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Abstract

Artificial neural networks (ANNs), due to their
inherent parallelism, offer an attractive paradigm
for efficient implementations of functional
modules for symbolic computations intensively
involving content-based pattern matching. This
paper explores how to exploit the inherent
parallelism and versatile representation in ANNs
to reduce the operation and implementation time
overhead of nondeterministic finite automata
(NFAs). NFAs are a basic model of symbolic
computing in computer science, and they thus
provide a typical model suitable for the explo-
ration of parallel symbolic computing via ANNs.
For every NFA, a recurrent neural network (RNN)
can be systematically synthesized to concurrently
track at each time step all the states reached
by the possible nondeterministic moves of the
NFA. Such a concurrent breadth-first tracking
is facilitated by two types of parallel symbolic
computations executed by the proposed RNN.
One is parallel content-based pattern matching,
and the other is parallel union operation of sets.

Keywords artificial neural network, non-
deterministic finite automata, parallel nondeter-
ministic computing

1 Introduction

Artificial neural networks offer an attractive
paradigm for a variety of applications in com-
puter science and engineering, artificial intelli-
gence, and cognitive modeling for various rea-
sons mainly including their learning as well as
generalization capabilities, potential for fault tol-
erance, and inherent parallelism. This paper
presents one of the efforts in integrating neu-
ral network and symbolic computing by taking
advantage of the inherent parallelism in ANNs.
Despite the success in the application of ANNs
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to a broad range of tasks in pattern classifica-
tion, control, function approximation, and sys-
tem identification, their use in symbolic comput-
ing tasks (e.g., storage and retrieval of records
in large databases and knowledge bases, language
processing, etc.) is only beginning to be explored
[3,4,7,8,9, 10, 11, 15, 17, 19, 20, 21, 22, 24].

This paper explores how to exploit the inherent
parallelism in ANNSs to reduce the operational and
implementational time overhead of NFAs. For ev-
ery given NFA, a recurrent neural network can
be synthesized to deterministically track in linear
time the nondeterministic computing of the NFA.
Although the concept of nondeterministicism em-
bedded in NFAs provides an elegantly simple and
intuitive description for sequence processing, it re-
sults in much computation and implementation
overhead in current computer systems. Thus the
concept of nondeterministicism in NFAs, which
plays a central role in both the theory of languages
and the theory of computation [12], provides a
typical model suitable for the exploration of paral-
lel symbolic computing via neural networks. The
reduced operation time of NFAs realized by the
proposed RNN is due to the parallel operations
of the neural assemblies in the RNN. The pro-
posed RNN is assembled from two kinds of neu-
ral assemblies. One computes a logic AND, and
the other computes a logic OR. The RNN acts
like a cost-effective SIMD computer system dedi-
cated to two types of relaid parallel symbolic com-
putations. One is parallel content-based pattern
matching, and the other is parallel union opera-
tion of sets.

It is well known that NFAs and derterministic
finite automata (DFAs) are equivalent, and every
NFA can be converted into its equivalent DFA
[12]. NFAs seem to be of no practical interest
in direct application implementations since they
are embedded with nondeterministicism and don’t
correspond naturally to deterministic algorithms.
But, NFAs have a variety of practical applications



in computer science, linguistics, systems model-
ing and control, artificial intelligence, and struc-
tural pattern recognition since NFAs are simpler
and more intuitive to define than their equiva-
lent DFAs due to the powerful concept of nonde-
terministicism embedded in NFAs, especially for
pattern matching [25]. NFAs are rarely imple-
mented directly in conventional computer systems
because the nondeterministicism in NFAs causes
poor performance and implementation overhead.
Usually, they are converted into their equivalent
DFAs for implementation. Therefore, for the pur-
pose of syntax analysis on regular languages, an
NFA could be constructed for a given language
first, and then its equivalent DFA is implemented
to recognize the language. The direct construc-
tion of an NFA is as simple as that of a DFA
using the proposed RNN (see Section 3). In that
way, the power of nondeterministicism in NFAs is
retained, and there is no need to convert an NFA
into its equivalent DFA for implementation. Since
every DFA is an NFA, the proposed RNN can be
used as a general neural architecture for realizing
finite automata including DFAs and NFAs.

The rest of the paper is organized as follows.
Section 2 reviews some of the key concepts and
develops definitions that will be used in the rest
of the paper. Section 3 develops the theoretical
foundation for direct implementation of NFAs us-
ing RNNs. Section 4 concludes with a summary
and a brief discussion.

2 Review and Definitions

2.1 Perceptrons

A 1-layer Perceptron has n input neurons, m out-
put neurons and one layer of connection weights.
The output y; of output neuron i, 1 < i < m, is
given by y; = fh(E?:1 wi;z; — 0;). w;; denotes
the weight on the connection from input neuron j
to output neuron i, §; is the threshold of output
neuron i, =; is the value at input neuron j, and f3
is binary hardlimiter function, where

1 ifx>0
0 otherwise

fu(z) =

It is well known that such a 1-layer Perceptron
can only implement linearly separable functions
mapping from R" to {0,1}™ [16]. The connec-
tion weight vector w; =< w;y, ..., w;, > can be
viewed as defining a linear hyperplane H; which
linearly separates all the n-dimensional vectors
into two sets, where [-]T denotes the transpose of
a vector or a matrix.

