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ABSTRACT

A novel algorithm for polygon morphing was proposed in
this paper. We adopted the parametric curve representation
based on Fourier descriptor estimation to transfer the
traditional morphing process in spatial domain [1] into the

process in percmetric space instead [3,7]. The principles

were to express the polygon with estimated Fourier
description parameters, and then interpolated the
parameters -of both source and target polygons. Fourier
descriptors of the sampled x and y profiles for both the
source and target polygons were obtained efficiently by
using the fast Fourier transform (FFT) algorithm.
Intermediate contours in-between the source and target
polygons were then reconstructed based on interpolation of
the obtained Fourier descriptors of the two polygons. The
experiment results were superior in appearance to the ones
obtained by other addressed works.

Keywords: Polygon morphing, Parametric representation,
Fourier descriptor

1. INTRODUCTION

"Morphing", "metamorphosis" or "warping” is a term that
describes a procedure to smoothly deform the desired
content from the source image to the target one. The
morphing technique is quite popular as a special effect in
motion pictures or computer animation. Generally speaking,
morphing techniques can be divided into two major
categories, one is the gray image morphing, which
transforms one gray level image to the other gray level
image; another approach is the binary image morphing
which deforms the binary object such as polygons into
another desired polygons. In this paper, we focus ourselves
in the polygon morphing.

Polygon morphing attracts a lot of attention in the past
decade. Lots of literatures addressed about this topic
[1,2,3,4,5]. The morphing procedure can be roughly
divided into two sequential steps. The first is the
establishment of the corresponding matching vertices
between the source and the target objects. This step is
normally achieved by human intervention, ie. the
corresponding matching vertices are assigned manually.
Some researchers try to derive an automatic method to
establish the vertex correspondence [5]. The second step is
to find a reasonable and smooth transition function that
warps the source image or object to the target one. The
intermediate images now can be calculated by the
transition function. The gray level image morphing can
also be achieved by cross-dissolving the gray levels of the
two images after the polygon morphing.
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Given the source polygon, say P, and the target polygon,
say P,, the morphing procedure can be defined formally
by:

fit->Prefo], f®=F, f)=F, and
f(¢)=P, is the desired intermediate object. It is trivial that

where

the morphing problem is a multidimensional interpolation
problem, and, is an ill-posed problem. That means the
derivation of the transition function f can be as many as
possible. Some natural constraints would be given to
constrict the solution space for finding the transition
functions. For example, if the shapes of the source and the
target objects are closed and simple, the intermediate
object's shape should also be closed and simple. The area
of the intermediate object should be gradually varied
between the areas of the source and the target polygons.
Moreover, The intermediate objects should be translation
and rotation invariant if the source and the target objects.
are exactly the same one.

The traditional algorithm for solving the morphing problem
is just linearly interpolating the corresponding matching
vertices between the source and the target polygons, ie.,
the so-called “"vertex interpolation”. As Fig. 1 shows, this
method suffers the drawbacks of not satisfying the natural:
constraints mentioned above. While the alphabet "E" is
morphed into the turnover "E", we expect the in-between
objects could keep the size and rotated smoothly. But tuc
traditional vertex interpolation method can not satisfy such
requirement. The physically based or feature based
approach reduces such disadvantages by imposing
constraints on the angle of the source and the target
polygons [6]. But this method is working on the physical
domain, and it tends to distort the polygon area. Meanwhile,
Shapira et. al [3] proposed a complex morphing algorithm
and obtains a better result by human visual inspection.
They introduce a special representation of the morphed
polygons that called "star-skeleton". The morphing process
is performed on the star-skeleton. The advantage of this
method is that it transforms the physical domain problem
into a parametric space problem. But the representation
used in the algorithm is quite complicated, it is necessary
to derive a simple but efficient representation to retain the

natural constraints.

(a) Tranditional vertex intepolation
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(b) Improved vertex intepolation

Fig. 1 The vertex interpolation. (a) The alphabet "E" is
morphed into the turnover "E". The intermediate
poiy gons tend to become smaller and intersect itself.
(b) The improved vertex interpolation.

Goldstein et al. [7] represent the polygon boundary by a
multi-resolution scheme. They first employ curve evolution
step by step to transform the original polygon into a
convex object and record the vertex paths. The morphing
procedure is performed by interpolating and merging the
corresponding vertex paths between the transformed source
and target polygons. This method also transforms the
morphing work from a physical domain problem into a
parametric domain problem. However, the step of "curve
evolution” in this algorithm needs a lot of computation and
the maintenance of the vertex paths is very complicated.

