5.4 Assume that s is a positive odd in-
teger. There exist 5 — 1 disjoint paths, R}, where
1 <1< 2 that span SW*(m,n) — {(s,1)} such
that Rl” joins (2(1 —1),n —1) to (2l — 1,n — 1)
for 1 # %, and RST+1 joins (s — 1,n — 1) to
(m—-2,n-1).

Proof. We prove this lemma by induction. For

n = 2, we set,

R = <(2(l_1)71)7(2(l_1)70)7(2l_170)7
(21 —1,1)) s—1
R = ((2(1-1),1),(21—-1,1))
fors+3 Slg%—l.
Besides, Rer1 as ((s—1,1),(s—1,0), lo(s—1,m—

1),(m—1,0),(m 1,1), (m—2,1)). Obviously, R}’s
satisfy the requirement of the lemma for 1 <[ <
5 —1. Now assume that the lemma holds for n = k
where k is even. Then, there exist 5 — 1 disjoint
paths, Rf’s, that span SW*(m, k) — {(s,1)} such
that R} joins (2(1 —1),k—1) to (2l — 1,k —1) for
1<I< B0 # sgl,andRﬁ# joins (s — 1,k — 1)
to (m—2,k— 1).

Now, we set Ry™2 as ((2(1 — 1),k + 1), (21 —
Lk+1)for1 <1< 2 # =t
((i,k=1), RE,y, (i+1,k=1), (i+1,k), i+2,k), (i+

Define g; =

2,k — 1)), and set R’§+1 as:

(s =1,k+1),(s,k+1),(s,k), (s + 1,k),
1),9s+1, (5 + 3,k = 1), .., gm—s,
1), (Ryy1y2) (s =1,k = 1),
19550,k —1),(0,k),
— 2,k +1)).

(s+1,k—
(m—2,k—
gl (s =3, k—1),...
(m—1,k),(m—1,k+1),(m

Since Rj*?, for 1 <1 < £, satisfies the require-
ment of lemma, the lemma is proved. See Figure 4

(c), where s = 3. O

Lemma 5.5 There exist 5 —1 disjoint paths, S|,
where 1 <1 < % that span SW*(m,n) — {(0,1)}
such that S joins (2l +2,n—1) to (21 +3,n—1)
for 1 <1 <3 —2 and S”%_1 joins (1,n — 1) to
(3,n—1).

Proof. We prove this lemma by induction. For
n =2, weset S? = ((2l+2,1),(21+3,1)) for 1 <
[ <2 —2 and S?n 1 as ((1,1),(1,0),(0,0), (m —
1 0) (2 m— 1) (2,0),(2,1),(3,1)). Obviously,
SPs satlsfy the requirement of the lemma, for 1 <
I <2 —1. Now assume that the lemma holds for
n= k where k is even. Then, there exist 5 —1 dis-
joint paths, SF’s, that span SW*(m, k) — {(0,1)}
such that S¥ joins (201 42,k —1) to (20 + 3,k — 1)
for 1 <1 <2 -2 and Sk%_1 joins (1,k — 1) to
3,k —1).

Now, we set SF 2 as (2142, k+1), (21+3, k+1))
for 1 <1 < % —2. Define h; = ((i,k—1), (i, k), (i+
1, k), (i+1,k—1),S% ,, (i4+2,k—1)), and set Sk
as: ; :

(LLE+1),(0,k+1),(0,k),(m—1,k),
(m—1,k— ),hr_n 5, (m—3,k— ),hr_n 55

(m—=>5k—1),....h ", 3,k =1),(S%_,) 7",



(L,k—=1),(1,k),(2,k),(2,k+1),(3,k+ 1)).

SlkH, 1 <1 <% —1, satisfies the requirement
of lemma, so the lemma is proved. See Figure 4

(d) for an illustration. O

Lemma 5.6 Assume that t is an even integer,
0 <t < m-—2. 5 — 1 dis-
joint paths, T, where 1 < | < %
SWH*(m,n)—{(t,1)} such that T}* joins (21,n—1)
to(2Ql+1,n—1) for 1 <1 <F—1andl # %, and
Tg joins (1,n —1) to (t+ 1,n —1).

There exist

that span

Proof. We prove this lemma by induction. For

n = 2, we set T? = ((1,1),(0,1),(0,0), I(0,t +
2

1),(t+1,0),(t+ 1,1)).

. = ((2l71)7(2l+1,1)> fOT‘]_SlS %,
T = ((20,1),(21,0),(20+1,0), (20 + 1,1))
2 -2
fwt; <<=

Obviously, T7?’s satisfy the requirement of the

lemma for 1 <1 < 3 — 1.