A 2-layer Perceptron has one layer of %k hid-
den neurons (and hence two layers of connection
weights with each hidden neuron being connected
to every input neuron and every output neuron).
Note that there is no connection from input neu-
rons to output neurons in a 2-layer Perceptron. In
this paper, every hidden neuron and output neu-
ron in the 2-layer Perceptron use binary hardlim-
iter function f; as activation function and pro-
duce binary outputs; its weights are restricted to
values from {—1,0,1}; and it uses integer thresh-
olds. It is known that such a 2-layer Perceptron
can realize arbitrary binary mappings [1, 2].

2.2 Finite Automata

Deterministic Finite Automata

A deterministic finite automaton Mppa is a 5-
tuple (@, T, 6, qo, F') [12], where @ is a finite non-
empty set of states, I' is a finite non-empty input
alphabet, gy € Q is the initial state, F C @ is the
set of final or accepting states, and ¢ is the tran-
sition function mapping from @QxTI" to Q. A finite
automaton is deterministic if there is at most one
transition that is applicable for each combination
of state and input symbol. An input string is
accepted by Mpp 4 if the computation on the in-
put string by Mpra terminates in an accepting
state; otherwise it is rejected. The set of strings
accepted by Mpp4 in I'* is denoted as L(Mpga),
called the language accepted by Mpp 4.

Nondeterministic Finite Automata

A nondeterministic finite automaton Mypa is a
5-tuple (Q,T,8',qo, F) [12], where Q, T, go, and
F have same meaning as for a DFA, but § is a
mapping from QxI to 29. Note that 29 is the
power set of Q and &' (g, a) is the set of all states p
such that there is a transition, denoted as (g, a, p),
from ¢ to p on an input symbol a. Also note that
there could be more than one transition which is
applicable for each combination of state and input
symbol in an NFA, and |6’ (g,a)| is bounded by
|@Q|, where |A| denotes the cardinality of set A.
An input string is accepted by My 4 if there is a
computation on the input string by Mypg4 which
processes the entire input string and halts in an
accepting state; otherwise it is rejected. The set
of strings accepted by Myp4 in T™* is denoted as
L(MNFa), called the language accepted by My a.

Simplicity and Intuitiveness of NFA

It is known that NFA and DFA are equivalent
[12]. Two automata are said equivalent if they ac-



cept the same language. Any language accepted
by an NFA can also be accepted by a DFA, and
every NFA can be converted into an equivalent
DFA [12]. However, an NFA is usually simpler
and more intuitive to define than its equivalent
DFA due to the powerful concept of nondetermin-
isticism embedded in NFAs, especially for pattern
matching [25]. Figures l.a and 1.b respectively
show the state diagrams of an NFA and its equiv-
alent DFA. Both of them accept any input string
containing a sub-string abaa [25]. These two au-
tomata are equivalent, but apparently the repre-
sentation of the NFA is simpler and more intuitive
than that of the DFA in this case (in terms of the
representation of state diagram). The state dia-
gram of an NFA or a DFA is a labeled directed
graph in which the nodes denote the states of the
NFA or DFA, and the arcs are obtained from the
transition function. An arc from node g; to g; is
labeled a if 6(g;,a) = g; for a DFA or g; € §(g;,a)
for an NFA, and the transition (g;, a, g;) is a fan-
in transition of state g; on input symbol a. From
the examples, it is noted that an NFA search for a
solution along all reachable paths in parallel con-
ceptually in the state space. Note also that, if an
NFA has @ states, then the number of possible
states of its equivalent DFA could be as large as
2/9l and the number of possible transitions in the
DFA could also be the same order. For example, if
an NFA has 20 states, then its equivalent DFA has
220 x5 1 x 10 states in the worst case. Therefore,
it may take much overhead to implement NFAs
deterministically in current computer systems.
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Figure 1.a. The state diagram of an NFA that
accepts any input string having a sub-string abaa.
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Figure 1.b. The state diagram of a DFA that ac-
cepts any input string having a sub-string abaa.

2.3 Parallel Computing Model of
NFAs via RNNs

The deterministic and linear-time operation of a
given NFA directly constructed on the proposed
RNN architecture can be modeled conventionally
by its equivalent DFA which is derived accord-
ing to Subset Construction algorithm [25] whose
main idea is to concurrently track all the possi-
ble states that can be reached at each move of
an NFA. Such a tracking in the operations of an
NFA computes all the possible paths at each move
and induces much overhead in single-CPU com-
puter systems, whereas the proposed RNN effi-
ciently computes in parallel the set of reachable
states at each move by exploiting the inherent par-
allelism in ANNs. In Subset Construction algo-
rithm, for a given NFA Myp4 = (Q,F,&I,qO,F),
a DFA Mpp, = (29,1,8 ,Qo, F") is defined
from Mypa such that L(Myra) = L(Mpp,),
where Qo = {@}, F ={K |KCQ& KNF #
0}, and §" : 29 x T — 29 is defined by

Q; =6 (Qi,a), if Q; = Ugeq.d (¢,0)
for all Q; CQ &a€T (1)

One main problem with Subset Construction
algorithm, which views @;’s as individual states
in implementation, is the exponential increase in
the number of states (O(2/9l)) and the number
of possible transitions defined in transition func-
tion & (O(2219! x |T'|)). This situation can often
be somewhat alleviated by Iterative Subset Con-
struction algorithm [25] which only includes the
states that can be reached from initial state qg.
Let M}pa = (Q*,T,0* Qo, F*) be defined from
MnF 4 according to Iterative Subset Construction
such that L(Mnra) = L(M},f 4)- Since Iterative
Subset Construction eliminates the states which
can not be reached from initial state go, M54
is smaller than M, , in terms of the number of
defined states and transitions.