In this paper, we propose a simple and novel method that
satisfies the natural morphing constraints and obtains better
results compared with other algorithms. The basic idea of
our method is to transform the traditional vertex
interpolation method into the parametric curve
manipulatuén. Thus, the morphing procedure is performed
in the parametric space with the polygons represented by
parameters of the Fourier description. To retain the details
near the corner position, the transverse axis scale of the
shape profiles is sampled non-uniformly according to their
curvature values. This step allows the morphing operations
keep the details of the original shape around the corner
areas. The true morphing work is implemented in the
parametric space and then polygons are reconstructed from
the interpolated parameters.

This paper is organized as follows. In section two, we
introduce the preliminary theories. Section three illustrates
the algorithm. Some experimental results are demonstrated
in section four and conclusions are given in section five.

2. PARAMETRIC CURVE AND
FQURZER PARAMETERIZATION

In this section, the basic concepts of the Fourier shape
description and the relevant terminology that we used in
our study are introduced. Algorithm and examples are
given in the subsequent sections.

2.1 Parametric Curve

A parametric curve is used to represent a shape of a closed
or open curve and map the curve from the physical domain
into a real interval [0,1]. Suppose that C is a parametric
curve, the mapping of C can be written as:

C:[0,]] - R? )
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The points of the curve would map from the [0,1] into the
2-D image; that is,

Cr>v(c)={(x(c),¥(c)), where ce[0,l].

The regularized representation of parametric curve is then
used in the image morphing algorithm. The advantage of
employing the parametric curve is to avoid the many-to-
few matching problem in the physical domain [2]. It is not
necessary to maintain the vertex paths of the polygon as in
the conventional method [7]; the correspondence between
the source and the target polygons is now transformed into
the correspondence between the real interval pair.

2.2 Fourier Parameterizations

The goal of the parameterization for a polygonal boundary
is to find an efficient representation of the original
boundary that can also be effectively manipulated to
achieve the morphing operations. The boundary
parameterization has the advantage that it dramatically
reduces the number of the parameters compared with the
free-formed or original representation. The additional
restrictions, such as smoothness, can also be involved by
the parameterization.

Curve parameterization expresses the shape based on the
linear combination of some orthonormal bases. It is
implemented by the weighted sum of a set of known basis
functions. Given a continuous curve, X(¢); and a set of

basis function @, (¢), the parametric curve X(f) can be
defined as

X©=3 B, 4,0 where B, = [X)g, (0t @

The coefficients [, are the weights for distinct basis

functions, on the other hand, they are also the projections
of the function X(¢) onto the k basis functions. Many
orthogonal polynomial functions fit the requirement of
orthonormality as basis functions. Fourier parameterization
that uses the sinusoids or trigonometric functions

4= {__l_’ cosx sinx cos2x sin 2x ’} G)
2t m T 4 4
as the basis is one of the popular examples.

The sinusoidal basis is used to transfer the original data ic
the transform domain that is usually called the frequency
domain. The discrete version of Fourier transformation
expressed in (4) is usually computed via the fast Fourier
transform (FFT). The truncated version of (2)

hia']
X()=Y B, 4, (0). vhere f,= [X(0g, 00 @)
k=1
eliminates the higher frequency terms, and still preserves
the accuracy of the shape.

The standard Fourier parameterization is used in both open
and closed curves. But if we focus ourselves only on the
closed curve, the elliptic Fourier representation could be
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more appropriate [8,9]. The elliptic Fourier representation
(or Fourier descriptor) assumes the closed curve as a
combination of successive ellipses. The parametric form of
the elliptic Fourier representation is expressed by

x(0)| aol =|a, b, |coskt
Ieu 0 ] e

where
1 _1
2= [xat =3 [ ywyar
1 =L i
0= [x@coskar b, = [ x(0)sin ket
1 1 .
¢, = 5; .[y(t) coskidt dy = ;7: _r)y(t)sm kedt

The truncated version of (5) where oois replaced with a
fixed basis number n, is allowed to simplified the data
representation while still keep good approximation of the
original shape.

3. ALGORITHM

The morphing algorithm is illustrated as Fig. 2. Given one
source polygon, one target polygon and the matching
vertices, we have to build the correspondence between the
matching segments. We first transform the global
coordinates for each matching segment into the local
coordinate system. For preserving the detail in shape, we
adjust the axis scale based on curvature for each pair of
corresponding segments. The Fourier parameterization for
local coordinate is computed and then used for the
parameter interpolation. The intermediate polygons are
then reconstructed by substituting the interpolated Fourier
parameters into (5).

The details of the proposed morphing algorithm will be
illustrated in the following subsections.

