
An Approach to Incremental Maintenance of

Object-Oriented Views
Ching-Ming Chao

Department of Computer and Information Science
Soochow University, Taipei, Taiwan

chao@cis.scu.edu.tw

ABSTRACT

 The problem of incremental maintenance of
materialized views has regained much attention due
to the advent of data warehousing technology. So far,
most of the work on this problem has been confined
to relational settings. In this paper, we propose an
approach to incremental maintenance of materialized
views in object-oriented databases. In particular, we
focus on two primary issues. The first issue is to de-
termine the potential updates to a view. We distin-
guish six categories of potential updates and propose
an algorithm to find the potential updates of a view
from the definition of the view. The second issue is to
maintain a view in response to the potential updates
to the view. We propose incremental maintenance
algorithms to compute and apply the change to a
view in response to the potential updates to the view.
We have implemented a prototype system for incre-
mental maintenance of object-oriented views and
have conducted a preliminary performance evalua-
tion. The result shows that our approach is correct
and efficient.

Keywords: data warehousing, materialized views,
incremental maintenance, object-oriented databases.

1. Introduction

The concept of materialized views has regained
much attention in the past few years due to the ad-
vent of data warehousing technology. A data ware-
house is a global repository of integrated information
primarily used for decision-making by means of on-
line analytical processing (OLAP). A data warehouse
typically extracts and integrates data from multiple
heterogeneous, autonomous, and distributed data
sources, and stores the integrated information as ma-
terialized views in order to provide fast access. As
the source data is updated, materialized views may
need to be maintained in order to keep the contents of
materialized views consistent with the contents of the

source data. To maintain a materialized view, there is
a choice between recomputing the view from scratch
and maintaining the view incrementally. To maintain
a view incrementally, one computes the change to the
view on the basis of the update to the source data,
and applies the computed change to the view. Incre-
mental maintenance is generally considered to be less
expensive when the size of the update to the source
data is small compared to the size of the source data.

In this paper, we study the problem of incre-
mental maintenance of materialized views in ob-
ject-oriented databases. We study the problem in a
centralized database environment. That is, we assume
that materialized views and source data are stored at
the same site, which implies that all data required for
incrementally maintaining materialized views are
available without having to request any data from
other sites. We consider a large class of ob-
ject-oriented views and three types of updates to the
source data: insertion, deletion, and modification.

Object-oriented databases have many unique
features that are absent from relational databases,
such as object identity, complex attributes, in-
ter-object reference, class inheritance, etc. These
unique features make the incremental maintenance of
materialized views in object-oriented databases dif-
ferent from the incremental maintenance of material-
ized views in relational databases. We highlight some
of the differences here. First, updates to certain
classes not explicitly appearing in the definition of an
object-oriented view may cause changes to the view.
In contrast, only updates to tables explicitly appear-
ing in the definition of a relational view can possibly
affect the view. Second, computing and applying the
change for an object-oriented view is generally more
complicated than that for a relational view.

In this paper, we propose an approach to in-
cremental maintenance of object-oriented views. In
particular, we focus on two primary issues. The first
issue is to determine during view compilation time
which kinds of updates to which classes may cause
changes to a view given the definition of the view.

 1

Such updates are called the potential updates to the
view. We distinguish six categories of potential up-
dates and propose an algorithm to find the potential
updates to a view from the definition of the view. The
second issue is to maintain a view in response to the
potential updates to the view. We propose incre-
mental maintenance algorithms to compute and apply
the change to a view in response to the potential up-
dates to the view. We have implemented a prototype
system for incremental maintenance of ob-
ject-oriented views and have conducted a preliminary
performance evaluation. The result shows that our
approach to incremental maintenance of ob-
ject-oriented views is correct and efficient.

The remainder of this paper is organized as
follows. In Section 2 we review previous work on
incremental maintenance of materialized views that
is closely related to our work. In Section 3 we de-
scribe the overall process of incremental view main-
tenance in our approach. In Section 4 we concentrate
on the issue of determining the potential updates to a
view. In Section 5 we present our algorithms for in-
cremental view maintenance. In Section 6 we show
the results of our performance evaluation. Section 7
concludes this paper and gives some directions for
future research.

2. Related Work

 The problem of incremental maintenance of
materialized views was first studied for relational
databases in a centralized environment. Blakeley et al.
[6] proposed a differential algorithm for maintaining
select-project-join (SPJ) views. A portion of our view
maintenance algorithms is based on this differential
algorithm. Blakeley et al. [5] proposed necessary and
sufficient conditions for determining at run time
whether an update of a base relation cannot affect a
view regardless of the database state (an irrelevant
update to the view). The class of views considered
was restricted to SPJ views. In contrast, our approach
determines potential updates during view compila-
tion time. Only potential updates are propagated and
the maintenance process is terminated as soon as it is
discovered that the potential update cannot affect the
view. Gupta et al. [7] presented incremental algo-
rithms to compute changes to SQL and Datalog
views in response to updates to source relations.
Their algorithms require access to source data for all
updates, while our algorithms avoid access to source
data for some updates to improve efficiency. Gupta
and Mumick [8] gave a survey on the problems,
techniques, and applications of view maintenance.
 Later on, research on incremental view main-
tenance for relational databases was extended to a