The major difficulty with both Subset Con-
struction algorithms in implementation is the
bookkeeping of §', F", Q*, 6*, and F*, which
are derived from Mpypra. The direct realization
of a given NFA by the proposed RNN is free of
the problem since the transition function mod-
ule of the RNN captures the regularity of § in
expression (1) via § without actually knowing
the mappings in §  in advance (see Section 3).
Such simplification is partly facilitated by rep-
resentationally viewing );’s as individual sets of
states denoted by neural localist representation.
The transition function module of the proposed
RNN realizes not only § but also §*. Since the



proposed RNN always starts from initial state g
for any input string, the states which can not be
reached from ¢o will not appear in the transition
function module of the RNN during input pro-
cessing, i.e., only the states in Q* will appear in
the transition function module during input pro-
cessing. Hereafter, only M}, instead of M, ,
is discussed.

Let 0,1,...,t,t+1,... denote a succession of points
along the discrete time line. Then, for an NFA, let
us call Q4.4(0) = Qo the initial set of active states,
Qact(t) the current set of active states which cor-
responds to the set of reachable states from gq
after ¢ (current time) moves by Mypa (Mp4),
and Qg (t + 1) the next set of active states which
corresponds to the set of reachable states from ¢q
after t+1 moves by Mnra (Mppa). Qact(t) and
Qact(t+1) are derived recursively from Q,.+(0) by
expression Qqc¢(t +1) = Ugeq.., (t)dl (g,a) along
the processing of the input string, where a is in-
put symbol at time t. Qquc(t) is bounded in a
way that Qqc(t) C Q for t > 0, i.e., all the sets of
reachable states from initial state along the pro-
cessing of the input string are bounded by a same
set of states. Therefore, the number of reachable
states at each step does not proliferate indefinitely
or exponentially along the processing of the input
string, and thus the nondeterministicism shown
along the processing of the input string is globally
bounded. The proposed RNN directly realizes a
given NFA Mypa without a need to convert the
given NFA into its equivalent DFA M/, ,, and
it concurrently tracks all the possible paths along
the processing of the input string in the NFA by
simulating the deterministic move of the M}y 4.
According to Iterative Subset Construction and
expression (1), the transition function ¢* and the
moving of M}, can be characterized by

Va GFV tZO [Qact(t + 1) = (5*(Qact(t)7a)]7
where Qqct(0) = {go} and
Qact (t + 1) = UqEQaci (t) 5’ (q7 a) (2)

For an input string, the recursive evaluation of
Qact(t+1) along the moves of Mfyp 4 (MyFa) in-
volves two kinds of repetitive symbolic computa-
tions. One computes the sets of reachable states
from every state in Q. (t), and the other com-
putes the union of the sets of the reachable states.
The former is computed by the first layer of the
transition function module of the proposed RNN
by way of parallel content-based pattern match-
ing and the latter by the second layer by way of
logic OR operations. In applications of realizing
an NFA by the proposed RNN, a special symbol
$ ¢ T' might need to be appended at the end of

the input string to acknowledge the end of input.
When the $§ is encountered, the RNN terminates
input processing and tests the acceptance of the
input string.

3 Realization of NFAs by
RNNs

This section develops the theoretical foundation
and property for the neural assemblies used to
assemble the proposed RNN for an NFA (RNN
NFA). First, the representation in the proposed
RNN NFA is described. Then, a systematical
method is proposed to assemble the proposed
RNN NFA using the developed neural assemblies.
The following theorem and its proof facilitate
the development of theoretical foundation for two
kinds of neural assemblies used to assemble the
proposed RNN NFA.

Theorem 1 : Any single binary vertex is linearly
separable from all other binary vertices of same
dimension.

This theorem has been proved by [1, 13, 23] by
finding a hyperplane linearly separating a given
binary vertex from all other vertices in a binary
hypercube. [1] proves Theorem 1 by examining
the spatial distribution and linear separability of
binary vertices from geometrical perspective to lo-
cate a set of hyperplanes which linearly separate
a binary vertex from all other vertices in a binary
hypercube. The proof allows locating a separating
hyperplane that can be efficiently implemented in
a 1-layer Perceptron with one output neuron. The
computations in the Perceptron only involve in-
teger processing. [1] proposes that for a given
n-dimensional binary vertex v, all n-dimensional
binary vertices can be partitioned into n + 1 par-
allel layers in geometrical space according to their
Hamming distance to the given binary vertex v.