1

Approximate the matching
segments with the Fourier
_descriptors

Given the source polygon P,and g
the target polygon P, with the
matching vertices i
(Ve b (V595

n) [ Interpolate the local origins

Transform the polygon &
coordinates to the local cordinates [

Interpolate the Fourier descriptor
parameters

Adjust the coordinate scale with [ '
their curvatures ; Reconstruct the coordinate system §
T with the interpolated origins

Fig. 2(a) The flowchart of the proposed algorithm
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Fig. 2(b)
3.1 Coordinate Transformation

The conceptual sketch of Fig. 2(a)

A polygon is expressed in the discrete form in a computer
system. A polygon is usually represented with a set of
chain codes or connected points. In the morphing system,
the matching vertices are given manually. Two polygons
and their corresponding matching vertices are expressed as_ .

A :{pl,pz,...,pM }z [vl,vz,...,v,,]
P, :{p}, Plores Py} [, VooV,
where M is the total number of points of the source

polygon P,, N is the total number of points of the target
polygon P,, and 7 is the number of the matching vertices.

, ©®

The vertex points of the source polygon, v,,¥,,...,V, are i
assigned to be morphed to the ones of the target polygon,
Vi, Vg 5eees Vi, TESPECtively.

The global coordinate system is converted to the local
coordinate for aligning the shape of the source and the

target polygons. The transform is quite straightforward, the
transformed coordinates of the vertices are defined as

P‘:{ﬁvﬁzr"’ﬁN}z{Pl —;’Pz"l_-;v"’PN —:D-}’
. NG

Here we can assume that the origins of the source and the

target polygonsE,,E are well aligned by the local

coordinate transformation. The polygon areas denoted as
Q,and Q are defined by '

M N
Q, = Z"ﬁ, Lo, = Zﬂﬁ,’ I (8)

i=1 i=l

An example of the matching segments is illustrated in Fig.
3 and will be explained in detail subsequently.



Fig.3 An example for the morphing algorithm. The top-
left polygon will be morphed to the bottom-right
polygon. The circles on the polygons indicate the
matching vertices.

3.2 Axis Scale Sampling Based on Curvature

Using the parametric curve representation, the x and y
coordinates can be represented, or drawn, as a profile. The
morphing of the complete boundary is decomposed into the
combination of the morphing of boundary segments. To
preserve the detail near the salient point, the curvature is
calculated and used to adjust the scale on the object profile.
To avoid the shape blurring effect during the morphing
process, we stretch the object scale with the high curvature
points, and squeeze the scale with the low curvature points.
Therefore, the original shape is sampled with more points
in the high-curvature areas and with less points in the low-
curvature ones.

Define the first and the second derivatives for the i-th point
p; as follows:

. __x.'u—x; Lo _ Vi =V
X; = Vi = y
Siar = Sin Sia1 < Siny
cfor _ Xy TX pack _ X T Xy
X = 3 -
Sy =5 Si =S
for _ Vi = Ve pack _ Yo Wiy,
yl :yl
Siel =5 S =S5
N -l il el ©)
X = X =
Siot TS0 Sirt TS

where s, =‘i"Pj+1 "Pj”-

J=1

The curvature at point p; can be computed by

= AR (10)
"l

Thus, we can sample the axis by the following equation:
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., _CXp !a-"klut ,
YT ol ) "

i
where A and A’ are the sampled scales on the original

and adjusted boundary data, respectively, k/1 is the

corresponding curvature for A, and & is a scale factor
emphasizing the importance of the curvature. If we set &
to zero, then equation (11) does not change the data
sampling.

Fig.4(a) illustrates an example of boundary sampling
according to the curvature. As Fig.4(b) shown, the original
x profile is a straight line, but after the sampling process,
the line come into a curve. In our algorithm, the sampling
process is proceed on both x and y profile in the source and
target polygons.

005 H W\

025 [ \ | / M

045 [ \ y

-0.65

-0.85

Fig4(a) The axis sampling. The bottom grid is the
original scale. The upper grid is the data scale
adjusted according to the curvature. The adjusted
data are then resampled to generate more points on
the high-curvature areas.

Fig.4(b) The bottom curve indicates the curvature for the
corresponding x profile. The dashed line indicates
the original x profile. After sampling process, the
original straight line becomes a curve expressed by
the solid line.