warehousing environment, where the data warehouse
and data sources are decoupled. Zhuge et al. [14]
showed that anomalies could occur if conventional
view maintenance algorithms are used in a ware-
housing environment and proposed an incremental
view maintenance algorithm, called Eager Compen-
sating Algorithm (ECA), which is suitable in a
warehousing environment. The ECA algorithm as-
sumes that a data warehouse derives data from a sin-
gle source. Zhuge et al. [15] later presented a family
of incremental view maintenance algorithms, called
Strobe algorithms, for a data warehouse derived from
multiple data sources. Agrawal et al. [2] also pro-
posed two incremental view maintenance algorithms,
called SWEEP and Nested SWEEP, for a data ware-
house derived from multiple distributed autonomous
data sources. These two algorithms are more efficient
than Strobe algorithms.
 The problem of self-maintenance of material-
ized views is important, especially in data warehous-
ing environments, and has attracted a lot of attention.
A materialized view is self-maintainable if it can be
maintained without accessing the source data [9].
Gupta et al. [9] derived conditions under which sev-
eral types of SPJ views are self-maintainable upon
insertions, deletions, and updates. Quass et al. [12]
proposed an algorithm to derive a minimal set of
auxiliary views for a single view such that the view
and its auxiliary views together are self-maintainable.
Huyn [10] proposed algorithms that test whether a
view is self-maintainable with access to all views in a
data warehouse. Samtani et al. [13] proposed a set of
auxiliary views for a set of materialized views such
that a view is self-maintainable with access to the set
of materialized views and the set of auxiliary views.
While [12,13] makes a view self-maintainable by
additionally materializing auxiliary views that con-
tain a subset of the source data, we only store the
OIDs of objects that derive objects in the material-
ized views. Although currently not all views are
self-maintainable, our approach avoids access to
source data as much as possible.
 Recently, techniques for incrementally main-
taining materialized views in data models other than
the relational model have been investigated. Zhuge
and Garcia-Monila [16] investigated the problem of
incrementally maintaining graph-structured views.
Abiteboul et al. [1] studied the problem of incre-
mental maintenance of materialized views over
semistructured data. Alhajj and Polat [3] investigated
the problem of incremental view maintenance in ob-
ject-oriented databases. They proposed a model that
facilitates incremental maintenance of single class
based views by employing the deferred update mode.
Although they proposed that updates to classes not

 2

explicitly appearing in the definition of a view might
affect the view, they did not provide an algorithm to
determine the potential updates to a view. They also
did not give a complete algorithm to compute and
apply the change to a view. Liu et al. [11] investi-
gated the problem of incrementally maintaining ma-
terialized views in object-relational databases. Ali et
al. [4] proposed a solution to the problem of incre-
mental maintenance of OQL views. They gave an
algorithm to determine potential updates from a view
definition but their algorithm did not consider up-
dates to classes not explicitly appearing in the view
definition. They described two types of incremental
maintenance plans and how to choose a maintenance
plan on the basis of the update type and the view type.
However, they did not provide detailed algorithms to
compute and apply the change to a view in response
to the potential updates to the view.

3. Overall View Maintenance Process

 In this section, we describe the overall process
of incremental maintenance of object-oriented views
in our approach. Our approach to incremental main-
tenance of object-oriented views is general and is not
restricted to any specific object data model. There-
fore, we adopt a generic object data model and lan-
guage to describe the ideas and examples. We will
use a simplified university database as the running
example for the rest of this paper. The university da-
tabase contains six base classes whose definition is
shown in Figure 1.

class Person
{Name: string, Age: integer, Sex: char,
Children: set (Person)};
class Student inherits Person
{Major: Department, Year: integer,
Courses: set (Course)};
class Staff inherits Person
{Dept: Department, Salary: integer};
class Graduate inherits Student
{Advisor: Staff, Thesis: string};
class Course
{Name: string, Code: string, Credit: integer,
Prerequisite: set (Course)};
class Department
{Name: string, Head: Staff};

Figure 1. Class Definition

 The general form of a view definition in this
paper is as follows.

view V (A1: T1, …, Ar: Tr)
select AS1, …, ASm, PS1, …, PSr-m
from C1, …, Cn
where pred (AW1, …, AWy, PW1, …, PWz);

where
z V is the name of the view.
z A1, …, Ar are the attribute names of the view

and T1, …, Tr are their corresponding types.
z C1, …, Cn are the names of the defining classes

of the view.
z AS1, …, ASm, AW1, …, AWy are qualified attrib-

ute names and have the form C.A where C is
the name of a defining class and A is an attrib-
ute name of C.

z PS1, …, PSr-m, PW1, …, PWz are path expressions
and have the form C.A1.....Ax where C is the
name of a defining class and A1.....Ax (x ≥ 2)
are attribute names such that A1 is an attribute
of C and Ai (i = 2, …, x) is an attribute of the
class Ci-1 that is the type of the attribute Ai-1.

z pred (AW1, …, AWy, PW1, …, PWz) is a condition
defined over AW1, …, AWy, PW1, …, PWz.