Let v be a binary vector of dimension n, i.e.,
v =< v1,...,0n > where v; € {0,1} for 1 < i <
n. Then v can be viewed as a binary pattern or
a binary vertex of an n-dimensional hypercube.
Hereafter, < v, ..., v, > is also used to denote an
n-dimensional vector (vertex). Now consider a bi-
nary vector v* of dimension m, where m > n. For
the purpose of constructing the proposed RNN
NFA, only the values of certain n components of
vector v* are of interest (see Sections 3.2 and 3.3);
i.e., for two given binary vectors v and v* of di-
mension n and m respectively, only whether v} =
V1,0, V, = Ui, ..., V) = Up are concerned, where
l1<n<mandl<j1 <jo<-<jJn<m
Let us call J}! = {j1,j2, ..., jn} the interest set J}!



and v*(Ji') =< vj,,v},, ..., v}, > the ordered Jp-
set partial vector of the binary vector v*, where
k is a natural number. Note that at most 2™ in-
terest sets can be defined concurrently for a given
problem in an m-dimensional binary space.

rejecting  accepting
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Acceptance testing

module
QD) |
| Y|
Transition function
module
Q.1 a(t)
reset input

Figure 2. The block architecture of the pro-
posed recurrent neural network for concurrently
tracking all the nondeterministic computations
of a given NFA. The dotted box labeled with
Qact(t+1) exists only logically but not physically.

Figure 2 shows the partially recurrent neu-
ral network architecture for concurrently tracking
all the nondeterministic computations of a given
NFA. The entire architecture essentially consists
of one transition function module, one acceptance
testing module, one end-of-input testing module
which is not shown in the figure, three buffers,
and recurrent links from the output neurons of
the transition function module to the buffer stor-
ing Qgct(t) (which could be part of the input
neuron layer of the transition function module.
It depends on applications implemented). The
transition function module is a 2-layer Percep-
tron, and the acceptance testing module as well
as the end-of-input testing module are 1-layer Per-
ceptrons. One buffer stores current set of active
states Qqct(t), another buffer (which could be the
other part of the input neural layer of the transi-
tion function module. It depends on applications
implemented) stores current input symbol a(t),
and the next set of active states Qqce(t+1) is rep-

resented by the other buffer which exists only log-
ically but not physically. The first two buffers are
under centralized synchronization control which
enforces discrete time 0,1,...,t,t + 1,.... The link
"reset” resets the RNN NFA to its initial set of
active states.

3.1 Symbolic Representation in the
Transition Function Module

How the transition function module of the pro-
posed RNN NFA realizes the transition function
0* of the DFA M/, plays a central role for the
realization of a given NFA via RNN. This sub-
section follows the notations described in Section
2. The symbolic representations in the transition
function module are described as follows.

e The output from every neuron and the input
to every input neuron are binary values.

e The input neurons are divided into two
groups. One group uses distributed represen-
tation, and the other group uses local repre-
sentation. Th former group has no recurrent
connection and denotes the binary-coded cur-
rent input symbol. There are [log(| T | +1)]
such input neurons, where [-] denotes the
ceiling integer value of a real value. The lat-
ter group has recurrent connections and de-
notes the current set of active states gt (t)-
There are | @ | such input neurons, the ith
neuron of which denotes whether state ¢;_1
is in Qqct(t). If the value at the ith neuron of
this group is 1, then state g;—1 is in Qgct(t)-
Otherwise state ¢; 1 is not in Q4.¢(¢). In this
group, the i¢th input neuron has a recurrent
link from the ith output neuron. The input
layer denotes Qqct(t) x a(t).

e The output layer uses local representation,
and the output neurons together denote the
next set of active states Qqc¢(t+1). There are
| @ | output neurons, the ith neuron of which
denotes whether state ¢;_1 is in Qqc(t + 1).
If the value at the ith neuron is 1, then state
gi—1 is in Qquet(t +1). Otherwise state g; 1 is
not in Qgct(t + 1). The output neurons along
with their associated 2nd-layer connections
operate together to compute the next set of
active states according to expression Qgc;(t+
1) = Ugeq.. (t)él (¢,a) (the union of the sets
of reachable states entered from every state
in the current set of active states on current
input symbol).

e The hidden neurons along with their 1st-layer
associated connections are used to recognize



(identify) the applicable transitions defined
by the transition function of an NFA. The
hidden layer uses local representation, and
one hidden neuron is used for one uniquely
defined transition. The number of activated
hidden neurons at each move of the proposed
RNN NFA equals .01 | 6 (g,a(t) |.
The activated hidden neurons in turn acti-
vate some of the output neurons.

e Every transition defined by the transition
function 0* (expression (2)) is represented as
an ordered binary mapping pair < Qgc¢(t) X
a(t), Qact(t + 1) > by the input and output
neurons of the transition function module.

e The recurrent connections from the output
neurons to some of the input neurons facili-
tate the continuous execution of the proposed
RNN NFA.

3.2 The First Neural Layer of the
Transition Function Module

This section develops the theoretical foundation
for explaining how the hidden neurons along with
their associated 1st-layer connections of the tran-
sition function module in the proposed RNN
are used to concurrently identify multiple sub-
patterns contained in an input pattern. Every
hidden neuron and its associated lst-layer con-
nections compose a basic neural assembly which
is used to identify if an input pattern contains a
sub-pattern of interest. The first neural layer of
the transition function module consists of a fixed
amount of such neural assemblies which operate
in parallel and independently.

Neural Assembly for Recognition of Partial
Pattern

Let v =< wy,...,u, > be a binary vertex of di-
mension n, where v; € {0,1} for 1 <4 < n. Let
Hg" be an n-dimensional separating hyperplane
which linearly separate vertex v from all other
n-dimensional vertices. Among a set of possible
expressions for Hg'", [1] chooses

n
Hy'=(Q v —Dzi) —(lv [P -1)=0 (3)
i=1
where || - || denotes the length of a vector. In a
binary space, || - ||? equals the number of 1’s in
a binary vector, and thus || v ||*= Y1, v;. The
separating hyperplane Hg"* for identifying binary
vector (binary pattern) v can be implemented in
a 1-layer Perceptron with one output neuron by
setting:

e > " ,v; — 1 as the threshold of the output
neuron, and

e 2vu; — 1 as the weight of the connection from
the ith input neuron to the output neuron.