Now assume that
the lemma holds for n = k where k is even. Then,
there exist 2 — 1 disjoint paths, T}*’s, that span
SW*(m, k) —{(t,1)} such that T} joins (2[,k—1)
to(2l+1,k—1)for1<I<Z—1land!# %, and

T¥ joins (1,k —1) to (t+ 1,k —1).
2

Now, we set T} as (21, k+1), (20 + 1,k + 1))
for 1<1<2 —1,and [ # L. Define h; = ((i,k —
1)7(iak)a(7:+]-7k)7(7:+]-7k_1)7Tik-|—_17(7:+27k_1)>7

2

and set TF*2 as:
2

(1,k+1),(0,k+1),(0,k), (m —1,k),
m—1,k—1),h"

9 "'m—3»

(m—3,k—1),h"

» ''m—5»

(
(
(m =5k —1),....,h N, (t+ 1,k =1),(T) ",
(Lk—1),h,(3,k—1),...,hys, (t— 1,k — 1),
(

An illustration for Lemma 5.2 to

Figure 4:
Lemma 5.6

le+2, 1 <1< % —1, satisfies the requirement of
lemma, so the lemma is proved. See Figure 4 (e),

where t = 4. O

Theorem 5.1 SW(m,n) is 1lp-hamiltonian for

any even integer with m > 4,n > 2.

Proof. This theorem is proved by induction. By
Lemma 5.1, SW(m,2) is 1,-hamiltonian. Assume
that SW(m, k) is 1p-hamiltonian for some positive

integer k with k£ > 2.

Now, we want to prove SW(m,n + 2) is 1,-
hamiltonian. Let F € F(SW(m,n + 2)). Ob-
viously, one of the following cases holds: (1)
{(i,j) |0 <i<m,j=nmn+1}NF =10, (2)
{G,/) | 0<i<mj=01}nF =0, and (3)
{(,5) |0 <i<m,j=nn+1}NF|=1and
{(6,4) |0 <i<m,j=0,1}NF|=1.

Case 1: {(i,j) | 0 <i < m,j =n,n+1}nN
F = 0. Then F € F(SW(m,n)).
SW (m,n) — F is hamiltonian. Applying Theorem
3.1, SW(m,n + 2) — F is hamiltonian.

By induction,



Case 2: {(i,j) |0 <i<m,j=0,1}NF =
(). Since the inner cycle and the outer cycle are
symmetric in any spider web network, SW (m,n+

2) — F' is hamiltonian as case 1.

Case 3: [{(i,j) | 0 < i < m,j =n,n+1}N
F|=1and |{(i,j) |0<i<m,j=0,1}NF| =
1. By the symmetric property of the spider web
networks, we have the following five cases: (3.1)
F = {(0,0),(0,n + 1)}, (3.2) F = {(r,0),(0,n +
1)} with r an nonzero even integer, (3.3) F =
{(s,1),(0,n+1)} with s an odd integer, (3.4) F =
{(0,1),(0,n)}, and (3.5) F = {(¢,1),(0,n)} with

t an nonzero even integer.

Case (3.1): F = {(0,0),(0,n + 1)}. By

0,
Lemma 5.2, there exist 3 — 1 disjoint paths,
PPy, ..., Py _,, that span SW*(m,n)—{(0,0)}
such that P;* joins (2{,n —1) to (2l +1,n — 1) for

1 <1 <2 -1, and P%_l joins (0,n — 1) to

2
(m—2,n—-1).

Define C1(i) = ((i,n — 1), (i,n), (i — 1,n), (i —
Ln — 1),(Pry) ', (i — 2,n — 1)). Obviously,
((0,n i 1), Pa_y,(m -

2,TL—1), Cl(m_2)7 (’ITL—4,TL—1), LR 01(4)7 (25’”’_
1),(2,n), (1,n),(1,n4+1), L,4+1(1,m—1), (m—1,n+
1),(m—1,n),(0,n), (0,n—1)) forms a hamiltonian

cycle of SW(m,n +2) — F. See Figure 5 (a)

Case (3.2): F = {(r,0),(0,n+1)}. By Lemma
1Q,.... QL
that span SW*(m,n)—{(r,0)} such that Q}* joins
(2l,n—=1)to (2l +1,n—1) for 1 <1 < %, and Q%
joins (0,n — 1) to (r,n —1).

Define Cs(i) = {((i,n — 1), (i,n), (i — 1,n), (i —
L,n—1),(Q%5) " (i —2,n—1)), B(i) =((i,n+
1), (iyn), (i + L), (i + L + 1), + 2,0 + 1),

5.3, there exist 3 disjoint paths,

Obviously, ((0,n — 1), %,(r,n —1),Cs(r), (r —
2,n—1),...,C02(4),(2,n—1),(2,n),(1,n),(1,n+
1), Lo (L,r + 1), (r + 1,n+ 1),B(r + 1),(r +
3,n + 1),....,B(m — 3),(m — 1,n + 1),(m —
1,n),(0,n),(0,n—1)) forms a hamiltonian cycle of

SW(m,n+2)—F. See Figure 5 (b), where r = 4.