The university database contains two material-

ized views whose definition is shown in Figure 2.

view V1 (SN: string, CN: set (string), HN: string,

HA: integer)
select Student.Name, Student.Courses.Name,

Student.Major.Head.Name,
Student.Major.Head.Age

from Student
where Student.Year = 4
and “BCC” in Student.Courses.Name ;

view V2 (SN: string, CN: string, CC: integer)
select Student.Name, Course.Name, Course.Credit
from Student, Course
where Student.Major = “CS”
and Course in Student.Courses
and Course.Credit > 1 ;

Figure 2. View Definition

 The overall process of view maintenance in our
approach is shown in Figure 3 in which boxes indi-
cate the actions taken in the maintenance process.
The figure is functionally divided into two parts by a
dotted line, the top part and the bottom part. Boxes in
the top part constitute the preparation process for
maintaining a view and are executed only once for
each view. Given the definition of a view, the box
labeled “Determine potential updates” finds the po-

 3

tential updates to the view. Note that this box does
not produce any update that can be determined not to
affect a view according to the definition of the view.
We will discuss the details of this box in Section 4.
For each kind of potential update to a view, the box
labeled “Create triggers” creates a trigger to detect
occurrences of that kind of potential update.

the definition of a view

Determine Derive
potential updates auxiliary views

 potential updates the definition of
 two auxiliary views

 Create triggers Generate
 maintenance procedures

 triggers maintenance procedures

 Detect Execute
 update events maintenance procedures

 update events

 OODB

Figure 3. View Maintenance Process

 For each materialized view V, the box labeled
“Derive auxiliary views” derives two auxiliary views,
AV1_for_V and AV2_for_V, which are used to assist
in the maintenance of V. The view AV1_for_V is
materialized but the view AV2_for_V is not materi-
alized. For example, the definitions of the auxiliary
views derived from the views V1 and V2 are shown
in Figure 4 and Figure 5, respectively. AV1_for_V
stores the OIDs of objects that derive objects of V.
More specifically, the OIDs of objects in the defining
classes of V that derive an object of V are associated
with the OID of that object in AV1_for_V. Since
AV1_for_V is materialized, there will be additional
space overhead to store it and time overhead to
maintain it. However, these additional overheads can
be compensated by significant time saving in main-
taining V. AV2_for_V is almost identical to V except
that it includes additional attributes for the OIDs of

objects that derive objects of V, if V does not include
those attributes already. The precise usage and ad-
vantages for introducing these two auxiliary views
will be seen in Section 5. The derivation of the defi-
nition of auxiliary views from the definition of a
given view is a simple syntactic mapping. For exam-
ple, the generated strings in the definition of auxil-
iary views are shown in italics in Figure 4. Note that
the idea of using these two auxiliary views for main-
taining views is not new and was also adopted in [4].

view AV1_for_V1 (SO: Student, VO: V1)
select Student, V1
from Student, V1
where Student.Year = 4
and “BCC” in Student.Courses.Name
and V1.SN = Student.Name
and V1.CN = Student.Courses.Name
and V1.HN = Student.Major.Head.Name
and V1.HA = Student.Major.Head.Age ;

view AV2_for_V1 (SO: Student, SN: string,
 CN: set (string), HN: string, HA: integer)
select Student, Student.Name,

Student.Courses.Name,
Student.Major.Head.Name,
Student.Major.Head.Age

from Student
where Student.Year = 4
and “BCC” in Student.Courses.Name ;

Figure 4. Auxiliary Views for View V1

view AV1_for_V2 (SO: Student, CO: Course,

VO: V2)
select Student, Course,V2
from Student, Course, V2
where Student.Major = “CS”
and Course in Student.Courses
and Course.Credit > 1
and V2.SN = Student.Name
and V2.CN = Course.Name
and V2.CC = Course.Credit ;

view AV2_for_V2 (SO: Student, CO: Course,
 SN: string, CN: string, CC: integer)
select Student, Course, Student.Name,
 Course.Name, Course.Credit
from Student, Course
where Student.Major = “CS”
and Course in Student.Courses
and Course.Credit > 1 ;

Figure 5. Auxiliary Views for View V2

 4

 The box labeled “Generate maintenance pro-
cedures” generates maintenance procedures for the
potential update of a view. The generation of main-
tenance procedures for a view needs to refer to the
definition of its auxiliary views. We will discuss the
details of this box in Section 5.
 Boxes in the bottom part of Figure 3 constitute
the actual maintenance process for maintaining a
view. When potential updates to a view occur, the
corresponding maintenance procedures are triggered
and executed to maintain the view and the auxiliary
view AV1_for_V.

4. Determination of Potential Updates

 In this section, we address the issue of deter-
mining the potential updates to a view. In our ap-
proach to view maintenance, it has to be determined
during view compilation time which kinds of updates
to which classes may cause changes to a view. Such
updates are called the potential updates to the view.
The box labeled “Determine potential updates” in
Figure 3 finds the potential updates to a view from
the definition of the view. Note that it only produces
the potential updates to a view; i.e., it does not pro-
duce any update that can be determined not to affect
a view according to the definition of the view. This is
a significant improvement on the efficiency of view
maintenance because detecting and propagating up-
dates that cannot possibly affect a view is meaning-
less and a waste of time.
 The issue of determining the potential updates
to a view was almost not discussed in the literature
on incremental maintenance of relational views mo-
stly because it is very simple. The only tables whose
updates may cause changes to a relational view are
tables that appear in the FROM clause of the view
definition. Because of several unique features of
object-oriented databases such as class inheritance,
inter-object reference, and path expressions, the issue
of determining the potential updates to an
object-oriented view is more complicated. This issue
has been addressed in the literature on incremental
maintenance of object-oriented views and ob-
ject-relational views; e.g., [3,4,11]. However, to the
best our knowledge, no comprehensive and satis-
factory solution has been provided to determine the
potential updates to an object-oriented view.