Note that the value of 2v; — 1 is either 1 or -1,
that of z; is either 1 or 0, that of (2v; — 1)z; is
either 1, 0 or -1, and that of )}, v; is an integer.
Since only integer computations are involved in
the hardware implementation of this Perceptron,
the computations in the Perceptron are relatively
efficient.
Let v* be an m-dimensional binary vector and
an interest set J;! be chosen for 1 < j; < j» <
< jn < m such that v = wvi,...,v}, =
Uiy ..y U], = Up, where m > n and 1 < k < 2™,
In the following, the expression for the separating
hyperplane Hg™ in an n-dimensional binary space
is re-defined as a separating hyperplane H;n’v*’J’?
in an m-dimensional binary space to recognize the
m-dimensional binary vectors that contain the or-
dered Jjl-set partial vectors equaling the given n-
dimensional binary vector v(= v*(J}})):

m m
2SR = (3 @up = Dz) + (Y 0-2y) -
z'EJ,j jiJ;‘
m
(Y wr-1=0 (4)
ieJp

According to expression (4), the separating hy-
perplane Ha"" *’* can be implemented in a 1-
layer Perceptron with one output neuron by set-

ting:

e 2v7 — 1 as the weight of the connection from
the ith input neuron (i € JJ*) to the output
neuron,

e 0 as the weight of the connections from the
non-Jj-set input neurons to the output neu-
ron, and

. Z;ZJ,: v;i—1 (=Y ,_, vk—1) as the threshold
of the output neuron.

The values from those j ¢ J7 input neurons will
not affect the incoming summation value at the
output neuron since the weights on the connec-
tions from those input neurons are set as 0. They
altogether act as a don't-care filter,

3.3 The Second Neural Layer of the
Transition Function Module

This section develops the theoretical foundation
for explaining how the output neurons along with
their associated 2nd-layer connections of the tran-
sition function module operate in parallel to com-
pute Qact(t +1) = Uyeq..., (t)(S' (¢,a) (the union of



the sets of reachable states entered from the states
in the current set of active states on current in-
put symbol). Such a concurrent union operation
of sets are computed by a neural layer which is
assembled from a fixed amount of neural assem-
blies. Each of the assemblies computes a logic OR
operation in parallel with each other on shared
inputs. Every output neuron and its associated
2nd-layer connections compose such a basic neu-
ral assembly.

Neural Assembly for Executing a Logic AND

Consider an n-variable Boolean expression in the
following form (a conjunction clause of no negated
Boolean variable):

V1A Va--- AUy (5)
where A is a logical connective AND and v; is a
Boolean variable for 1 < ¢ < n. The value of v; is
either 0 or 1, with 0 denoting false and 1 true. Let
V=< V1,...,Up >, C*"(v) =01 A va--- A vy, and
< 1™ > denote an n-dimensional binary vertex of
all ones. Then, it can be derived that

C™(v) = {

1 fo=<1™>
0 otherwise

The function C™(v) is a logic AND function which
can be realized by a 1-layer Perceptron that im-
plements the hyperplane Hg’<1 Z. H§’<1 ~ lin-
early separates binary vertex < 1™ > from all
other n-dimensional binary vertices according to
expression (3). Let Hynp, ~ be used for Hy <",
Then, according to expression (3), the separating
hyperplane for identifying binary vertex < 1" >
is

n,<1™"> _ n,<1™>
HAND = HS

= (Zmi)—(n—l)zo (6)

i.e., a logic AND function of n Boolean variables
(more specifically, a conjunction clause of no
negated Boolean variable) can be realized by a
1-layer Perceptron with n input neurons, one out-
put neuron, and

e n — 1 as the threshold of the output neuron,
as well as

e 1 as the weight of the connection from every
input neuron to the output neuron.

Neural Assembly for Executing a Logic OR

Consider an n-variable Boolean expression in the
following form (a disjunction clause of no negated
Boolean variable) :

vV v Vo, (7

where V is a logical connective OR and w; is a
Boolean variable for 1 < ¢ < n. The value of
v; is either 0 or 1. [1] proposes that for a given
n-dimensional binary vertex u =< uy,...,uy >,
all n-dimensional binary vertices can be parti-
tioned into n + 1 parallel layers according to their
Hamming distance p to the given binary vertex u.
Those n + 1 layers are respectively on n+ 1 paral-
lel n-dimensional hyperplanes H»*’s, 0 < p <mn,
where

n

Hp = (3 (2u=Da) = (lu* —p) =0
= (2(2111—1).’171)—
() +p=0 ®)

and u is the only vertex of the first layer which is
on Hy"*, where

n n

O _Qui—Dz) = > ui=0 (9)

i=1 =1

nu
HM =

Let w =< uy, ..., u, > be the complement vertex
of binary vertex u, i.e., u; +u; =1 for 1 <i < n.
Then @ is the only vertex of the (n+1)th layer
which is on H»*, where

n

O (2ui — 1)) —

i=1

(f: ui) +n =0 (10)

n,u —
HM =

The hyperplane H»* can be implemented by
a 1-layer Perceptron to separate binary vertex u
from all other n-dimensional binary vertices. Let
u =< 1" >, then & =< 0" >. Let D"(v) =
v1 V vy ---Vu,. Then it can be derived that