3.3 Fourier Descriptor Estimation

The source and the target polygons can be expressed as the
combination of the matching segments, i.e.
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n
b= zvivi+1’vn+l =%

i=1

n
_ " Py
Pl - zvivi+l’vn+l =V
=

(12)

By the parametric curve representation, the corresponding
radian of the matching segments for the source and the

target polygons are defined as {tl,tz,...,ti,...,tn},

{t{,t;,...,t;,...,t;}, respectively. Now we want to

approximate the matching segments with the Fourier
descriptor. The Fourier descriptor approximation is
proceeded on both the x and y profiles. In general, the
number of basis or harmonic n,, determines the details of
the estimation. Since the global coordinate system is
transformed to the local coordinate system, the origin
vector [ao co]rin equation (5) is simply a zero vector. The
estimation is performed in each matching segment pair
‘v,.vm :V;v;n) to obtain the Fourier descriptor parameters
(a3 bis Cis s (@', b’y Ci's A}, k=1...m,. The Fast Fourier
Transform (FFT) can also be employed to reduce the
computation cost.

3.4 Morphing between the Source and the
Target Polygons

The morphing between the source and the target polygons
is consisted of two parts. The first part is the shape and size
interpolation, and the second part is the shape
reconstruction. The shape interpolation is carried out in the
parametric space, i.e. the individual Fourier parameters

(a,.,‘,bik,c,.k,d,.k), (a,’k, ,.'k,cfk,di'k), i=1..n, are used
for interpolation in this part. Suppose there are S

intermediate morphing steps, the s-th parameters (s=1..5)
can be calculated by

o S—=s+1 s ,
= g4 et g
S—s+1 S
() = -b, b 13
ik S+1 ik S+1 ik 1_1 . ( )
C(:)_S—s+1 R T
« - Tl "t
S+1 S+1
di(k,)=S—s+l. s

S+l wT gy #

Let p, =(xo:3’o)v Q,,and p =(x,,y,), Q, be the
origins and the area of the source and the target polygons,
respectively. For the s-th intermediate morphing step, the
origins of the local coordinate system and the size-scaling
factor of the morphed object in the intermediate morphing
steps are also defined as the linear interpolation of the
source and target polygons as follows:

0 S—s+l - _s -
(J)___. . + . 14
s+1 P T g4 P (14
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T(:)zJ_g'_—_‘sll__‘__‘_g.__Q.L. (15)
S+1  S+1 Q,

The origins record the trajectory of the morphing process.
Because the shape size is proportional to the square of its
length, we take the square root in (15). For a specific s step,
we can reconstruct the coordinate system of the
intermediate polygon by applying the revision of (5), (13),
(14), and (15):

©  pe

P = +rm'2i ay’ by | |cosk
P c(-') d(:)
: ik ik

Ry sinkt,
x® ) p | | coskt,
) [f(S)] +T(:) .Zi[azt) ’::)].[ i ’]
y Tk i sinkt,
Equation (16) preserves the polygon size and satisfies the

natural constraints of morphing. The interpolated origin

¥ =[5c-(’) ;(’)]T locates the translation between the
source and the target polygons. The size-scaling factor

(16)

) makes the size of the intermediate object varied
smoothly.

4. EXPERIMENTAL RESULTS

It is difficult to evaluate the performance of the morphing
algorithms quantitatively. The most popular criterion
adopted in recent reports is visual inspection by human
eyes. The experiments were made to testify the correctness
and performance of our algorithm. We have made some
comparison with other researcher's results. As Fig. 5 shows,.
our method is apparently superior to the algorithms
proposed by Sederberg et. al and Goldstein et. al; and have
the similar appearance compared with the algorithm of
Shapera et. al. The morphing on the comer in the
intermediate polygons is reasonable and smooth. But the
shape size of our method seems varied more smoothly than
Shapera's method. Fig. 6 shows the intermediate polygons
by our method.The x and y profiles of Fig. 3 are shown in
Fig. 7. To reconstruct the morphed coordinate system, the
interpolated parameters used for Fourier descriptor are
employed with the sampled scale and are shown in Fig. 8.
Fig. 9 demonstrates another comparative result for another

polygon.

ALY

(a) Sederberg's method
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(b) Shapira's method

LA

(c) Goldstein's method

(d) Our method

Fig. 5 Comparative results of morphing algorithms. The
assignment of the matching vertices is the same
with other researchers. Our method transitionally
morphs the source polygon from the top left to the
bottom right target polygon.
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Fig. 6 The intermediate morphing polygdns by our

method.
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Fig.7 Curvature and x, y profiles for Fig. 3 with
parametric curve representation. The circles
indicate the matching vertices; dash line: source
polygon, solid line: target polygon. (a) The global x
profile without local coordinate ransform; (b) The
global y profile.

(®)

Fig. 8 Parameter interpolation. The bold line indicates the
estimated Fourier descriptor representation with the
sampled scale for source and target polygons, the
in-between solid lines indicate the interpolated
objects. (a) x profile; (b) y profile.

(a) Sederberg's method
(b) Shapira's method
(c) Goldstein's method
%&lﬁ LD

(d) Our method

Fig. 9 Comparative studies for another polygon.
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