In the rest of this section, we will first give a
comprehensive discussion about whether or not a
particular kind of update to a particular kind of class
is a potential update to an object-oriented view. Then
we conclude the discussion by identifying six cate-
gories of potential updates to a view. Finally, we
propose an algorithm to find the potential updates of

a view from the definition of the view.
 For the purpose of determining potential up-
dates, we distinguish four different roles that a class
can play for a view: a defining class, a referenced
class, an inheriting class, and an irrelevant class. A
class is a defining class of a view if the class appears
in the FROM clause of the view. For example, the
class Student is the only defining class of the view
V1 and the classes Student and Course are the defin-
ing classes of the view V2. A class is a referenced
class of a view if the class is referenced from a de-
fining class within some path expression of the view.
For example, Course, Department, and Staff are the
referenced classes of V1. Note that the class Person,
although is referenced by the class Student in the
class composition hierarchy, is not a referenced class
of V1 because it is not referenced from Student
within any path expression of V1. A class is an inher-
iting class of a view if the class directly or indirectly
inherits a defining class or a referenced class of the
view. For example, the class Graduate is an inheriting
class of V1. Note that a class may play more than one
of the three roles mentioned above for a view. A class
is an irrelevant class of a view if it does not play any
of the three roles mentioned above for the view. For
example, Person is an irrelevant class of V1.
 Updates to an irrelevant class of a view cannot
cause any change to the view. To illustrate this argu-
ment, we enumerate various situations in which a
class is regarded as an irrelevant class of a view. First,
a class that is inherited by a defining class or a refer-
enced class of a view is an irrelevant class of the
view. For example, Person is inherited by Student (a
defining class) and Staff (a referenced class) and is
therefore an irrelevant class of V1. Updates to objects
of Person that are not objects of any of its subclasses
cannot cause any change to V1. Second, a class that
is referenced by a defining class only in the class
composition hierarchy but not within any path ex-
pression of a view is also an irrelevant class of the
view. For example, Person is referenced by Student
in the class composition hierarchy but not within any
path expression of V1 and is therefore an irrelevant
class of V1. Finally, a class that is not related in any
way to a view is an irrelevant class of the view. Up-
dates to such kind of class obviously cannot cause
any change to the view.
 Updates to a defining class, a referenced class,
or an inheriting class of a view may cause changes to
the view, but only for certain kinds of updates. Again
for the purpose of determining potential updates, we
distinguish five kinds of updates to a class as follows.
1. Insertion
2. Deletion
3. Modification of SELECT attributes (i.e., attrib-

 5

utes that appear only in the SELECT clause of
the view)

4. Modification of WHERE attributes (i.e., attrib-
utes that appear in the WHERE clause of the
view)

5. Modification of other attributes (i.e., attributes
that do not appear in the definition of the view)

We will discuss the effects of these five kinds of up-
dates to those three kinds of classes on a view in turn.
 First, we discuss the effects of updates to a
defining class on a view. Inserting an object to a de-
fining class will cause insertion of one or more ob-
jects to a view if the WHERE condition evaluates to
true on the inserted object. For example, inserting an
object to Student will cause insertion of an object to
V1 if the inserted Student object makes the WHERE
condition of V1 evaluate to true. Deleting an object
from a defining class will cause all objects derived
from the deleted object, if any, to be deleted from a
view. For example, deleting a Course object will
cause all objects derived from the deleted Course
object, if any, to be deleted from V2. Modifying a
SELECT attribute of an object of a defining class
will cause one or more attributes of all objects of a
view that are derived from the modified object to be
modified. For example, modifying the attribute Ma-
jor of a Student object will cause the attributes HN
and HA of the V1 object derived from the modified
Student object to be modified. Modifying a WHERE
attribute of an object of a defining class may cause
insertion, deletion, or modification to a view. For
example, changing the attribute Year of a Student
object from 3 to 4 may cause an object to be inserted
to V1. Modifying other attributes of a defining class
cannot cause any change to a view.
 Then we discuss the effects of updates to a
referenced class on a view. Inserting an object to a
referenced class does not by itself cause any change
to a view. However, it may cause updates to the de-
fining class of the referenced class, which may in
turn cause changes to a view. The same applies to
deleting an object from a referenced class. Therefore,
we do not consider the insertion and deletion of a
referenced class as the potential updates to a view.
Modifying a SELECT attribute of an object of a ref-
erenced class will cause one or more attributes of all
objects of a view that are derived from the objects of
the defining class that reference the modified object
to be modified. For example, modifying the attribute
Head of a Department object will cause the attributes
HN and HA of V1 objects derived from Student ob-
jects that reference the modified Department object
to be modified. Modifying a WHERE attribute of an
object of a referenced class may cause insertion, de-
letion, or modification to a view. For example,

changing the attribute Name of a Course object from
“BCC” to “IIT” may cause objects to be deleted from
V1. Modifying other attributes of a referenced class
cannot cause any change to a view.
 Finally, we discuss the effects of updates to an
inheriting class on a view. The effect of updating an
inheriting class on a view is the same as that of up-
dating the defining class or referenced class that is
inherited by the inheriting class, because an object of
an inheriting class is also an object of the inherited
class. For example, inserting an object to the class
Graduate produces the same result to V1 as inserting
an object to the class Student.
 Based on the discussion above, we conclude
that the following are the potential updates to a view,
which are classified into six categories.
1. Ins: Insertion to a defining class or an inheriting

class that inherits a defining class
2. Del: Deletion from a defining class or an inher-

iting class that inherits a defining class
3. MDS: Modification of SELECT attributes of a

defining class or an inheriting class that inherits
a defining class

4. MDW: Modification of WHERE attributes of a
defining class or an inheriting class that inherits
a defining class

5. MRS: Modification of SELECT attributes of a
referenced class or an inheriting class that inher-
its a referenced class