D"(v) = {

0 ifv=<0">
1 otherwise

The function D™(v) is a logic OR function which
can be realized by a 1-layer Perceptron that im-
plements the hyperplane H»<'"> to separate bi-
nary vertex < 0™ > from all other n-dimensional
binary vertices according to expression (10). Let
Hg§1n> be used for H»<'">. Then the separat-
ing hyperplane is

n,<1">  _ n,<1™>
Hog = Hy

n

ZZ’,—(ZI)—FTL:O

i=1



= (in)—ozo (11)

i.e., a logic OR function of n Boolean variables
(more specifically, a disjunction clause of no
negated Boolean variable) can be realized by a
1-layer Perceptron with n input neurons, one out-
put neuron, and

e 0 as the threshold of the output neuron, as
well as

e 1 as the weight of the connection from every
input neuron to the output neuron.

In a space of m Boolean variables, to deal
with the logic OR functions of n Boolean variables
(called as m-out-of-m-variable disjunction clauses
of no negated Boolean variable), where m > n,
the expression for the separating hyperplane H5y
needs to be extended from an n-dimensional bi-
nary space to an m-dimensional binary space to
recognize the m-dimensional binary patterns that
contain an ordered partial pattern not equaling
the n-dimensional binary vector u for a certain
interest set Ji'. Suppose u* =< uj,u3,...,uy, >
is a binary vector of dimension m, where m > n.
And assume an interest set J! = {j1,J2,.,Jn}
is defined, where 1 < j1 < ja < --- < jp < M.
Define D™k (u*) = uj, Vuj,...Vuj . Then,

0 ifu*(JP)=<0">
1 otherwise

D™k (u*) = {

"> . m,<1™>,Jr .
Hg’g  is re-defined as Hypn “* in an m-
dimensional binary space as follows :

Hop " = (3 )~
ieJp
(} 0-2;)-0=0 (12)
Ji¢Jdy
ie., the logic OR function D™k (u*) = u} V

ul,... Vouj, (more specifically, an n-out-of-m-
variable disjunction clause of no negated Boolean
variable) can be realized by a 1-layer Perceptron
with m input neurons, one output neuron, and

e 0 as the threshold of the output neuron,

e 1 as the weight of the connection from the
jith input neuron to the output neuron,
where j; € JJ! for 1 <i < n, and

e 0 as the weight of the connections from the
non-J;’-set input neurons to the output neu-
ron.

Such a neural assembly (a 1-layer Perceptron) can
recognize all the 2™~ . (2" — 1) m-dimensional

binary patterns that let D™7k produce 1, and
such a neural assembly can check whether any of
certain n neurons among m neurons is activated,
where m > n. In the proposed RNN NFA, every
such neural assembly is used for one particular
fan-in transition of a certain state of an NFA to
check whether the transition is applicable on cur-
rent input symbol.

3.4 Assembling the Proposed RNN
NFA

The following subsections describe how to inte-
grate the neural assemblies developed in Sections
3.2 and 3.3 to directly construct an RNN NFA for
a given NFA. In the meanwhile, it is also described
for what each layer of neurons in the modules of
the proposed RNN NFA represents symbolically .

Neural Representation in the Transition

Function Module

Let nr = Xge@Xqer | (5’(q, a) |, ny = [log(| T |
+1)], and n4a =| Q | be respectively the total
number of defined transitions of a given NFA, the
number of input neurons used for denoting current
input symbol, and the number of input neurons
used for denoting the current set of active states
in the transition function module of the proposed
RNN NFA. Then the transition function module
has (n4 + ny) input neurons, ny hidden neurons,
and n 4 output neurons. The transition function
module is constructed directly from the symbolic
function & of the given NFA Myrp4 as follows.

The hidden neurons along with their associ-
ated 1st-layer connections are used to identify the
transitions applicable by the current set of ac-
tive states on current input symbol. One hid-
den neuron is used for one uniquely defined tran-
sition in the given NFA. The number of hid-
den neurons activated by current set of active
states Qact(t> on current input symbol a equals
Zeeuea(t) | 0 (@:0) |-

Let binary vectors u =< w1, ...,Un,4n; > and
v =< v1,...,Uy, > respectively denote the or-
dered values at input neurons and output neu-
rons in the transition function module. The first
n 4 components of vector u, being < uy, ..., un, >,
together represent (,.;(t); and the last ny com-
ponents of vector u, being < Up 441, -y Unstn; >,
together represent current input symbol a. The
vectors u and v respectively represent Q,q:(t) X a
and Qqct(t + 1) for the given NFA. Let JM ™! =
{i+1,ma+1,n4+2,....,n4 +nr} be an inter-
est set for 0 < i < mg — 1. Totally, n4 interest

sets Jortt gprtt T’Z;tll are defined. Each



of them contains ny + 1 elements. Let current
input symbol a be encoded as a binary vector
< ai,...,an, >, where a; € {0,1} for 1 < k < nj.
Tfu;r; = 1, then g; is in Que(t) and u(J ) =<
Uit1, Ung4ls s Unsdn; >=< l,a1,...,an, > de-
notes {¢;} x a, where 0 <i <mny4 — 1.