Case (3.3): F = {(s,1),(0,n + 1)}.
By Lemma 5.4, there exist % — 1 disjoint
paths, R}, R%, ..., %_l,that span SW*(m,n)—

{(s,1)} such that R} joins (2l — 2,n — 1) to
(20—1,n—1)for 1 <1< % and # £, and
R’s% joins (s —1,n — 1) to (m —2,n —1).

Define C3(i) = ((i,n — 1), (i,n), (7 — 1,n), (i —
1,n—1),(RY)~Y (i —2,n— 1)), C4(i) = ((i,n —
1), h,(i+21,n—1),(i+1,n),(i+1,n+l),(i+
2,n+21), (i+2,n),(i+2,n—1)). Obviously, ((s —
1,n—=1),R%,,(m—2,n—1),C3(m—2),(m—4,n—
1),03(m—42),(m—6,n—1)...03(s+3),(s+1,n—
1),(s+1,n),(s,n),(s,n+1),L,41(s,m —1),(m —
1,n+1),(m—1,n),(0,n),(0,n—1),C%(0),(2,n—
1),C4(2), (4,n — 1)...,Ci(s — 3),(s — 1,n — 1))
forms a hamiltonian cycle of SW(m,n + 2) — F.
See Figure 5 (c), where s = 3.

Case (3.4): F = {(0,1),(0,n)}. By
Lemma 5.5, there exist 3 — 1 disjoint paths,
S?,SS,...,Sn%fl,that span SW*(m,n)—{(0,1)}
such that S joins (20 +2,n —1) to (21 +3,n — 1)
for 1 <1< 3 -2, and S%_l joins (1,n — 1) to
(3,n—1).

Define Cy4(i) = ((i,n — 1), (i,n),({,n + 1), (1 +
1,n + 1),(¢ + L,n), ¢ + L,n — 1),5%,,( +
2,n — 1)). Obviously, ((1,n — 1),5"%_1,2(3,n -
1),C4(3),(5,n — 1),C4(5),(7,n — 1),...,Cs(m —
3),(m—1,n—1),(m—1,n),(m—1,n+1),(0,n+



1), (1,n+1),(2,n+1),(2,n), (1,n), (1,n—1)) forms

a hamiltonian cycle of SW(m,n+2)— F. See Fig-
ure 5 (d).
Case (3.5): F = {(t,1),(0,n)}. By
m

Lemma 5.6, there exist 7' — 1 disjoint paths,
13, ..., Ty _y, that span SW*(m,n)—{(t,1)}
such that 7}" joins (2[,n —1) to (2l +1,n —1) for
1<I< %—landlaé%,andT%”joins (1,n —1)
o(t+1,n—1).

Define Cs(i) = ((i,n — 1), (i,n), (i,n + 1), (i +
1,n+1),(i+1,n),(i+1,n-1), Tﬁu,(i-i—Q,n—l)),
and CL(i) = ((i,n— 1) (T?l) (i—l,n—l),(i—
1,n),(E—2,n),(— )) Obviously, ((1,n —
1),T:,(t+1,n-1), 05(t+1),(t+3 n—1),Cs(t+
3),(t+5,n—-1),...,C5(m-3),(m—1,n—1),(m—
1,n),(m — 1,n + 1),(0,n + 1), I,,11(0,1), (t,n +
1), (t,n),(t—1,n),(t—1,n—1),Ct(t—1),(t—3,n—

1)7Cé(t - 3)7 (t —5,n — 1)7 tee 7Cé(3)7 (17n - 1))
forms a hamiltonian cycle of SW(m,n + 2) — F.
See Figure 5 (e), where t =4

Thus we have proved the theorem. 0.

6 Concluding remarks

Since

the honeycomb rectangular mesh HREM (m,n)
is a spanning subgraph of SW(m,n), the spider
web network can be viewed as a variation of the
honeycomb meshes. The spider web network we
proposed are 3-regular planar graphs. Moreover,
they are 1-edge hamiltonian and 1,-hamiltonian.
Since the spider web network is 3-regular, it is op-

timal.

It is very easy to see that the diameter of the

10

Figure 5: Tllustration for Theorem 5.1, case (3.1)-
(3.5).

spider web network SW(m,n) is O(m + n). By
choosing m = O(n), the diameter of SW(m,n)
is O(V/N) where N = mn is the number of ver-
tices in SW(m,n). It would be interesting to find
other planar, 3-regular, 1-edge hamiltonian, and

1,-hamiltonian graphs with smaller diameters.
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