6. MRW: Modification of WHERE attributes of a
reference class or an inheriting class that inherits
a referenced class
For example, the six categories of potential up-

dates to the view V1 are listed below.
1. Ins Student Ins Graduate
2. Del Student Del Graduate
3. MDS Student.Name MDS Student.Major

MDS Graduate.Name MDS Graduate.Major
4. MDW Student.Year MDW Student.Courses

MDW Graduate.Year
MDW Gradate.Courses

5. MRS Department.Head
MRS Staff.Name MRS Staff.Age

6. MRW Course.Name
Our algorithm to find the potential updates to a

view is shown in Figure 6. Given the definition of a
view, this algorithm produces the six categories of
potential updates to the view.

5. View Maintenance Algorithms

 In this section, we address the issue of main-
taining a view in response to the potential updates to
the view. In particular, we propose incremental algo-
rithms for maintaining a view. In our approach to

 6

view maintenance, only the potential updates to a
view will be propagated to maintain the view. In Sec-
tion 4 we have classified the potential updates to a
view into six categories and have described the effect
of each of these six categories of potential updates on
the view. Therefore, we will give one incremental
maintenance algorithm for each of the six categories
of potential updates of a view.

Algorithm FindPotentialUpdates
/* This algorithm finds the potential updates to a
view from the definition of the view. */
Input: the definition of a view V
Output: a set PU of the potential updates to V
Steps:
 {PU := ∅;
 Find the set DC of defining classes of V;
 foreach defining class dc in DC do
 {PU := PU ∪ {Inc dc, Del dc};
 Find the set DCSA of attributes of dc that

appear only in the SELECT clause of V;
 foreach attribute a in DCSA do
 {PU := PU ∪ {MDS dc.a}};
 Find the set DCWA of attributes of dc that

appear in the WHERE clause of V;
 foreach attribute a in DCWA do
 {PU := PU ∪ {MDW dc.a}};
 Find the set DCIC of inheriting classes of dc;
 foreach inheriting class ic in DCIC do
 {PU := PU ∪ {Ins ic, Del ic};
 foreach attribute a in DCSA do

{PU := PU ∪ {MDS ic.a}};
 foreach attribute a in DCWA do

{PU := PU ∪ {MDW ic.a}}};
 Find the set RC of referenced classes of dc;
 foreach referenced class rc in RC do
 {Find the set RCSA of attributes of rc that

appear only in the SELECT clause of V;
 foreach attribute a in RCSA do
 {PU := PU ∪ {MRS rc.a}};
 Find the set RCWA of attributes of rc that
 appear in the WHERE clause of V;
 foreach attribute a in RCWA do
 {PU := PU ∪ {MRW rc.a}};
 Find the set RCIC of inheriting classes of rc;
 foreach inheriting class ic in RCIC do
 {foreach attribute a in RCSA do
 {PU := PU ∪ {MRS ic.a}};
 foreach attribute a in RCWA do
 {PU := PU ∪ {MRW ic.a}}}}}
End Algorithm.

Figure 6. Algorithm to Find Potential Updates

 Our view maintenance algorithms have several

salient features that can improve maintenance effi-
ciency significantly. First, whenever a source modi-
fication will not cause insertion to or deletion from a
view, we do not treat such modification as a deletion
followed by an insertion as most of the view mainte-
nance algorithms do. Second, as described in Section
3, we use two auxiliary views AV1_for_V and
AV2_for_V to assist in the maintenance of a view V.
AV1_for_V is used to find the objects of V and
AV1_for_V that are to be deleted or the objects of V
that are to be modified without access to source data.
AV2_for_V is used to compute the objects to be in-
serted to V and AV1_for_V. Finally, note that a po-
tential update of a view does not necessarily cause
any change to the view. For a particular occurrence
of a potential update to a view, therefore, our main-
tenance procedures will terminate whenever it is
discovered that the view cannot be affected by this
update occurrence. In the following, we present six
incremental maintenance algorithms that compute
and apply the changes to the views V and AV1_for_V
for the six categories of the potential updates to V.

Algorithm 5.1
/* This algorithm is triggered by insertion to a defin-
ing class (or an inheriting class that inherits a defin-
ing class) to maintain V and AV1_for_V. */
Input: The name of the defining class dc and the
inserted objects ∆dc.
Steps:
1. Compute the objects to be inserted to V, ∆V, and

the objects to be inserted to AV1_for_V,
∆AV1_for_V, by substituting ∆dc for dc in
AV2_for_V. Stop the algorithm if ∆V is empty.

2. Insert ∆V to V.
3. Insert ∆AV1_for_V to AV1_for_V.

For example, let us see how the view V1 is
maintained according to Algorithm 5.1 if a collection
of objects of type Student, ∆Student, is inserted to the
class Student. Step 1 computes the objects to be in-
serted to V1, ∆V1, and the objects to be inserted to
AV1_for_V1, ∆AV1_for_V1, by evaluating the fol-
lowing expression.

select ∆Student, ∆Student.Name,

∆Student.Courses.Name,
∆Student.Major.Head.Name,
∆Student.Major.Head.Age

from ∆Student
where ∆Student.Year = 4
and “BCC” in ∆Student.Courses.Name

If ∆V1 is empty, the algorithm is terminated; other-
wise, steps 2 and 3 insert ∆V1 and ∆AV1_for_V1 to

 7

V1 and AV1_for_V1, respectively.