Settings of Connection Weights in the
Transition Function Module

The realization of the symbolic function §* by
the transition function module is the heart for
the construction of the proposed RNN NFA. Note
that every transition defined in expression (2) is
represented as an ordered binary mapping pair
< Qact(t) x a(t),Qqet(t + 1) > at the input
and output layers of the transition function mod-
ule, and such mappings are achieved by captur-
ing the regularity in expression Qu.(t + 1) =
UgeQuur (t)(sl (¢,a(t)) using a 2-layer Perceptron.

Suppose gi,¢; € Q, a € T, and g; € 6 (g;,a),
where 0 < 4,5 < mn4 — 1. In order to implement
the transition (g;, a,q;) in the transition function
module, the module has to be able to recognize
the input {¢;} x a. Therefore, an interest set
JMH = i+ 1,na 4+ 1,na + 2,...,n4 +nr} is
used for the identification of the ordered J;*" t"-set
partial input vector u(JP" ) =< 1,a1, ..., an, >
which denotes {g;} x a.

According to expressions (4), (12) and their cor-
responding Perceptron implementation, a hidden
neuron h is created, and its associated connection
weights as well as threshold are set for the tran-
sition (g;,a,q;) of the given NFA Myr4 in the
transition function module as follows :

1. In the 1st-layer connections, according to ex-
pression (4),

e 1 is set as the weight of the connection
from the (¢ + 1)th input neuron to the
hidden neuron h,

e 2aj—1is set as the weight of the connec-
tion from the (n4 + k)th input neuron
to the hidden neuron for 1 < k < ny,
and

o 0 is set as the weights of the connections
from other input neurons (which are not
in JP"*") to the hidden neuron.

2. The threshold of the hidden neuron is set as
2;1 Qg
3. In the 2nd-layer connections, according to ex-
pression (12),

e 1 is set as the weight of the connection
from the hidden neuron to the (j + 1)th
output neuron, and

e () is set as the weights of the connections
from the hidden neuron to other output
neurons.

4. The thresholds of all output neurons are set
as 0 in the transition function module.

In the above representations, if g; € Qgci(t)
and @ is current input symbol, then u;y; = 1 and
Una+k = a for 1 < k < ny at time t. Therefore,
in the proposed transition function module, the
partial input pattern u(J” ') =< 1,a1, ..., an; >
is identified, the hidden neuron h is activated, and
in turn the (j + 1)th output neuron is activated
(i.e,, vj41 =1 at time ¢ + 1 and g; € Qqct(t + 1))
according to above settings. So, the transition
(gi,a,q;) is realized in the transition function
module.

Parallel Symbolic Computation in the
Transition Function Module

The realization of every move (the move from
Qact(t) 10 Qquet(t + 1)) of M}, in the transi-
tion function module of the proposed RNN NFA
can be reasoned in two steps as follows :

1. Every hidden neuron h and its associated 1st-
layer connections serve as a neural assem-
bly for recognizing a certain ordered J;" L
set partial input pattern. Every such neu-
ral assembly checks for a certain transition
(gi,a,q;) (0<1i,j <ny—1) whether current
input vector u contains the ordered J" ' set
partial pattern u(JM 1) =< 1,a1,...,an, >
(denoting {¢;} % a and ¢; € Qqct(t)) accord-
ing to expression (4). If it is, the hidden neu-
ron h is activated by the partial input pat-
tern {g;} x a at time ¢ and the transition
(gi,a,q;) is applied. Totally there are nrp
such neural assemblies operating in parallel
to identify all the possible transitions which
are applicable by the states in Q4¢(t) on cur-
rent input symbol, and thus they work like a
simplified and cost-effective SIMD computer
system dedicated to parallel partial pattern
matching.

2. Every output neuron along with their associ-
ated 2nd-layer connections operate together
as a neural assembly to compute a logic OR.
Every such neural assembly is used to check
for a certain state g; whether any of its fan-
in transitions is applied by Q.c(t) on cur-
rent input symbol a. If it is, then out-
put neuron j + 1 is activated and g; is in
Qact(t + 1). Totally there are na such neu-
ral assemblies (output neurons) which share
their input neurons, and operate in parallel to



compute the next set of active states Qqct(t+
1) according to expression Quc(t + 1) =
UgeQunr (t)él (g,a). Such neural assemblies
work together to compute Quet(t + 1) like a
simplified and cost-effective SIMD computer
system dedicated to parallel union computa-
tions of sets.

When the representations of Quq¢(tf) and
Quct(t+1) are viewed locally (i.e., they are viewed
as a set of states respectively), the transition func-
tion module realizes the transition function &
of the given NFA Myrp4 if it is restricted that
| Quet(t) | = 1. Note that & maps from Q x T’
to 29. Such local representations facilitate the
parallel recognition of all the transitions appli-
cable by the states in Q,c(f) on current input
symbol even if | Quct(t) | > 1. Thus the repre-
sentations facilitate the concurrent tracking of all
possible nondeterministic paths at each move of
an NFA. When the representations of Q,.¢(t) and
Quct(t+1) are viewed distributedly (i.e., they are
viewed as a single state respectively), the transi-
tion function module realizes the transition func-
tion 6* of M},p,. It means that the transition
function module in the proposed RNN concur-
rently realizes the transition functions § and &*.
Such a concurrent realization facilitates not only
the direct construction of the transition function
module from the transition function § but also
the linear operation time of the proposed RNN
NFA for the processing of input strings.

Settings of Connection Weights in the Ac-
ceptance Testing Module

The acceptance testing module of the proposed
RNN NFA tests whether an input string is ac-
cepted by the RNN NFA at the end of input pro-
cessing. It is a 1-layer Perceptron which has ng4
input neurons and an output neuron.

The output neuron tests whether Q,q:(t + 1) €
F* by checking whether any state of F is in
Qact(t+1) at the end of input processing. Such a
test can be characterized by a logic OR operation
(expression (7)) on the values of the neurons de-
noting accepting states, and hence it can be real-
ized by a Perceptron according to expression (12)
with input neuron v; denoting whether state q; 1
is in F'. The connection weights and threshold of
the accepting neuron are set as follows:

o If g; € F, then the connection weight from
the (i + 1)th input neuron to the output neu-
ronis set as 1 for 0 <i <mny — 1. Otherwise
it is set as 0.

e The threshold of the output neuron is set as
0.

The End-of-Input Testing Module

In the proposed RNN NFA, an end-of-input test-
ing module is used to test the end of input string.
The end-of-input testing module is a neural as-
sembly (a 1-layer/l-output Perceptron) realizing
a logical AND to recognize the end-of-input sym-
bol $ which is encoded as binary vector < 1™ >.
By expression (6) and its corresponding Percep-
tron implementation, all connection weights are
set as 1 and the threshold at output neuron is set
as (ny — 1) in the 1-layer/1l-output Perceptron to
recognize §. The end-of-input testing module is
not shown in the proposed RNN NFA (Figure 2).

3.5 Operation Time Complexity of
the Proposed RNN NFA

The time complexity of processing an input string
of length n by an NFA directly implemented in
single-processor computer systems is O(m?n) [18],
where m is number of states in the NFA. The pro-
posed RNN NFA concurrently tracks all possible
nondeterministic transitions along the processing
of an input string in a given NFA by exploiting the
inherent parallelism in ANNs. In such a parallel
computation, the proposed RNN NFA retains not
only the power of nondeterministicism in NFAs
but also the advantage of their equivalent DFAs
which run deterministically in linear time propor-
tional to the length of input strings. Since the
transition function module in the proposed RNN
NFA realizes both the transition functions § and
6*, the time complexity of processing an input
string by such a parallel and deterministic com-
putation in the proposed RNN is linearly propor-
tional to the length of the input string, i.e., for an
input string of length n the processing time com-
plexity in the proposed RNN NFA is O(n). There-
fore the computation overhead of input process-
ing due to the nondeterministicism in NFA can be
removed by taking advantage of the inherent par-
allelism in ANNs as shown by the proposed RNN
NFA.

4 Summary and Discussion

Artificial neural networks, due to their inherent
parallelism, offer an attractive paradigm for effi-
cient implementations of functional modules for
parallel symbol processing. This paper has pro-
posed to exploit the inherent parallelism of neu-
ral networks to directly construct NFAs for effi-
cient recognition of regular languages using a class
of partially recurrent neural networks. The time
complexity of processing an input string of length



n by an NFA implemented in single-processor
computer systems is O(m?n) [18], where m is
number of states in the NFA. On the other hand,
the corresponding time complexity in the pro-
posed RNN is O(n), i.e., the computation over-
head due to the nondeterministicism embedded
in NFAs can be removed by exploiting the inher-
ent parallelism in ANNs. From the standpoint
of exploiting parallel computing to realize a given
NFA, a multiple-processor computer system can
approximately do the same as the proposed RNN,
but the runtime communication and coordination
overhead required by a multiple-processor com-
puter system would make the corresponding time
complexity of input processing higher. The over-
head gets worse as the number of processors in
the computer system increases. Since every DFA
is an NFA, the proposed RNN can serve as a more
general architecture than that proposed in [1] for
constructing finite automata including DFAs and
NFAs.

This paper has presented one of the attempts
in exploring the inherent parallelism of neural
networks to efficiently handle symbol processing.
Such attempts are based on a goal that the con-
structed neural networks for symbol processing be
programmed (assembled) from a basic set of neu-
ral assemblies for basic operations such as logic
AND and OR operations which have been long used
to realize many complex computations via a va-
riety of systematical assembling methods. Such a
concept is also demonstrated by [14] which assem-
bles Elman-style RNNs [6] to realizes DFAs from
certain AND and OR neural assemblies. Although
many complex computations can be realized by
ANNSs in terms of brute-force binary mapping [4],
they can be realized more space-savingly (neuron-
savingly) in terms of their embedded regularities
which in turn can be translated into logic ANDs
and ORs.

In conventional computer systems, many prac-
tical computer programs are usually large and
built from a set of utility programs (or ob-
jects/classes in object-oriented paradigms). Such
programs allow code reuse and fast implemen-
tation with less errors. The same idea is to
be applied in constructing practical neural net-
works of large size. This paper has constructed
a given NFA using a partially RNN which is as-
sembled from basic neural assemblies that real-
ize respectively a logic AND and a logic OR oper-
ations on Boolean variables. Our other attempts
include neural networks designed respectively for
deterministic finite automata [1], simple database
query processing [3], syntax analysis [4], and infor-
mation retrieval [5]. It is expected to see that the

same idea can be applied in constructing neural
networks for a variety of important applications
in the future.
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