Algorithm 5.2
/* This algorithm is triggered by deletion from a de-
fining class (or an inheriting class that inherits a
defining class) to maintain V and AV1_for_V. */
Input: The name of the defining class dc and the
deleted objects ∇dc.
Steps:
1. Find the objects to be deleted from V, ∇V, and

the objects to be deleted from AV1_for_V,
∇AV1_for_V, by joining ∇dc with AV1_for_V.
Stop the algorithm if ∇V is empty.

2. Delete ∇V from V.
3. Delete ∇AV1_for_V from AV1_for_V.

For example, let us see how the view V2 is
maintained according to Algorithm 5.2 if a collection
of objects of type Student, ∇Student, is deleted from
the class Student. In step 1, the OIDs of objects of
∇Student are searched in AV1_for_V2 to find the
OIDs of objects to be deleted from V2, ∇V2, and the
objects to be deleted from AV1_for_V2,
∇AV1_for_V2. If ∇V2 is empty, the algorithm is
terminated; otherwise, steps 2 and 3 delete ∇V2 and
∇AV1_for_V2 from V2 and AV1_for_V2, respec-
tively.

Algorithm 5.3
/* This algorithm is triggered by modification of
SELECT attributes of a defining class (or an inherit-
ing class that inherits a defining class) to maintain V.
AV1_for_V needs not be maintained. */
Input: The name of the defining class dc, the names
and new values of the modified attributes, and the
modified object ◊dc.
Steps:
1. Find the objects of V to be modified, ◊V, by

joining ◊dc with AV1_for_V. Stop the algorithm
if ◊V is empty.

2. Determine the affected attributes in V and com-
pute new values for those attributes.

3. Modify the affected attributes of ◊V with new
values computed in step 2.

For example, let us see how the view V1 is

maintained according to Algorithm 5.3 if the attribute
Major of a Student object is modified. Step 1 finds
those objects of V1, ◊V1, that are derived from the
modified Student object and are to be modified. If
◊V1 is empty, then V1 needs not to be maintained
and the algorithm is terminated. Step 2 determines
that the attributes HN and HA in V1 are affected and
computes new values for those attributes. Step 3
modifies the attributes HN and HA of objects ◊V1

with new values computed in step 2.

Algorithm 5.4
/* This algorithm is triggered by modification of
WHERE attributes on a defining class (or an inherit-
ing class that inherits a defining class) to maintain V
and AV1_for_V. */
Input: The name of the defining class dc, the names
and new values of the modified attributes, and the
modified object ◊dc.
Steps:
1. Find the objects to be deleted from V, ∇V, and

the objects to be deleted from AV1_for_V,
∇AV1_for_V, by joining ◊dc with AV1_for_V.
Jump to step 4 if ∇V is empty.

2. Delete ∇V from V.
3. Delete ∇AV1_for_V from AV1_for_V.
4. Compute the objects to be inserted to V, ∆V, and

the objects to be inserted to AV1_for_V,
∆AV1_for_V, by substituting ◊dc (with modified
attribute values) for dc in AV2_for_V.
Stop the algorithm if ∆V is empty.

5. Insert ∆V to V.
6. Insert ∆AV1_for_V to AV1_for_V.

The rationale for Algorithm 5.4 is as follows.
Modification of WHERE attributes results in one of
three cases. In the first case, where the modified ob-
ject does not derive data to the view both before and
after the modification, the view is not affected by this
modification. In the second case, this modification
will cause objects to be inserted to and/or deleted
from the view. In the third case, this modification
will not cause any objects to be inserted or deleted
from the view but may cause some of the attributes
of the view to be modified. Modification can be han-
dled by a deletion followed by an insertion. There-
fore, to handle these three possible cases efficiently,
Algorithm 5.4 first finds and deletes objects from V
and AV1_for_V and then computes and inserts ob-
jects into V and AV1_for_V.

Algorithm 5.5
/* This algorithm is triggered by modification of
SELECT attributes of a referenced class (or an inher-
iting class that inherits a referenced class) to maintain
V. AV1_for_V needs not be maintained. */
Input: The name of the referenced class rc, the
names and new values of the modified attributes, and
the modified object ◊rc.
Steps:
1. Let dc be the defining class of rc. Find the ob-

jects of dc that reference the modified object,
◊dc. Stop the algorithm if ◊dc is empty.

2. Find the objects to be modified in V, ◊V, by

 8

joining ◊dc with AV1_for_V. Stop the algorithm
if ◊V is empty.

3. Determine the affected attributes in V and com-
pute new values for those attributes.

4. Modify the affected attributes of ◊V with new
values computed in step 3.

For example, let us see how the view V1 is

maintained according to Algorithm 5.5 if the attribute
Head of a Department object is modified. The class
Student is the defining class of the class Department.
Step 1 finds those Student objects that reference the
modified Department object, ◊Student. If ◊Student is
empty, then V1 is not affected and the algorithm is
terminated. Step 2 finds those objects of V1, ◊V1,
that are derived from ◊Student and are to be modified.
If ◊V1 is empty, then again V1 is not affected and the
algorithm is terminated. Step 3 determines that the
attributes HN and HA in V1 are affected and com-
putes new values for those attributes. Step 4 modifies
the attributes HN and HA of objects ◊V1 with new
values computed in step 3.

Algorithm 5.6
/* This algorithm is triggered by modification of
WHERE attributes of a referenced class (or an inher-
iting class that inherits a referenced class) to maintain
V and AV1_for_V. */
Input: The name of the referenced class rc, the
names and new values of the modified attributes, and
the modified object ◊rc.
Steps:
1. Let dc be the defining class of rc. Find the ob-

jects of dc that reference the modified object,
◊dc. Stop the algorithm if ◊dc is empty.

2. Find the objects to be deleted from V, ∇V, and
the objects to be deleted from AV1_for_V,
∇AV1_for_V, by joining ◊dc with AV1_for_V.
Jump to step 5 if ∇V is empty.

3. Delete ∇V from V.
4. Delete ∇AV1_for_V from AV1_for_V.
5. Compute the objects to be inserted to V, ∆V, and

the objects to be inserted to AV1_for_V,
∆AV1_for_V, by substituting ◊dc for dc in
AV2_for_V.
Stop the algorithm if ∆V is empty.

6. Insert ∆V into V.
7. Insert ∆AV1_for_V into AV1_for_V.

The rationale for Algorithm 5.6 is a combination
of those of Algorithm 5.4 and Algorithm 5.5. First,
one has to find objects of the defining class that ref-
erence the modified object of the referenced class.
Then, objects to be deleted from and/or inserted into
the view are computed and applied to the view.

6. Performance Evaluation

 We have implemented a prototype system for
incremental maintenance of object-oriented views in
a centralized environment. In the prototype system,
databases are built on the ObjectStore object-oriented
database management system and programs are writ-
ten in the C++ object-oriented programming lan-
guage. A preliminary performance evaluation has
been carried out on a PC with the following hardware
components: Intel Pentium II processor (400 MHz),
256KB cache, 128MB RAM, and 6.4GB SCSI hard
disk. The database used in the performance evalua-
tion is the university database shown in Figures 1 and
2. The numbers of objects in the classes Person, Stu-
dent, Staff, Graduate, Course, and Department are
approximately 100, 1000, 100, 20, 50, and 20, re-
spectively. The numbers of objects in the views V1
and V2 are approximately 200 and 1000, respectively.
We compare the execution time between incremental
maintenance (IM) and recomputation (RC) of a ma-
terialized view in response to various potential up-
dates to the view.
 Figure 7 compares the execution time between
IM and RC of V1 in response to inserting objects into
Student. Figure 8 compares the execution time be-
tween IM and RC of V2 in response to deleting ob-
jects from Student. Figure 9 compares the execution
time between IM and RC of V1 in response to modi-
fying the attribute Major of Student objects. Figure
10 compares the execution time between IM and RC
of V1 in response to modifying the attribute Year of
Student objects. Figure 11 compares the execution
time between IM and RC of V1 in response to modi-
fying the attribute Head of Department objects. Fig-
ure 12 compares the execution time between IM and
RC of V1 in response to modifying the attribute
Name of Course objects. The update size in Figures 7
to 10 means the number of updated Student objects.
The update size in Figures 11 and 12 means the
number of Student objects that reference the modi-
fied objects. Measuring the update size in terms of
the number of Student objects in the last two cases
can express the effect of the update to the view more
accurately.

Base on our empirical study, we come to the
following two conclusions. First, our algorithms for
determining potential updates and incrementally
maintaining materialized views are correct. Second,
our incremental maintenance algorithms are efficient
because they significantly outperform recomputation
in the majority of cases. It is until about 60% to 80%
of the update percentage that our incremental algo-
rithms are more expensive than recomputation.

 9

Figure 7. First Category of Potential Updates

Figure 8. Second Category of Potential Updates

Figure 9. Third Category of Potential Updates

Maintaining V1

for Ins Student

0

1000

2000

3000

4000

5000

1 2 3 4 5 6 78 9

update size (unit: 100 objects)

t
i
m
e

(
u
n
i
t
:

m
s
)

IM

RC
Maintaing V1

for MDW Student.Year

0

500

1000

1500

2000

2500

3000

1 2 3 4 56 7 8 910

update size(unit: 100 objects)

t
i
m
e

(
u
n
i
t
:

m
s

)

IM

RC

Figure 10. Fourth Category of Potential Updates

Maintaining V2

for Del Student

0

500

1000

1500

2000

2500

3000

3500

1 2 3 4 5 6 78 9

update size(unit: 100 objects)

t
i
m
e

(
u
n
i
t
:

m
s

)

IM

RC

Maintaining V1

for MRS Department.Head

0

200

400

600

800

1000

1200

1 23 4 56 7 89 10

update size(unit: 100 objects)

t
i
m
e

(
u
n
i
t
:

m
s
)

IM

RC

Figure 11. Fifth Category of Potential Updates

Maintaining V1

for MDS Student.Major

0

200

400

600

800

1000

1200

1 2 34 56 7 89 10

update size(unit: 100 objects)

t
i
m
e

(
u
n
i
t
:

m
s
)

IM

RC

Maintaining V1

for MRW Course.Name

0

2000

4000

6000

8000

10000

1 2 34 5 6 7 8

update size(unit: 100 objects)

t
i
m
e

(
u
n
i
t
:

m
s
)

IM

RC

Figure 12. Sixth Category of Potential Updates

 10

7. Conclusion and Future Work

 Data warehousing is an emerging and impor-
tant technology for information integration and deci-
sion support. Incremental maintenance of material-
ized views is a major issue in data warehousing.
Most of the previous work on this problem has been
confined to relational databases. This paper is one of
few that study the problem of incremental mainte-
nance of materialized views in object-oriented data-
bases. There are two major contributions in this paper.
First, we gave a comprehensive discussion of various
updates to a view and classified six categories of
potential updates to a view. Second, we proposed
detailed algorithms for incrementally maintaining a
view in response to potential updates to the view. Our
empirical study shows that our approach to view
maintenance is correct and efficient.
 We plan to study two important problems on
incremental maintenance of object-oriented views.
First, we will study how to incrementally maintain an
object-oriented view in a distributed environment
where the materialized views and the source data are
decoupled. Second, we will study the problem of
self-maintenance of object-oriented views.

Acknowledgements

The author would like to thank students in my
Senior Project course for implementing the prototype
system and conducting performance evaluation.

8. References

[1] S. Abiteboul, J. McHugh, M. Rys, V. Vassalos,

and J.L. Wiener, “Incremental Maintenance for
Materialized Views over Semistructured Data,”
in Proceedings of the 24th International Confer-
ence on Very Large Data Bases, New York City,
New York, USA, August 1998, pp. 38-49.

[2] D. Agrawal, A. El Abbadi, A. Singh, and T.
Yurek, “Efficient View Maintenance at Data
Warehouses,” in Proceedings of the 1997 ACM
SIGMOD International Conference on Man-
agement of Data, Tucson, Arizona, USA, May
1997, pp. 417-427

[3] R. Alhajj and F. Polat, “Incremental View Main-
tenance in Object-Oriented Databases,” ACM
Data Base for Advances in Information Systems,
Vol. 39, No. 3, 1998, pp. 52-64.

[4] M.A. Ali, A.A.A. Fernandes, and N.W. Paton,
“Incremental Maintenance of Materialized OQL
Views,” in Proceedings of 3rd ACM International
Workshop on Data Warehousing and OLAP
(DOLAP 2000), Washington D.C., USA, No-
vember 2000.

[5] J.A. Blakeley, N. Coburn, and P. Larson, “Up-
dating Derived Relations: Detecting Irrelevant
and Autonomously Computable Updates,” ACM
Transactions on Database Systems, Vol. 14, No.
3, September 1989, pp. 369-400.

[6] J.A. Blakeley, P.A. Larson, and F.W. Tompa,
“Efficiently Updating Materialized Views,” in
Proceedings of the 1986 ACM SIGMOD Inter-
national Conference on Management of Data,
Washington D.C., USA, June 1986, pp. 61-71.

[7] A. Gupta, I.S. Mumick, and V.S. Subrahmanian,
“Maintaining Views Incrementally,” in Proceed-
ings of the 1993 ACM SIGMOD International
Conference on Management of Data, Washing-
ton, D.C., USA, May 1993, pp. 157-166.

[8] A. Gupta and I.S. Mumick, “Maintenance of
Materialized Views: Problems, Techniques, and
Applications,” IEEE Data Engineering Bulletin,
Vol. 18, No. 2, June 1995, pp. 3-18.

[9] A. Gupta, H.V. Jagadish, and I.S. Mumick,
“Data Integration Using Self-Maintainable
Views,” in Proceedings of the 5th International
Conference on Extending Database Technology,
Avignon, France, March 1996, pp. 140-144.

[10] N. Huyn, “Multiple-View Self-Maintenance in
Data Warehousing Environments,” in Proceed-
ings of the 23rd International Conference on Very
Large Data Bases, Athens, Greece, August 1997,
pp. 26-35.

[11] J. Liu, M. Vincent, and M. Mohania, “ Main-
taining Views in Object-Relational Databases,”
in Proceedings of the 9th International Confer-
ence on Information and Knowledge Manage-
ment, McLean, VA, USA, November 2000, pp.
102-109.

[12] D. Quass, A. Gupta, I.S. Mumick, and J. Widom,
“Making Views Self-maintainable for Data
Warehousing,” in Proceedings of the 4th Interna-
tional Conference on Parallel and Distributed
Information Systems, Miami Beach, FL, De-
cember 1996, pp. 158-169.

[13] S. Samtani, V. Kumar, and M. Mohania, “Self
Maintenance of Multiple Views in Data Ware-
housing,” in Proceedings of the 8th International
Conference on Information and Knowledge
Management, Kansas City, MO, USA, Novem-
ber 2-6, 1999, pp. 292-299.

[14] Y. Zhuge, H. Garcia-Molina, J. Hammer, and J.
Widom, “View Maintenance in a Warehousing
Environment,” in Proceedings of the 1995 ACM
SIGMOD International Conference on Man-
agement of Data, San Jose, CA, USA, May 1995,
pp. 316-327.

[15] Y. Zhuge, H. Garcia-Molina, and J.L. Wiener,
“The Strobe Algorithms for Multi-Source Ware-

 11

house Consistency,” in Proceedings of the In-
ternational Conference on Parallel and Distrib-
uted Information Systems, Miami Beach, FL,
USA, December 1996, pp. 146-157.

[16] Y. Zhuge and H. Garcia-Molina, “Graph Struc-
tured Views and Their Incremental Mainte-
nance,” in Proceedings of the 14th International
Conference on Data Engineering, Orlando, FL,
USA, February 1998, pp. 116-125.

 12

	ABSTRACT
	Acknowledgements
	The author would like to thank students in my Senior Project course for implementing the prototype system and conducting performance evaluation.

	8. References

